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Abstract: Due to the satellite signals are blocked, it is difficult to obtain the vehicle position in the
tunnels. We propose a single-site vehicle localization scheme for the rectangular tunnel environment,
where most satellite-based positioning methods can not provide the required localization accuracy. In
the non-line-of-sight (NLOS) scenarios, we make use of the reflection paths as assistants for vehicle
positioning. Specifically, first, the virtual stations are established based on the actual geometrical
structure of the tunnel. Second, we use the direction-of-arrival (DOA) and time-of-arrival (TOA)
information of reflection paths from two tunnel walls to achieve vehicle positioning. Especially, the
Cramer-Rao lower bound (CRLB) of the joint TOA and DOA localization for NLOS propagations
in a two-dimensional (2D) space is derived. In addition, based on the localization algorithms with
and without filters, we assess the localization performance. In the line-of-sight (LOS) scenarios, we
use the LOS path and two reflection paths from the tunnel walls to estimate the vehicle location.
First, virtual base stations are established. Second, based on the obtained TOA information, different
positioning algorithms are used to estimate the vehicle location. Simulation results illustrate that
the proposed positioning approach can provide a small root mean square error. The localization
algorithms using filters improve the localization accuracy, compared with the positioning algorithm
without using filters, namely, the two-stage weighted least squares (TSWLS) algorithm. Moreover, the
Unscented Particle Filter (UPF) algorithm achieves better positioning accuracy than other methods
(i.e., Unscented Kalman Filter (UKF), Extended Kalman Filter (EKF), TSWLS algorithms).

Keywords: direction-of-arrival; single-site vehicle positioning; time-of-arrival; tunnel; virtual station

1. Introduction

Vehicular ad-hoc network (VANET) is a fundamental component of intelligent trans-
portation system to improve road transport efficiency, reduce traffic accidents, and improve
traffic safety [1,2]. VANET applications mainly include safety applications and comfort
applications. The safety applications are conducive to improving vehicle and passengers’
safety on the road. The comfort applications mainly include entertainment, commodity
and online services, etc. [3–6]. VANETs implement these applications through vehicle-to-
vehicle (V2V) and vehicle-to-infrastructure (V2I) communications. In VANETs, the vehicle
has high mobility, and location-aware applications require updated and reliable position
information. The inaccurate position information can seriously affect the effectiveness of
the location-aware VANET applications. Therefore, vehicle position is one of the crucial
information in VANET [6–10].

Due to vehicle mobility and the signal weakness resulting from environmental objects,
it is challenging work to obtain the precise position of vehicles in VANETs. To overcome
these difficulties, several locationing methods have been proposed to obtain vehicle location
in VANET, such as Global Positioning System (GPS), dead reckoning, differential GPS,
map matching, lateration techniques (i.e., distance-based lateration methods, angle-based
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lateration methods), filter-based techniques, cellular localization techniques, image/video
processing techniques, roadside unit (RSU), etc. [6,7,11–13]. Many of the studies were
appropriate for vehicle positioning in outdoor or indoor environments where GPS is
available. However, GPS systems have faced undesirable issues. There are many scenarios
without GPS signals, such as tunnels, canyons, parking garages, cities with large buildings,
underground mines, etc. In these environments, GPS-based positioning methods can not
achieve vehicle positioning. Vehicle positioning in these scenarios is very important and
needs to be explored in depth [12]. In this paper, we aim to study vehicle localization
technologies in tunnel scenarios.

Most research has focused on GPS-free vehicle localization methods for tunnel envi-
ronments. The vehicle positioning technology in the tunnel environment mainly includes
positioning techniques based on ultra-wideband (UWB), ZigBee, Light Detection and Rang-
ing (LIDAR), Radio Frequency Identification (RFID), WiFi network positioning techniques,
cooperative positioning, RSU-based positioning, visible light communication positioning,
etc. In [14], the authors presented a localization scheme based on UWB for the vehicle
in the tunnel. In [15], authors adopted UWB positioning technology and filtered the
exceptional value during the measurement to improve positioning accuracy. In [16], a
WiFi-based positioning method was adopted by the authors to achieve vehicle localization
in the tunnel. In [17], the author proposed a facility–based vehicle positioning approach
for highway tunnels exploiting 3D LIDAR. The tunnel facility points were obtained by
exploiting LIDAR, and vehicle positions were estimated by the Extended Kalman Filter
(EKF) based method. Moreover, several radio-ranging-based localization approaches are
also widely adopted for vehicle localization in tunnels. In [18], the Received Signal Strength
Indication (RSSI) localization approach based on the linear modified log function model
was presented to improve the accuracy of RSSI positioning. In [19], authors proposed a
time of arrival (TOA) and time difference of arrival (TDOA) based vehicle localization
method in VANETs. These TOA-based methods are faced with the challenge of precise
synchronization. In [20], authors proposed an automatic approach for the simultaneous
refinement of the sensors’ localizations and target position in the mine tunnel. In the
paper, the TOA measurements based on UWB were used to acquire the target position.
In [21], a cloud reasoning model-based positioning approach was proposed to realize the
vehicle positioning inside the highway tunnel. In [22], authors proposed a novel grid-based
on-road positioning scheme for the vehicle without GPS signal to compute target vehicle
positions. Simulation results illustrate that the proposed positioning method has high posi-
tioning accuracy in tunnel and city environments. Some scholars use GPS signals outside
the tunnel or pseudo-satellite technology to locate vehicles inside the tunnel. In [23], the
magnetic field was used to calculate the target location inside a tunnel. In the proposed
approach, before the vehicle enters the tunnels, the authors calibrated the sensors using
location information from the global navigation satellite system (GNSS) and magnetic field
database. In addition, the authors deployed the smartphone on the dashboard. Then the
vehicle location was calculated by the authors exploiting the magnetic sensor of the phone.

To improve vehicular localization accuracy, the combination of localization information
from different sources is considered, and the data fusion techniques (i.e., Particle Filter (PF),
Kalman Filter (KF), Unscented Kalman Filter (UKF), EKF, etc.) are utilized to achieve high-
accuracy localization. In [24], authors proposed a multi-sensor fusion approach to improve
the vehicle localization performance in the tunnels. In the paper, the microelectromechanical
system-based inertial sensor, electronic compass, RFID, and wheel speed sensor were
integrated by the RFID-based positioning algorithm and the interacting multiple model-
based global fusion method to obtain vehicle position.

Recently, many scholars have used V2V/V2I communication techniques to obtain
vehicle positions in tunnels. In the V2I-based localization approach, each vehicle can
estimate its location using the ranging measurements parameters (i.e., RSS, direction-of-
arrival (DOA), TOA, and TDOA) transmitted from the surrounding RSUs or base stations
(BSs). In [25], authors proposed a new cooperative localization scheme integrating V2I
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measurements with respect to RSUs. In [26], the existing V2I communication was used
to obtain vehicle position in the tunnel environment. In the paper, the Doppler shift and
TOA were considered by the authors, and EKF was adopted to incorporate the Doppler
shift and TOA data. Results show that the EKF has a better positioning performance than
Kalman Filter; it reduces the mean positioning error by 10 m. In [27], authors proposed
a positioning system based on network connectivity of VANETs in road tunnels. The
proposed positioning system includes two stages; specifically, first, the reference nodes
are efficiently installed along the tunnel, with at least two reference nodes covering each
vehicle; second, based on the data from reference nodes and adjacent vehicles, the net-
work connectivity-based algorithm was used to estimate vehicle position. In [28], authors
proposed a multipath-assisted positioning method to calculate the position of the mobile
terminal. For the proposed positioning scheme, the authors used the Kalman filter to track
the parameters of multipath components. Then the estimated multipath parameters and the
heading information from an inertial measurement unit are used as input for the channel-
simultaneous positioning and mapping algorithm to calculate the location of the mobile
terminal. Based on the data obtained from outdoor measurements, the authors verified the
effectiveness of the multipath-assisted positioning approach. In [28–32], authors studied
various multipath-assisted positioning methods. To our knowledge, multipath-assisted
positioning algorithms are not used to locate vehicles inside tunnels. These positioning
strategies provide some new ideas for vehicle positioning in the tunnels, and they can be
extended to vehicle localization in tunnels. However, the multipath-assisted positioning
method has high complexity and is more difficult to implement. Table 1 gives a summary
of various vehicle localization methods in the literature for the tunnels. As seen from the
table, the commonly used localization algorithms in tunnels are EKF, UKF, etc.

Table 1. Vehicle localization methods in tunnel environments.

Reference Method Accuracy

[16] WiFi, Open wireless positioning method Less than 20 m

[24] RFID, RSS, LMS, interactive multiple models, strong tracking EKF Max: 2.98 m, RMS: 2.19 m

[33] RFID, RSS, DR, least square support vector machine, federated UKF 2.91–4 m

[34] Newton iteration location estimation, RSS, WSN Less than 3 m

[35] WSN, angle offset-assisted positioning NA

[36] Roadside LIDAR, inertial measurement unit 0.49 m

[37] UWB, INS, EKF, residual weighting, factor graph model 0.5397 m

[14] UWB 0.15–0.18 m

[20] UWB, TOA NA

[19] TOA, time difference of arrival, onboard navigation unit, localization based
on clustering in vehicular clouds NA

[38,39] Visible light communication, V2V, V2I 1 m

[25] V2I, RSU, UWB, cooperative localization 0.1–2 m

[27] V2V, V2I 9.16–14.5 m

[15] UWB, exceptional Value Filtering, Greedy-based clustering algorithm NA

[17] 3D LIDAR, EKF Less than 0.2 m

[26] Doppler shift, TOA, EKF Max: 35.88 m, Mean: 20.3 m

[18] RSSI, linear modified log function 1.95 m

[21] Cloud reasoning model Less than 1 m

[22] A light-weight grid-based calculation mechanism Less than 14 m

[23] The magnetic sensor of a smartphone, magnetic sensor calibration method 9.33–30.38 m
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To our knowledge, the V2I/V2V-based and multi-sensor data fusion positioning
methods are widely used to calculate vehicle position. The V2V-based vehicle positioning
method is founded on the transmission of location, speed, and direction information
between the vehicles [40]. The successful transmission of information between vehicles
depends on V2V communication. However, in real environments, due to adverse radio-
frequency propagation and high vehicle dynamics, it is difficult to meet the required
message update rate. Especially when the vehicle density is low, the V2V-based vehicle
localization cannot meet the requirements. In tunnels, the vehicle density is usually low. In
this case, only using the V2V positioning method cannot obtain accurate vehicle position.
The data fusion and V2I-based positioning methods require the use of multiple sensors,
RSUs, or base stations to achieve accurate vehicle positioning. Especially for the V2I-based
positioning method, various factors have an influence on the vehicle positioning accuracy,
for example, the number and positions of RSUs or base stations, the bandwidth dedicated
for positioning, signal propagation conditions, etc. In V2I-based positioning methods,
many RSUs or base stations are spatially separated at known positions to improve accuracy;
this increases the cost of vehicle localization. In addition, it is not convenient to install
many base stations or RSUs in the tunnel. Therefore, it is meaningful to use fewer base
stations for precise vehicle positioning.

To simplify the complexity, reduce the cost, and improve the accuracy of vehicle
positioning in the tunnel, we propose a single-site vehicle positioning scheme, which utilizes
the TOA and DOA estimates for vehicle localization in a rectangular tunnel environment.
In the proposed method, only one base station is used to achieve vehicle positioning in the
tunnel. In addition, to improve the vehicle positioning accuracy, the Unscented Particle
filter (UPF) is utilized to mitigate the channel propagation effects. In the proposed method,
firstly, we build two virtual stations (VSs) based on the position of the base station and the
structural characteristics of the tunnel. Secondly, we consider the reflection paths from the
tunnel walls and convert the non-line-of-sight (NLOS) paths into line-of-sight (LOS) paths
based on virtual station techniques. According to the geometric relationship between the
VS and the base station, the path from the BS to the target vehicle is equivalent to the path
from the VS to the target vehicle. Finally, for the NLOS cases, we can estimate the target
vehicle position based on the DOA and TOA information of the reflection paths from the
virtual stations. For the LOS cases, there are several methods to obtain vehicle locations.
For example, we can obtain the target vehicle position based on the TOA information of
the reflection paths from the virtual stations and the LOS path from the base station. We
can also acquire the target vehicle position based on TOA and DOA information from the
LOS and reflection paths. The contributions of this paper are summarized as follows:

• A novel single-site vehicle localization approach for the rectangular tunnel environ-
ment is proposed;

• The Cramer–Rao Lower Bound (CRLB) of joint TOA and DOA localization method
is derived;

• The localization performance of the single-site vehicle localization method with and
without filter under LOS and NLOS conditions are compared and analyzed.

The rest of the paper is organized as follows. Section 2, the establishment of virtual
stations is described. The basic theory of single-site vehicle positioning and the joint TOA
and DOA positioning method are described in Section 3. Moreover, we derive the CRLB
of the proposed joint TOA and DOA vehicle positioning method. Section 4, we describe
the two-stage weighted least squares (TSWLS) and UPF positioning algorithms. Section 5,
we analyze the vehicular localization performance of the proposed single-site positioning
scheme and compare the positioning performance of the single-site localization approach
with and without a filter. In this section, the positioning performance of traditional TSWLS,
EKF, UKF, and UPF algorithms for LOS and NLOS scenarios are compared. Finally, the
concluding remarks are given in Section 6.
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2. Establishment of Virtual Stations

It is known that the single-site positioning is an attractive positioning technique, which is
simple to deploy, less costly, and easy to operate [41]. The positioning method does not require
many base stations and is very suitable for vehicle positioning in a tunnel environment. In this
paper, we aim to propose a two-dimensional (2D) single-site localization approach to calculate
the target vehicle location in a rectangular tunnel. The BS is deployed at the entrance of the
tunnel. In addition, the BS is deployed at a known location, and the position of the base station
is denoted as xs = [xb, yb]

T. The BS transmits Orthogonal Frequency Division Multiplexing
(OFDM) frames; the receivers receive OFDM frames from the fixed BS. Based on the obtained
OFDM frames, the multipath TOA and the azimuth DOA can be obtained by channel parameter
estimation algorithm [42,43]. The estimated parameters denote as θ̂i, τ̂i.

θ̂i = θi + nθi , (1)

τ̂i = τi + nτi , (2)

where θi denotes realistic arriving angle from the i-th VS to the vehicle, τi denotes realistic
propagation delay from the i-th VS to the vehicle. nθi denotes the measurement error of
DOA; it is seen as zero-mean white Gaussian process with variance σθi

2. nτi denotes the
measurement error of TOA; it is seen as zero-mean white Gaussian process with variance
στi

2. nθi and nτi are assumed uncorrelated. Based on estimated delay τ̂i, the estimated
distance is calculated as d̂i = cτ̂i = di + ndi

. di represents the realistic distance between the
virtual station i and the target vehicle. ndi

denotes the distance measurement error of TOA,
ndi

= cnτi .
We suppose that the tunnel wall is a line, and the presentation of line l1 can be written

as Ax + By + C1 = 0. For a tunnel, there are two tunnel walls; the other tunnel wall l2 is
denoted by Ax + By + C2 = 0. The position of BS is xs = [xb, yb]

T . The position of the
target vehicle node is xm = [x, y]T . By calculating the symmetry point of the BS about the
two tunnel walls, the locations of the two virtual stations can be obtained, as shown in
Figure 1. In this paper, we focus on single-bounce reflecting NLOS path. The distance from
BS to the target vehicle is equal to the distance from the virtual station to the target vehicle.
By using the virtual station technique, the NLOS paths are converted into LOS paths for
vehicle localization [44].

Figure 1. Single-bounce reflection paths and virtual stations.

The virtual station for the k-th reflection path from the tunnel wall is xpk = [xvk, yvk]
T .

In Figure 1, the coordinates of virtual station xp1 and xp2 can be calculated as

xp1 =

[
xv1
yv1

]
=

 (B2−A2)xb−2AByb−2AC1

A2+B2

(A2−B2)yb−2ABxb−2BC1

A2+B2

, (3)
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xp2 =

[
xv2
yv2

]
=

 (B2−A2)xb−2AByb−2AC2

A2+B2

(A2−B2)yb−2ABxb−2BC2

A2+B2

. (4)

The realistic arriving angle from the j-th virtual station to the target vehicle is θj, which
is given by

θj = arctan

(
y− yvj

x− xvj

)
, (5)

where yvj stands for the Y-axis coordinate of the virtual station j, xvj is the X-axis coordinate
of the virtual station j, x and y stand for the X-axis and Y-axis coordinates of the target
vehicle, respectively.

3. Vehicle Localization Theory
3.1. Localization Methods in Different Scenarios
3.1.1. Vehicle Localization in LOS Scenarios

In the tunnel, there may be LOS or NLOS between the target vehicle and the base
station. In the LOS case, the target vehicle position can be obtained based on the TOA
parameters of the LOS path and the reflection paths from the tunnel walls. In addition,
we can also acquire the vehicle location based on the DOA and TOA information of the
reflection and LOS paths. In LOS scenarios, it is relatively easy to achieve the target
vehicle localization. In this paper, we will not describe the implementation of the vehicle
localization algorithm in the LOS scenarios in detail.

3.1.2. Vehicle Localization in NLOS Scenarios

In reality, due to the occlusion of other obstacles, NLOS often occurs between the
target vehicle and the BS. Sometimes, there is no LOS path between the target vehicle and
BS, as shown in Figure 2. The positioning of the target vehicle, in this case, is much more
complicated than in LOS scenarios. In this case, we consider single-bounce reflection paths
from the tunnel walls, convert the NLOS paths into LOS paths exploiting the virtual station
technique, and then use different positioning algorithms to calculate the target vehicle
position. The hybrid TOA and DOA values are used in the positioning algorithms.

Figure 2. Vehicle localization based on reflecting paths from tunnel walls.

In addition to the method described above, the cooperative vehicle positioning ap-
proach can also be utilized to calculate the vehicle location. In Figure 3, the target vehicle
2 has a LOS path from BS. By applying the TOA parameters of the LOS path and two



Remote Sens. 2023, 15, 527 7 of 24

reflection paths from tunnel walls, we can obtain the localization of the target vehicle 2. In
Figure 3, due to the obstruction of many obstacles, there is no LOS path between the target
vehicle 1 and BS. We can achieve the target vehicle 1 localization according to the DOA and
TOA information of the reflection paths from the tunnel walls and the surrounding vehicle.
By using the TOA parameters of the two reflection paths from the tunnel walls and the
reflection path from target vehicle 2, we can calculate the target vehicle 1 location based on
the ranging method. By using the DOA and TOA parameters of any two reflection paths,
we estimate the location of target vehicle 1.

Figure 3. The cooperative vehicle positioning is based on reflecting paths from tunnel walls and
surrounding vehicles.

3.2. Joint TOA and DOA Vehicle Localization

The possible location of the target vehicle is estimated based on the position of VS and
the TOA and DOA parameters of reflection paths. It can be written as [45–47]:

xm =

[
x
y

]
= xpi +

[
cτ̂i cos θ̂i
cτ̂i sin θ̂i

]
, (6)

where τ̂i denote the estimated TOA of i-th path, θ̂i denotes the estimated DOA of i-th path,
xpi is the coordinates of virtual station i, c represents the speed of light.

From Equation (5), we can obtain:

x · sin θj − y · cos θj = xvj · sin θj − yvj · cos θj. (7)

The estimated arriving angle from the j-th virtual station to the target vehicle is θ̂j,
which is given by

θ̂j = arctan

(
y− yvj

x− xvj

)
+ nθ j, (8)

where nθ j denotes the measurement error of DOA. From Equation (8), we can get

tan
(
θ̂j − nθ j

)
=

y− yvj

x− xvj
. (9)

Combining Equations (9) and (6), we can get [44,45]

x sin θ̂j − y cos θ̂j = xvj sin θ̂j − yvj cos θ̂j + cτj sin
(
nθ j
)
, (10)
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The estimated distance between the j-th VS and the target vehicle can be computed by

d̂j = dj + ndj =
√(

x− xvj
)2

+
(
y− yvj

)2
+ ndj, (11)

where dj represents the realistic diatance between the virtual station j and target vehicle, ndj
denotes the distance measurement error of TOA, xvj is the X-axis coordinate of the virtual
station j, yvj is the Y-axis coordinate of the virtual station j.

−2xxvj − 2yyvj + x2 + y2 =
(

d̂j − ndj

)2
− xvj

2 − yvj
2. (12)

Equations (10) and (12) are combined to obtain the following system of equations:

H = GZ + N, (13)

where

H =


d̂2

1 − xv1
2 − yv1

2

d̂2
2 − xv2

2 − yv2
2

xv1 sin θ̂1 − yv1 cos θ̂1
xv2 sin θ̂2 − yv2 cos θ̂2

, (14)

G =


−2xv1 −2yv1 1
−2xv2 −2yv2 1
sin θ̂1 − cos θ̂1 0
sin θ̂2 − cos θ̂2 0

, (15)

Z =

 x
y

x2 + y2

, (16)

N =


nd1

2 + 2d1nd1
nd2

2 + 2d2nd2
−d1sin(nθ1)
−d2sin(nθ2)

. (17)

3.3. Cramer-Rao Lower Bound

In this paper, the parameters of noise are perceived as independent and identically
distributed Gaussian variables. Following this assumption, the probability of the above
independent Gaussian variables is given by

f
(
xm
∣∣θ̂, τ̂

)
= Π

i∈N

1√
2πσθi

2
exp

(
−
(
θ̂i − θi

)2

2σθi
2

)
· Π

i∈N

1√
2πσdi

2
exp

−
(

d̂i − di

)2

2σdi
2


= Π

i∈N

1
2πσθi σdi

exp

−
(θ̂i − θi

)2

2σθi
2 +

(
d̂i − di

)2

2σdi
2


,

(18)

where N represents the number of single-bounce reflection paths. In this paper, we consider
two reflection paths from the tunnel walls, therefore N = 2.

The log-likelihood function is given by

L =
N

∑
i=1

ln
(

1
2πσθi σdi

)
−

N

∑
i=1

1
2

(θ̂i − θi
)2

σθi
2 +

(
d̂i − di

)2

σdi
2

. (19)
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The CRLB determines the theoretical lower bound for the performance of an unbiased
estimator. Generally, it is specified as the inverse of the Fischer Information Matrix (FIM),
which can be obtained from the above log-likelihood function L as [48]:

F =

[
Fxx Fxy
Fyx Fyy

]
, (20)

with

Fxx = −E
{

∂2L
∂2x

}
, (21)

Fxy = −E

∂
(

∂L
∂x

)
∂y

, (22)

Fyx = −E

∂
(

∂L
∂y

)
∂x

, (23)

Fyy = −E
{

∂2L
∂2y

}
. (24)

After calculation, we obtain

Fxx =
N

∑
i=1

(
(y− yvi)

2

σθi
2di

4

)
+

N

∑
i=1

(
(x− xvi)

2

σdi
2di

2

)
, (25)

Fyy =
N

∑
i=1

(
(x− xvi)

2

σθi
2di

4

)
+

N

∑
i=1

(
(y− yvi)

2

σdi
2di

2

)
, (26)

Fxy = Fyx =
N

∑
i=1

(
(x− xvi)(y− yvi)

σθi
2di

4

)
+

N

∑
i=1

(
(x− xvi)(y− yvi)

σdi
2di

2

)
. (27)

Appendix A gives the details on the derivation of CRLB.
The root mean squared error (RMSE) of the vehicle localization is described by

σM
2 ≥ tr

(
F−1

)
. (28)

4. The Positioning Algorithm

Various localization algorithms can be used to locate vehicles in tunnels, such as the
algorithms without filter (TSWLS, WLS), the filtering algorithm (e.g., KF, EKF, PF, UKF,
etc.), etc. To enhance vehicle localization performance, we exploit UPF to estimate vehicle
position. Moreover, we will analyze the localization performance of various algorithms
with and without filters. When the filter is not used, we directly use the TSWLS algorithm
to locate the target vehicle. When the filter is used, we use the UPF algorithm to locate the
target vehicle. In the following, these two algorithms are described in detail.

4.1. TSWLS

From (13), we find that the noise term is nonlinear Gaussian noise. Due to nθ j and ndi
are usually very small, many scholars approximate the noise term in the (13) as Gaussian
noise. Then the TSWLS algorithm is usually used to obtain the solution of (13).
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When nθ j is small, we consider sin
(
nθ j
)
≈ nθ j. In general, ndi

2 can be ignored [49],
therefore, N can be rewritten as

N =


2d1nd1
2d2nd2
−d1nθ1
−d2nθ2

. (29)

In the first step of TSWLS, the unknown vector Z can be obtained from the weighted
least square (WLS) solution of Equation (13),

Ẑ =
(

GTW−1G
)−1

GTW−1H, (30)

where W = E
[
NNT] = BQB, with

B =


2d1 0 0 0
0 2d2 0 0
0 0 d1 0
0 0 0 d2

, (31)

Q =


δd1

2 0 0 0
0 δd2

2 0 0
0 0 δθ1

2 0
0 0 0 δθ2

2

. (32)

To obtain B, we usually use the estimated d̂j instead of the realistic dj. Therefore,
the parameters in B can be obtained from the estimated TOA and DOA information. The
parameters in Q depend on the variances of the collected data, which are difficult to
obtain [44].

In the second step, according to the relation between (x, y) and x2 + y2, we can
construct the following system of equations:

G1Z1 = H1 + N1, (33)

where

G1 =

 1 0
0 1
1 1

, (34)

Z1 =

[
x2

y2

]
, (35)

H1 =

 x̂2

ŷ2

x̂2 + ŷ2

, (36)

N1 =

 x2 − x̂2

y2 − ŷ2

x2 + y2 − (x̂2 + ŷ2)

. (37)

The unknown vector Z1 can be calculated by

Ẑ1 =
(

G1
TW1

−1G1

)−1
G1

TW1
−1H1, (38)

where W1 = E
[
N1N1

T] = 4B1
(
GTW−1G

)−1B1, with B1 = diag{x̂, ŷ, 0.5}.
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Finally, the target vehicle position is calculated by

x̂m = diag
{

ˆsgn
([

Ẑ(1), Ẑ(2)
])}√

Ẑ1, (39)

where sgn denotes the sign function.

4.2. The Positioning Algorithm Based on UPF

The PF algorithm is not limited by linearization error or Gaussian noise assumption; it
is applicable to nonlinear non-Gaussian random systems. However, in the particle filter
algorithm, the current measurement value is not taken into account when selecting the
importance density function; therefore, there is a large deviation between the importance
function based on prior distribution and the real posterior probability density function
(PDF). Therefore, the key to the design of a particle filter is to select a reasonable importance
density function. Incorporating current observations is the easiest way to improve the
importance density function [50]. The UPF algorithm considers the current observed
values and exploits the UKF algorithm to generate the proposal distributions, which can
make the proposal distribution function close to the real distribution of the target PDF,
make the importance density function more reasonable, and improve the filtering accuracy
of the PF [50–52]. The UPF algorithm is used to solve parameter estimation and state
filtering problems for nonlinear and non-Gaussian systems. Therefore, we propose the joint
TOA-DOA fusion localization algorithm based on UPF to locate the target vehicle.

4.2.1. System Model

In the paper, it is assumed that the target vehicle moves along a straight line with
uniform velocity in the tunnel. Therefore, the state equation of the vehicle is expressed as

Xk = ΦXk−1 + Uk−1, (40)

where Uk−1 represents the process noise vector, Uk ∼ N(0, Qk), Qk denotes the covariance
matrix of the process noise vector. We consider the vehicle positioning in two dimensions.
Xk stands for the state value of the target vehicle at time k; it is n-dimensional state vector.
In this paper, Xk = [xk, yk, ẋk, ẏk]

T , therefore n = 4. Φ denotes the state transition matrix; it
can be calculated by

Φ =


1 0 T1 0
0 1 0 T1
0 0 1 0
0 0 0 1

, (41)

where T1 is the observation period. The Equation (40) is written as Xk = f1(Xk−1) + Uk−1.
We assume that the distance between the i-th VS and the target vehicle can be defined

as dik, the azimuth angle of the target vehicle at time k with respect to the i-th VS is βik.
Then, βik and dik can be obtained as

βik = arctan
yk − yvi
xk − xvi

, (42)

dik =

√
(xk − xvi)

2 + (yk − yvi)
2, (43)

where (xk, yk) denotes the coordinate of the target vehicle at time k, (xvi, yvi) is the coordi-
nate of the i-th VS.

The system observation model can be obtained as

Zk = f2(Xk) + Vk−1, (44)
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where Vk−1 denotes the observation noise, Vk ∼ N(0, Rk), Rk denotes the covariance
matrix of the observation noise. f2(Xk) can be expressed as

f2(Xk) =



√
(xk − xv1)

2 + (yk − yv1)
2√

(xk − xv2)
2 + (yk − yv2)

2

arctan
(

yk−yv1
xk−xv1

)
arctan

(
yk−yv2
xk−xv2

)

, (45)

where (xv1, yv1) and (xv2, yv2) are the coordinates of the first VS and the second VS, respec-
tively. (xk, yk) stands for the coordinate of the target vehicle.

4.2.2. UPF

The UPF algorithm consists of the following main steps.
(1) Initialization (k = 0): for i = 1, 2, ..., N1, generate particle Xi

0 ∼ p(X0). Then set
k = 1.

(2) Calculate sigma points. Generate 2nx + 1 sigma points and their weights according
to the following:

Xi
k−1 =

[
X̄i

k−1, X̄i
k−1 ±

√
(nx + λ)Pi

k−1

]
, (46)

ω
(m)
0 =

λ

nx + λ
, (47)

ω
(c)
0 =

λ

nx + λ
+
(

1− α2 + β
)

, (48)

ω
(m)
i = w(c)

i =
1

2(nx + λ)
i = 1 . . . 2nx, (49)

λ = α2(nx + κ)− nx, (50)

where Pi
k−1 is the covariance of Xk−1. α denotes a positive scaling parameter; it determines

the spread of the sigma points around X̄, it is a small value. β can be utilized to incorporate
prior knowledge of the distribution of X. κ represents a secondary scaling parameter. λ
represents a scaling parameter.

(3) The UKF method is applied to compute the mean and covariance of particles. Time
update equations are given by

Xi
k|k−1 = f1

(
Xi

k−1

)
+ Uk−1, X̄i

k|k−1 =
2nx

∑
i=0

ω
(m)
i Xi

k|k−1, (51)

Pk|k−1 =
2nx

∑
i=0

ω
(c)
i

[
Xi

k|k−1 − X̄i
k|k−1

][
Xi

k|k−1 − X̄i
k|k−1

]T
+ Qk. (52)

Zi
k|k−1 = f2

(
Xi

k|k−1

)
+ Vk−1, Z̄i

k|k−1 =
2nx

∑
i=0

ω
(m)
i Zi

k|k−1, (53)

The measurement update equations can be written as

X̄i
k = X̄i

k|k−1 + Kk

(
Zk − Z̄i

k|k−1

)
, (54)

Pi
k = Pi

k|k−1 − KkPzkzk (Kk)
T , (55)
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where

Pzkzk =
2nx

∑
i=0

ω
(c)
i

[
Zi

k|k−1 − Z̄i
k|k−1

][
Zi

k|k−1 − Z̄i
k|k−1

]T
+ Rk, (56)

Pxkzk =
2nx

∑
i=0

ω
(c)
i

[
Xi

k|k−1 − X̄i
k|k−1

][
Zi

k|k−1 − Z̄i
k|k−1

]T
, (57)

Kk = Pxkzk (Pzkzk )
−1, (58)

where K denotes the Kalman gain matrix at step k.
(4) Importance sampling: sample particles according to the importance density function.

Xi
k ∼ q

(
Xi

k | Xi
0:(k−1), Z1:k

)
= N(X̄i

k, Pi
k) (59)

(5) Update particles weights: for i = 1, 2, ..., N1, calculate and normalize the importance
weights.

ωi
k = ωi

k−1

p
(
Zk | Xi

k
)

p
(

Xi
k | Xi

k−1

)
q
(

Xi
k | Xi

0:(k−1), Z1:k

) , (60)

ω̄i
k = ωi

k/
N1

∑
i=1

ωi
k, (61)

(6) Resampling: the particles with low weights are eliminated. The particle with large
weights is duplicated. Obtain a new set of particles

{
Xi

k, ωi
k
}

by resampling. Then set
ω̄i

k = 1/N1.
(7) Output:

X̂i
k =

N1

∑
i=1

ω̄i
kXi

k (62)

Pi
k =

N1

∑
i=1

ω̄
(i)
k

(
Xi

k − X̂i
k

)(
Xi

k − X̂i
k

)T
(63)

(8) Let k = k + 1, go to 2.

5. Simulation Results

In this section, we aim to validate and analyze the localization performance of the
proposed single-site positioning scheme. First, we directly estimate the vehicle location
using the TSWLS algorithm. Then, we estimate the vehicle location using different filters,
such as EKF, UKF, and UPF. Finally, we analyze the positioning performance of the proposed
single-site localization approach with and without filters in different scenarios.

In the simulations, the experiment is repeated 100 times independently. The local-
ization performance is evaluated by computing the RMSE, which is calculated by [53]:

RMSE =

√√√√1
l

l

∑
i=1
‖x̂m − xm‖2 |, (64)

where xm is the realistic position of the vehicle, x̂m denotes the estimated target vehicle
position, l stands for the number of times the simulation experiment was executed.

In the simulations, to generate data, the following scenarios are taken into account.
We take the length of the tunnel as the X-axis and the width of the tunnel as the Y-axis,
and a two-dimensional coordinate system is established. We assume the tunnel walls can
be seen as two lines, namely, 3x− 3y + 40 = 0 and 3x− 3y− 23.6396 = 0. The position
of BS is (0, 0). In this paper, we consider two cases. In the first case, the vehicle moves
uniformly along a straight line in the tunnel. The starting point coordinate of the vehicle is
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(10, 14.8481), and the speed is 14.1421 m/s. In the second case, the vehicle makes uniform
acceleration and uniform deceleration motion in the tunnel, and the trajectory of the vehicle
is curved. The starting point coordinate of the vehicle is (10, 6.3628).

5.1. NLOS Scenarios

In NLOS scenarios, we estimate the vehicle position using the joint TOA and DOA
localization methods. In the proposed single-site positioning method, only one base station
is needed to obtain the vehicle location.

5.1.1. Straight Line Trajectory

In the following, we analyze the localization performance of different algorithms
assuming that the vehicle moves uniformly along a straight line in the tunnel.

Figure 4 shows the RMSEs of different algorithms for σθi = 0.5◦, σdi
= 0.1 m. Sim-

ulation results illustrate that the proposed single base station localization scheme can
effectively realize vehicle localization for the tunnel environment in NLOS scenarios. In ad-
dition, it is shown that the UPF approach has the best localization accuracy. The positioning
method using the filter can effectively improve positioning accuracy.

Figure 5 provides the cumulative distribution function (CDF) of RMSE using different
algorithms for σθi = 0.5◦, σdi

= 0.1 m. Simulation results show that when the RMSE is
constant, the CDF of RMSE for the UPF algorithm is larger than in other methods. Therefore,
the UPF localization performance is better than EKF, UKF, and TSWLS algorithms.
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Figure 4. The RMSE of different algorithms in NLOS scenario (σθi = 0.5◦, σdi
= 0.1 m).
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Figure 5. The CDF of RMSE for different methods in NLOS scenario (σθi = 0.5◦, σdi
= 0.1 m).

Figures 6 and 7 show the RMSE and the CDF of RMSE for σθi = 1◦, σdi
= 1 m.

Figures 8 and 9 show the RMSE and the CDF of RMSE for σθi = 2◦, σdi
= 2 m. When the

measurement errors are relatively large, the proposed single-site positioning method can be
utilized to calculate vehicle position effectively. These results validate that the positioning
performance of the UPF algorithm is better than other algorithms.
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Figure 6. The RMSE of different algorithms in NLOS scenario (σθi = 1◦, σdi
= 1 m).
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Figure 7. The CDF of RMSE for different algorithms in NLOS scenario (σθi = 1◦, σdi
= 1 m).
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Figure 8. The RMSE of different algorithms in NLOS scenario (σθi = 2◦, σdi
= 2 m).

Table 2 presents the statistical parameters of positioning error in NLOS scenarios.
When setting different standard deviations of angle and distance, we calculate the mean
and variance of positioning error. The UPF algorithm has the smallest mean value of
positioning error. The TSWLS algorithm has the smallest variance of positioning error. The
UPF algorithm has better positioning performance than other algorithms. Moreover, we
find that the vehicle positioning performance is related to the measurement errors of TOA
and DOA. It is shown that the greater the measurement error, the greater the positioning
error. This finding is consistent with the conclusions in [44,54].
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Figure 9. The CDF of RMSE for different algorithms in NLOS scenario (σθi = 2◦, σdi
= 2 m).

Table 2. The statistical parameters of positioning error in NLOS scenarios.

Algorithm
σθi = 0.5◦, σdi = 0.1 m σθi = 1◦, σdi = 1 m σθi = 2◦, σdi = 2 m

Mean [m] Variance Mean [m] Variance Mean [m] Variance

TSWLS 0.1455 0.0059 0.1991 0.0067 0.3330 0.0118

EKF 0.1004 0.0138 0.1210 0.0158 0.1765 0.0212

UKF 0.0896 0.0108 0.1129 0.0126 0.1596 0.0149

UPF 0.0110 0.0057 0.0432 0.0185 0.0742 0.0316

5.1.2. Curved Trajectory

In the following, we analyze the positioning performance of different algorithms
assuming that the trajectory of the target vehicle in the tunnel is a curve. Figure 10 shows
the estimated positions of the vehicle and the real positions of the vehicle. The result
illustrates that the joint TOA and DOA localization approach using UPF can accurately
estimate the location of the vehicle.

-20 0 20 40 60 80 100 120

x [m]

-20
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20

40
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80

100

120

y
 [

m
]

Tunnel wall

Tunnel wall

Base station

VS1

VS2

The true trajectory

The estimated position

Figure 10. The positioning performance of the UPF in NLOS scenario (σθi = 2◦, σdi
= 2 m).

Figure 11 and 12 show the RMSE and the CDF of RMSE for σθi = 2◦, σdi
= 2 m. When

the trajectory of the target vehicle is curved, the proposed single-site positioning method
can be utilized to effectively calculate vehicle position even if the measurement errors are
relatively large. In addition, the results illustrate that the localization performance of the
UPF algorithm is better than the other algorithms.
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Figure 11. The RMSE of different algorithms in NLOS scenario (σθi = 2◦, σdi
= 2 m).
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Figure 12. The CDF of RMSE for different algorithms in NLOS scenario (σθi = 2◦, σdi
= 2 m).

5.2. LOS Scenarios

In LOS scenarios, we estimate the vehicle position using the joint TOA and DOA
positioning algorithm. Using the delay and angle information of different paths (i.e., the
LOS path from the base station and two reflection paths from the tunnel walls), we calculate
vehicle location using different algorithms.

5.2.1. Straight Line Trajectory

In the following, we analyze the localization performance of different algorithms
assuming that the vehicle moves uniformly in a straight line in the tunnel.

Figures 13–15 show the RMSE of different algorithms for different measurement
errors in LOS scenarios. Results indicate that the proposed single base station localization
approach can effectively achieve vehicle position in the LOS scenarios. The UPF algorithm
has better localization performance than other algorithms in most cases.
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Figure 13. The RMSE of different algorithms in LOS scenario ( σθi = 0.5◦, σdi
= 0.1 m).
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Figure 14. The RMSE of different algorithms in LOS scenario ( σθi = 1◦, σdi
= 1 m).
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Figure 15. The RMSE of different algorithms in LOS scenario ( σθi = 2◦, σdi
= 2 m).

Figures 16–18 provide the CDF of RMSE using different algorithms for different
measurement errors in LOS scenarios. The RMSE of the UPF algorithm is smaller than
other methods in most cases. The UPF positioning performance is better than the EKF, UKF,
and TSWLS algorithms.
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Figure 16. The CDF of RMSE for different algorithms in LOS scenario ( σθi = 0.5◦, σdi
= 0.1 m).

Table 3 illustrates the statistical parameters of positioning error for different standard
deviations of angle and distance in LOS scenarios. From the table, we find that the UPF
algorithm has the smallest mean of positioning error. Therefore, the UPF algorithm has the
best vehicle positioning performance. In addition, the positioning methods using filters
have a smaller mean of positioning error than the positioning method without using filters
(i.e., the TSWLS algorithm). The positioning performance of the positioning methods
using filters is better than the positioning method without using filters, namely, the TSWLS
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algorithm. We theoretically show that effective vehicle localization can be achieved in
tunnels using the single-site localization method.
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Figure 17. The CDF of RMSE for different algorithms in LOS scenario ( σθi = 1◦, σdi
= 1 m).
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Figure 18. The CDF of RMSE for different algorithms in LOS scenario ( σθi = 2◦, σdi
= 2 m).

Table 3. The statistical parameters of positioning error in LOS scenarios.

Algorithm
σθi = 0.5◦, σdi = 0.1 m σθi = 1◦, σdi = 1 m σθi = 2◦, σdi = 2 m

Mean [m] Variance Mean [m] Variance Mean [m] Variance

TSWLS 0.1341 0.0043 0.1987 0.0065 0.2675 0.0081

EKF 0.0882 0.0129 0.1137 0.0141 0.1699 0.0190

UKF 0.0797 0.0103 0.1018 0.0136 0.1533 0.0167

UPF 0.0101 0.0054 0.0241 0.0160 0.0418 0.0221

5.2.2. Curved Trajectory

When the trajectory of the target vehicle in the tunnel is a curve, we study the position-
ing performance of different algorithms. Figures 19 and 20 show the RMSE and the CDF
of RMSE for σθi = 2◦, σdi

= 2 m. When the trajectory of the target vehicle is curved, the pro-
posed single-site positioning method can be utilized to estimate vehicle position effectively.
The results illustrate that the localization performance of the positioning algorithm with a
filter is better than the algorithm without a filter. All these simulation results theoretically
verify the effectiveness of the proposed single-base station localization method.



Remote Sens. 2023, 15, 527 20 of 24

0 1 2 3 4 5 6 7

Time [s]

0

0.1

0.2

0.3

0.4

0.5

0.6

R
M

S
E

 [
m

]

TSWLS

EKF

UKF

UPF

Figure 19. The RMSE of different algorithms in LOS scenario (σθi = 2◦, σdi
= 2 m).
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Figure 20. The CDF of RMSE for different algorithms in LOS scenario (σθi = 2◦, σdi
= 2 m).

6. Conclusions

In this paper, we proposed a single-site positioning approach for the rectangular
tunnel environment. In the proposed method, the NLOS paths are converted to LOS paths
based on virtual station techniques; this simplifies the location complexity. In addition,
only one base station is needed for vehicle localization; this reduces the cost of vehicle
positioning. In NLOS scenarios, the joint TOA and DOA localization approach is exploited
to calculate vehicle location. The TOA and DOA of the reflection paths from the tunnel
walls are utilized to calculate the vehicle location. Moreover, the CRLB for the joint TOA
and DOA localization method is derived. In the LOS scenarios, the LOS path and two
reflection paths from the tunnel walls are used to obtain vehicle location. We calculate
the vehicle location according to the DOA and TOA information of different paths. In
addition, based on the localization algorithms with and without filters, the positioning
performance is analyzed. Through the performance analysis and numerical simulations,
it is shown that the proposed positioning approach provides a precise vehicle position
in the tunnel environment. The positioning algorithms using filters could improve the
positioning performance. The UPF positioning algorithm is better than EKF, UKF, and
TSWLS algorithms in localization accuracy. In addition, the greater the measurement error,
the greater the positioning error.
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Appendix A. Derivation of CRLB for the Joint TOA and DOA Positioning

In this section, we focus on the derivation of the Fisher Information Matrix and CRLB.

∂2L
∂2x

=
∂L
∂x

(
∂

∂x

(
−

N

∑
i=1

1
2

((
θ̂i − θi

)2

σθi
2

)))
+

∂L
∂x

 ∂
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− N
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(
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θ̂i − θi

)(∂θi
∂x

))
+

∂L
∂x

(
1

2σdi
2

N

∑
i=1

2
(

d̂i − di

)(∂di
∂x

))
,

(A1)

where
∂θi
∂x

=
∂

∂x

(
arctan

y− yvi
x− xvi

)
=

y− yvi

di
2 , (A2)

∂di
∂x

=
∂

∂x

(√
(x− xvi)

2 + (y− yvi)
2
)
=

x− xvi
di

. (A3)

Substituting Equation (A2) and Equation (A3) into Equation (A1), we have

∂2L
∂2x

=
∂L
∂x

(
1

2σθi
2

N

∑
i=1

2
(
θ̂i − θi

)(y− yvi

di
2

))
+

∂L
∂x

(
1

2σdi
2

N

∑
i=1

2
(

d̂i − di

)( x− xvi
di

))

=
N

∑
i=1

(
−(y− yvi)

2

σθi
2di

4 −
2
(
θ̂i − θi

)
(y− yvi)(x− xvi)

σθi
2di

4

)

+
N

∑
i=1

−(x− xvi)
2

σdi
2di

2 +

(
d̂i − di

)
σdi

2di

(
1− (x− xvi)

2

di
2

),

(A4)

Since E
(
θ̂
)
= θ and E

(
d̂
)
= d, therefore

E
(

∂2L
∂2x

)
=

N

∑
i=1

(
−(y− yvi)

2

σθi
2di

4

)
+

N

∑
i=1

(
−(x− xvi)

2

σdi
2di

2

)
, (A5)

Fxx =
N

∑
i=1

(
(y− yvi)

2

σθi
2di

4

)
+

N

∑
i=1

(
(x− xvi)

2

σdi
2di

2

)
(A6)

∂2L
∂2y

=
∂L
∂y

(
∂

∂y

(
−

N

∑
i=1

1
2

((
θ̂i − θi

)2

σθi
2

)))
+

∂L
∂y
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1
2
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(
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)2
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2
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
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=
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(
1
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(
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+
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(
1
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N

∑
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2
(

d̂i − di

)(∂di
∂y
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,

(A7)

with
∂θi
∂y

=
∂

∂y

(
arctan

y− yvi
x− xvi

)
=

x− xvi

di
2 , (A8)

∂di
∂y

=
∂

∂y

(√
(x− xvi)

2 + (y− yvi)
2
)
=

y− yvi
di

. (A9)
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Substituting Equation (A8) and Equation (A9) into Equation (A7), we get

∂2L
∂2y

=
∂L
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(
1

2σθi
2

N

∑
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(
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(A10)

Since E
(
θ̂
)
= θ and E

(
d̂
)
= d, therefore

E
(

∂2L
∂2y

)
=

N

∑
i=1
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2di

4
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)
. (A11)

Fyy =
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i=1
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. (A12)
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1

σdi
2

N

∑
i=1

(
d̂i − di

)( x− xvi
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N

∑
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(A13)

Since E
(
θ̂
)
= θ and E

(
d̂
)
= d, therefore

E
(

∂L
∂y

(
∂L
∂x

))
= −

N

∑
i=1

(
(x− xvi)(y− yvi)

σθi
2di

4

)
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N

∑
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. (A14)

Due to ∂L
∂y

(
∂L
∂x

)
= ∂L

∂x

(
∂L
∂y

)
, therefore

E
(

∂L
∂x

(
∂L
∂y

))
= −

N

∑
i=1
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(x− xvi)(y− yvi)

σθi
2di

4

)
−

N

∑
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2
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. (A15)

Fxy = Fyx =
N

∑
i=1

(
(x− xvi)(y− yvi)

σθi
2di

4

)
+

N

∑
i=1

(
(x− xvi)(y− yvi)

σdi
2di

2

)
. (A16)

CRLB = tr(F−1) =
Fxx + Fyy

FxxFyy − FxyFyx
, (A17)

Putting Equation (A6), Equation (A12), and Equation (A16) into (A17), we can obtain
the CRLB.
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