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Abstract: Automatic landslide classification based on digital elevation models has become a powerful
complementary tool to field mapping. Many studies focus on the automatic classification of landslides’
geomorphological features, such as their steep main scarps, but in many cases, the scarps and other
morphological features are difficult for algorithms to detect. In this study, we performed an automatic
classification of different litho-geomorphological units to differentiate slope mass movements in field
maps by using Maximum Likelihood Classification. The classification was based on high-resolution
lidar-derived DEM of the Vipava Valley, SW Slovenia. The results show an improvement over
previous approaches as we used a blended image (VAT, which included four different raster layers
with different weights) along with other common raster layers for morphometric analysis of the
surface (e.g., slope, elevation, aspect, TRI, curvature, etc.). The newly created map showed better
classification of the five classes we used in the study and recognizes alluvial deposits, carbonate
cliffs (including landslide scarps), carbonate plateaus, flysch, and slope deposits better than previous
studies. Multivariate statistics recognized the VAT layer as the most important layer with the highest
eigenvalues, and when combined with Aspect and Elevation layers, it explained 90% of the total
variance. The paper also discusses the correlations between the different layers and which layers are
better suited for certain geomorphological surface analyses.

Keywords: slope deposits; geomorphometry; automatic classification; Maximum Likelihood
Classification; multivariate statistics; PCA

1. Introduction

Landslides are a well-known natural and anthropogenically triggered process that
cause loss of life and damage to infrastructure and property. In addition to damage, land-
slides leave behind large amounts of slope sediments deposited on both steep and gradual
slopes. This material can pose a further threat of reactivation and damage. Therefore, it is
crucial to not only identify areas that have experienced landslides or have been recently
prone to landslides, but also to identify slope sediments that can potentially endanger
human life and damage infrastructure. Identifying older events and potentially unstable
slope sediments are principal focuses of landslide hazard assessment, and susceptibility
maps are a key factor in hazard management [1,2].

Typically, and most reliably, recognition of the various deposits is accomplished
through geological, geomorphological, and engineering geological mapping. In recent
years, a variety of approaches and analyses of several geomorphological parameters [3]
have emerged that use remote sensing methods to support or sometimes replace traditional
mapping methods. In general, most work focuses on delineating the main morphological
elements of landslides (e.g., scarp) using automatic detection and classification of landslides
and landslide susceptibility [1,4–13]. Recently, automatic detection and recognition of the
morphological elements of landslides in the GIS environment and other geological data
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have been increasing in the field of remote sensing [14–18]. Spatial and morphometric
properties of landslides are presented in the studies of Martha et al. [19] and Guzzetti
et al. [20]. Most automatic methods focus on landslide detection and the distinction
between landslide and non-landslide areas [21–24] using the evolving fields of various
remote sensing data, mainly satellite imagery [25–27] and UAV [28], and the fields of neural
networks and deep-learning [29,30], while studies involving the supervised classification of
a certain region are rare [31]. Typically, the most prominent geomorphological features, e.g.,
the main scarp, are the focus of detection with high-resolution lidar digital elevation models
(DEMs). Notable exceptions that are similar to our study but use different methods are
the data–driven classifications of landslide types by using Artificial Neural Networks [32]
and an approach to automatic lithological classification from remote sensing data using
support vector machines [33].

Our approach represents an upgrade to the automatic landslide classification method
previously presented in Verbovšek and Popit’s research [34]. We have revised the original
method by including several raster layers derived from DEM and a blended raster image,
all of which can be easily computed and used to quantify geomorphological research. The
novelty of this method is the use of the Visualization for Archaeological Topography (VAT)
raster layer, which is as a blended image that includes Sky View Factor, Hillshade, Slope,
and Positive Openness with different contributions (weights). This raster image has proven
to be an excellent hillshade replacement raster for the visualization of slope sediments [35].
Therefore, in this paper, we present the use of VAT among other raster layers to improve
the prediction of the Maximum Likelihood Classification for slope sediments and various
lithologic units which commonly occur in the Vipava Valley, SW Slovenia. To test the
correctness of the newly obtained map, we compare the automatically classified results
with the geological map from the field and discuss the correlations and variance between
the different layers as well as their impact on improvements of automatic classifications.
Apart from the visual comparison of maps, we also compare the results quantitatively
using dendrogram analysis and bar chart comparisons for the selected areas.

2. Materials and Methods
2.1. Geological Settings

The study area is located in SW Slovenia in the Vipava Valley (Figure 1). This region
was suitable because of its numerous types of landslides and the great morphological
diversity. This region in Slovenia is one of the country’s regions with the highest suscep-
tibility to landslides [36]. Various types of landslides occur on the N and NE flanks of
the valley, including the fossil rock avalanches in Gradiška gmajna, Podrta gora, Razdrto,
and Selo [37,38]; mudflow/earthflow in Slano blato [39–44]; the Stogovce landslide [45,46];
complex landslides and debris flows in the Rebrnice region [47,48]; giant translational
carbonate blocks [49]; and other events. A variety of these events and other references can
be found in a brief review by Jemec Auflič et al. [50]. Elevation differences range from about
100 m a.s.l. in the valley floor to 1200 m a.s.l. in the highest regions of the Trnovo Plateau.
These large elevation differences were formed by the NE–SW overthrusting of the Trnovo
and Hrušica nappes, which mainly consist of Mesozoic limestones and dolomites, over the
Paleocene and Eocene flysches, which consist of altered sandstone and marlstone/siltstone
strata (Figure 1) [51,52]. The Vipava Valley is bounded to the southwest by a higher Classic
Karst plateau that is mainly composed of Upper Cretaceous limestones [53].

The morphology of the valley is very diverse and is characterized by steep cliffs in
the carbonates and gentler slopes in the flysch. The carbonates are highly fractured and
break off strongly, and the material is subsequently transported to the valley floor in the
form of numerous rockfalls and rock avalanches along the steep edge. The result of this
process is large accumulations of carbonate scree that are deposited on the flysch slopes.
Older deposits are cemented into breccias, while the younger ones are present as scree
accumulations or larger blocks of detached carbonate rocks. The movement of larger
deposits is most likely triggered by earthquakes, but the more common triggering factor
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is probably the physical decomposition of the fractured carbonates due to temperature
differences (such as freeze–thaw cycles and thermal expansion). Numerous landslides in
the valley show a complex composition of multiple landslide events within one landslide
body [47,54,55].
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2.2. Input Layers

The idea behind the original approach [34], which was updated and used in this
work, is to classify the studied area into geologically and geomorphologically distinct
regions using the Maximum Likelihood Classification (MLC) [57]. This method is based
on an automatic supervised classification of geological and geomorphological (litho-
geomorphological) units. The latter are first defined in typical smaller areas on the map
and later used to classify the entire studied region into these units. The classification is
performed on a raster input layer.

For our study, we used a high-resolution (1 × 1 m) digital elevation model (DEM)
obtained by laser scanning in 2014–2015. Scanning was performed with a Riegl LMS-Q780
scanner with an estimated location precision of about 0.01 to 0.02 m in both N–S and
E–W the horizontal directions and about 0.02 m in the vertical direction. Details about
the scanning missions are available in the technical reports for the scanned areas on the
official lidar data homepage: http://gis.arso.gov.si/evode/profile.aspx?id=atlas_voda_
Lidar@Arso&culture=en-US (relevant lidar areas are no. 11, 12, and 33, and technical

http://gis.arso.gov.si/evode/profile.aspx?id=atlas_voda_Lidar@Arso&culture=en-US
http://gis.arso.gov.si/evode/profile.aspx?id=atlas_voda_Lidar@Arso&culture=en-US
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reports are available by clicking on the active layer ‘Areas of Lidar data’; last accessed on 4
January 2023).

The original method was improved in two ways: (i) by using a blended image beside
the different lidar DEM-derived raster layers commonly used for geomorphological visual-
ization and research, and (ii) by examining the eigenvalues and correlations between all
the input layers. All investigated layers were derived from the lidar-derived DEM with
an original spatial resolution of 1 × 1 m and resampled in 3 × 3 m DEM. The 3 × 3 m
DEM resolution was more suitable for geomorphometric analysis than 1 × 1 m because the
results were less fragmented and noisy. The elevation layer was used as one of the input
layers, and the derived raster layers are explained below. For more information on the
methods, see the original references below.

1. Hillshade (HS) was calculated in ArcGIS with default preferences of sun azimuth of
315◦ and sun altitude of 45◦.

2. Slope (in degrees) was calculated in the Relief Visualization Toolbox (RVT, https:
//www.zrc-sazu.si/en/rvt, accessed on 10 January 2023) [58,59].

3. Sky View Factor (SVF) [58–60] was calculated in RVT. It is defined as:

SVF = 1 − ∑n
i=1 sin γi

n
(1)

where γ stands for the elevation angle of the relief horizon and SVF ranges between 0
and 1. Values close to 1 mean that almost the entire hemisphere is visible (for example,
exposed peaks), while values close to 0 indicate locations where almost no sky is visible
(for example, deep sinks and lower parts of deep valleys [58]).

4. Positive and Negative Openness (OP_pos and OP_neg) [61–63] were calculated in
RVT [59].

5. Terrain Ruggedness Index (TRI) [37,55,64,65] was calculated in ArcGIS as the difference
between the maximum and minimum elevations (Hmax and Hmin) in raster cells in the
3 × 3 cell moving window using the equation:

TRI =
√

Hmax2 − Hmin
2 (2)

6. Range Layer (also called Height Variability) [37,66] was calculated in ArcGIS as the
difference between the maximum and minimum elevations in raster cells in the 3 × 3
cell moving window using the equation:

Range = Hmax − Hmin (3)

7. Curvature was calculated in ArcGIS with default preferences.

Visualization for Archaeological Topography (VAT layer) [59] was calculated in RVT with
default blending preferences. Despite the name of the method, which implies archaeolog-
ical research, the method itself is not related solely to archeological data as it uses relief
(elevation) data for calculations and can be used in any scientific field that deals with visual
relief analysis. It has already been successfully used to analyze landslides in the Vipava
Valley [35]. VAT is a combination (blending of images) of SVF, Positive Openness, Slope,
and HS with default values of blending weights as stated in the program RVT.

Relief Visualization Toolbox is a standalone toolbox that does not require external
software to run. It provides a narrow range of methods, and their settings are limited
to the most important ones. The selected techniques have been effective regarding the
detection of small-scale features, and default values are set to do this task. This software
was developed to help scientists visualize raster elevation model datasets. It comprises the
following visualization techniques: analytical hillshading and hillshading from multiple
directions, PCA of hillshading, slope, Local Relief Model, Sky-View Factor, anisotropic
Sky-View Factor, Positive and Negative Openness, Sky Illumination, Local Dominance,
and the blended layer of VAT [67].

https://www.zrc-sazu.si/en/rvt
https://www.zrc-sazu.si/en/rvt
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2.3. Workflow

The workflow is presented in Figure 2 as a sequence of performed commands (tools)
in ArcGIS and RVT software. The workflow follows the techniques for supervised classifi-
cation that were described in the image classification chapter [57]. After resampling and
creating the above layers (steps 1 to 3), all layers were normalized to values from 0 to 1 prior
to Principal Component Analysis (PCA) (step 4) and analyzed for their statistical properties
using the Band Collection Statistics tool (step 5). In step 6, PCA was performed to obtain
the eigenvalues that were used to examine the strength of the influence of each layer (see
the Results section). Later, the individual single band layers were merged into a multiband
layer using the Composite Bands tool (step 7) to facilitate further calculations in ArcGIS.
Based on the geological map, training polygons (step 8) were drawn at the locations of
typical litho-geomorphological units to identify the following five geological classes: (i)
alluvial deposits, (ii) steep carbonate cliffs, (iii) flysch, (iv) Trnovo carbonate plateau, and (v)
slope deposits. The latter class includes various slope sediments of recent carbonate scree,
gravel and breccias, and older (fossil) landslide deposits ranging from rock avalanches to
complex landslides. Compared with the previously used method [34], the class of Karst
carbonate plateau was not used because the automatically classified values of Karst plateau
interfered with flysch sites on the slopes. This was recognized as unrealistic in the original
publication, so this class was omitted from this study. The Karst plateau does not occur at
all in the studied area on the northern slopes of the valley where landslides occur.

The training polygons were the same as those used in the original method [34]. Based
on these polygons, a signature file was defined for further supervised classification by the
Create Signatures tool (step 9). This tool uses samples to define statistical relationships and
then writes class definitions in a signature file. This file is also used later to construct a
hierarchical clustering method to create a dendrogram. Automatic classification was then
performed using Maximum Likelihood Classification (step 10). This tool automatically
assigns all unknown cells in the map to the class they most likely belong to. It is possible for
a cell to not be assigned to any class, and this is possible due to the stated rejection fraction
value, which can be set to 0%, 0.5%, 1%, 2.5%, 5%, etc., up to 99.5%. We used a relatively
strict rejection value of 1%. In the next step (11), the relationship between geological classes
was tested by inspecting a dendrogram, which is defined as a plot that shows the attribute
distances between each pair of sequentially merged classes in the multivariate statistical
method of hierarchical clustering. Finally, the Class Probability tool (step 12) was used to
analyze the probability value of the occurrence of each litho-geomorphological unit, i.e.,
how correctly it was classified. The tool therefore assigns the probability of belonging to a
unit to each raster cell. Some of the regions identified with MLC were then compared with
the four different mapped areas to test the method. The areas were selected to encompass a
geologically diverse terrain.

The final result of this image processing protocol was a composite image of all five litho-
geomorphological units. Each cell in this raster image corresponded to the prevailing unit
with the greatest probability value that appeared on the map. The individual probabilities
were examined using the results of the Class Probability tool, which provided five different
raster images (one file per unit), and each file contained probability values ranging from
0% to 100%. Since interpreting the results would require switching between five different
layers to find the layer with the highest probability of occurrence, it was easier to combine
all layers into a composite image containing only the cells of the unit with the highest
probability of occurrence.
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3. Results

Figure 3 shows the results of Maximum Likelihood Classification method for the
entire Vipava Valley region. This computer-generated image, which includes all five
geological classes, generally predicts the litho-geomorphological units very well. The
alluvium deposits appear correctly on the valley floor, the carbonates of the Trnovo Plateau
are visible with high elevation in the northern part, and the carbonate cliffs are correctly
predicted on the steep slopes where the carbonates are overthrust over the flysch. However,
as noted in the original method [34], the MLC method had problems distinguishing between
flysch and slope deposits on the slopes because these two classes sometimes overlap (i.e.,
the green and blue colors in Figure 3). This correlation is also confirmed by dendrograms
(Figure 4), where both classes are closest to each other and consequently the most correlated,
which means that they are the most difficult to distinguish from each other. Slope deposits
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and flysch are connected by the smallest distance; that is, they are the most similar and
difficult to distinguish. The alluvium, on the other hand, joins the latest and is therefore
the unit that is the most distinct from all the others. The revised method does a better job
of distinguishing between units; for example, the dendrogram distance between the slope
deposits and the flysch is 0.98 in the original method and twice that (1.90) in the revised
method. The revised method also differentiates the other units more effectively because the
dendrogram distances are greater for all units.
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To some extent, it is understandable that the method has problems with these two units,
since these two geological units also overlap in the field. Slope deposits are occasionally
deposited as very thin covers over the flysch and sometimes occur as “tongues” of scree
material over the flysch formation downslope, which creates very irregular sedimentary
bodies. Therefore, these slope sediments should be mapped accurately and carefully.

Nevertheless, the revised method presented in this paper predicts slope sediments
much better than the original method [34]. This can be clearly seen in Figure 5, where two
examples of enlarged areas with landslides are shown. Figure 5 shows the mapped area
with the results of the original and the current (revised) MLC method. Some areas are blank
because the field map is not yet fully completed, but the missing areas do not affect the
results because they do not contain major landslides that are addressed in this work. The
newer method works better because it better predicts the location of flysch. There is also
less “interference” and overlap of flysch and slope sediments in all areas.

Within the polygons of the Podrta gora and Gradiška gmajna fossil rock avalanche
regions (marked on the map as PG and GG), the locations of fossil landslide deposits (slope
sediments) are predicted more accurately. In addition, the recent scree accumulation behind
the translational carbonate blocks (e.g., block Stara baba, SB on the map) is now correctly
predicted as a slope deposit rather than flysch as before. The other three main units (alluvium,
carbonate slopes, and Trnovo karst plateau) are correctly predicted in both cases.

The second example is shown in Figure 6, in the region of the Stogovce landslide (ST
on the map). The landslide was triggered in 2010 after a large rainfall event [44,45], and
the transported material consisted of clastic sediments of different sizes, mainly gravel
and scree that accumulated from steep carbonate slopes in the northwest. Part of this
material is still unaffected and lies above the Stogovce landslide. The new method correctly
predicts these slope sediments above the landslide and more accurately predicts the already
transported material in the body of the landslide. Several scarps in the upper part of the
landslide are recognized as steep carbonate slopes, which is somewhat understandable
because the scarps are indeed steep. However, scarps are not included in the analysis as a
separate training polygon because their spatial extent is too small. In both examples, the
areas of flysch and slope deposits are also more homogeneous than in the original method,
which is also more realistic.

The number of predicted cells within each landslide area can be calculated and plotted
on a bar graph to examine the ratio of slope deposit cells to the total landslide area. The
results for the landslides and carbonate blocks mentioned in the above two figures and
associated text are shown in Figure 7. It is clear that this method works best for both rock
avalanches because the number of slope deposit cells is the highest. For the Stogovce
landslide, the predominant class is flysch, and this is also the only area where the revised
method yields a greater percentage of flysch than of slope deposits. This is not incorrect
since the material in the Stogovce area was actually transported and artificially removed,
and the slope deposits (mostly scree and gravel) actually lie as small-scale deposits on top
of the flysch (confirmed in several locations in the field). For the translational carbonate
block of Stara baba, the number and relative ratio of slope deposit cells are similar for both
methods because sediments accumulate behind and on top of the carbonate block, and
the class of steep carbonate slopes is also more pronounced because of the steep slopes of
dolomite and limestone that form this block. Thus, the improved MLC method works well
in this region.

In addition to the examples mentioned above in Figures 5 and 6, we should point
out some other novel results. Figure 8 shows the area of the Selo fossil rock avalanche,
which was the largest fossil landslide in Slovenia. The large sedimentary body spreads out
from the carbonate cliffs and lies fan-shaped in the valley floor. The landslide is more than
42,000 years old, and it looks as if it is composed of two separate landslides [38] that are
visible as two separate bodies and fans in Figure 8. Half of the transported volume and
consequently the central part of the sedimentary body has already been eroded due to its
age. MLC correctly predicts that most of the landslide body consists of carbonate slope
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sediments overlying flysch. However, the two fans of the landslide are wrongly predicted
to be covered with alluvial sediments. In this case, the wrongly predicted ‘alluvium’ can
indicate areas of erosion, where scree and mud have been deposited in the bottom of the
valley. The latter are classified as alluvium due to their low elevation (the Selo has a typical
low H/L ratio of 0.18 [38]) and relatively flat area. It is important to point out a very
important difference between Figure 8B,C—in the latter, more deposits are seen in the
valley floor.

Remote Sens. 2023, 15, x FOR PEER REVIEW 9 of 19 
 

 

 
Figure 5. Podrta gora area. (A) outlines and main sediments of the landslides and litho-geomorpho-
logical units; (B) original MLC results [34]; and (C) results from this study. 
Figure 5. Podrta gora area. (A) outlines and main sediments of the landslides and litho-
geomorphological units; (B) original MLC results [34]; and (C) results from this study.



Remote Sens. 2023, 15, 531 10 of 19Remote Sens. 2023, 15, x FOR PEER REVIEW 10 of 19 
 

 

 
Figure 6. Stogovce landslide area. (A) outlines and main sediments of the litho-geomorphological 
units; (B) original MLC results; and (C) results from this study. 
Figure 6. Stogovce landslide area. (A) outlines and main sediments of the litho-geomorphological
units; (B) original MLC results; and (C) results from this study.

However, the overall landslide body appears to be less homogeneous and has more
predicted flysch areas.

Another example is the region of Rebrnice (Figure 9) in the southeast valley where
numerous fossil rock avalanches and recently reactivated landslides occur. These landslides
have been mapped as various types of fossil rock and debris slides that overlie older slope
deposits and create a complex environment for field mapping. The area is largely covered
by carbonate scree, gravel, and breccias overlying highly weathered flysch diluvium at
depths between 10 and 60 m where slide plains typically occur [47,48,54]. In this case, the
MLC prediction can hardly distinguish between different landslides, which is somewhat
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expected as the landslides are not typical rotational of translational slip surface events,
but deep-seated complex mass movements. The improvement between the former and
the newer MLC prediction is the correctness of the prediction of the homogeneity of
the carbonate deposits on the slope, especially the areas above the landslides where the
carbonate scree accumulates below the cliffs. In the southwest of Figure 9, where mainly
flysch occurs on the map, the new MLC prediction is correct because there are no carbonate
slope deposits in the field. In general, the new MLC method provides better results for the
lithologic units.
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4. Discussion

The results show improvements in the automatic classification of the litho-
geomorphological units of the Vipava Valley. The obvious improvement is in the ho-
mogeneity of the slope deposits and the flysch units, which are less intertwined and
overlap less on the maps. As a result, the landslide bodies are easier to identify and much
better delineated in the newly created map. This is most likely due to the use of the VAT
layer, which has been used in previous work [35] to improve the visualization of slope
mass movements by combining four different layers that enhance the shading on a shaded
relief raster.

It is important to note that the MLC recognized some slope sediments on the valley
floor that overlie the alluvium, although they normally occur at higher elevations, and the
alluvium typically occurs in the lowest parts of the valley. This could be explained by the
smaller influence of the Elevation Layer on the classification.

A principal component analysis was performed to better understand the correlations
between the layers. The PCA also provided important information about the eigenvalues
of the layers and which layers explained most of the variance.

4.1. Inspection of Layers

At the beginning, before the MLC was executed, the correlation between the input
layers was checked (Figure 10). There is a high positive correlation between the SVF, VAT,
and Positive Openness layers. All three methods determine the fraction of the visible sky
that is bounded by relief. SVF is one of the input layers for VAT, so the positive correlation
is expected. The same is true for Openness, which is known to have a similar problem
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when determining the horizon as SVF [58]. The strong negative correlation of slope with
SVF and VAT is logical because shallow (open) reliefs with low slopes have high VAT and
SVF values.
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Note the strong correlation between elevation and TRI since the values of the TRI
method depend on elevation itself. The squaring of the elevation values mean the results
are affected by the absolute elevation value. For example, the 10-m elevation range at lower
elevations is different for the same elevation range at higher elevations. Therefore, there is
a positive correlation between the layers, and, in our opinion, this method is less suitable
for surface roughness analysis than the range method, which has a much lower correlation
with the slope values.

4.2. Eigenvalues and Relative Importance of the Layers

The table of eigenvalues and eigenvectors (Figure 11) calculated using the PCA method
also provided very informative results. Eigenvalues represent the total amount of variance
that can be explained by a particular principal component of the PCA method. Their mag-
nitude is represented by eigenvectors. The larger the values of eigenvalue and eigenvector
are, the stronger the influence of the PC layer is. PC layers consist of different original input
layers, and their “composition” is represented in each column. For example, the VAT layer
has the largest value of the eigenvector in the first column (PC layer 1), which means it is
the most “important” layer and explains most of the variance within that layer. The most
valuable data in the table are the eigenvalues of the individual PC layers because these
provide information regarding which original layer contains the most information about
the relief and consequently explains most of the variability in the relief.

From the table, it can be seen that the VAT layer is the most relevant layer and explains
almost 43% of the total variability. This is followed by the Aspect and Elevation layers,
which together account for 90% of the variance. If we include two other layers (Hillshade
and Slope), the cumulative share increases to 99%. Thus, other layers contribute less than
1% to the total variance and the interpretation of the variability of the relief and are therefore
not needed for interpretations and/or calculations.

Some of these results are to be expected, to some degree. Positive correlations between
the layers (Figure 10), such as VAT, SVF, and Positive Openness mean some of the infor-
mation used to explain the variance is redundant, and only one of the layers should be
used for the calculations. However, it is often questionable which layer should be used
and which should be neglected. From the table, it can be seen that using VAT is better than
using the similar SVF or Positive Openness because VAT has higher eigenvalues.
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Therefore, VAT, Aspect, and Elevation layers are the layers that should be used in
the geomorphological calculations of lidar-derived digital elevation models. In this case,
the Hillshade, SVF, Positive Openness, and Slope layers should not be used because they
comprise the VAT layer; therefore, their use would lead to redundancy in the data. Range
is preferable to TRI because it is independent of elevation, and both contribute less than
1% to the total variance. Curvature, on the other hand, has virtually no influence and is
also independent of all other layers (the very low importance of this layer was already
discussed in the original method [34]).

5. Conclusions

The main findings of this study can be summarized in the following points:

- The Maximum Likelihood Classification (MLC) automatic classification technique is
useful for delineating various litho-geomorphological units and generally predicts
these units very well.

- The classes that are most easily and correctly recognized and classified are alluvial
sediments, high karst plateaus, and steep carbonate slopes, which is confirmed by
looking at the dendrogram. The classification algorithm has difficulty distinguishing
flysch and slope sediments because they often overlap. However, these sediments are
properly “intertwined” in the terrain in the form of complex sedimentary bodies.

- Quantitative examination of the original and revised dendrograms confirms that the
revised method does a much better job of distinguishing between these two units. The
revised method also distinguishes between other units well because the dendrogram
distances are larger for all units. The number of correctly predicted pixels is also larger
in the case of the revised method for the areas of rock avalanches, as shown in the
comparison of the bar graphs.

- Scarps of landslides are also well recognized, but due to their small spatial extent, it
was not possible to study this class separately. We propose including this morphologi-
cal feature of landslides when a larger data set is available.

- Compared with the original method with fewer input layers, the revised approach
with the addition of the DEM-derived geomorphological raster layers VAT, Sky View
Factor, Openness, and others provides much better prediction of the slope sediments.

- Among these layers, VAT should be used instead of Sky View Factor or Openness
because it encompasses these two layers of information and is recognized by mul-
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tivariate statistics as the “most important” layer with the highest eigenvalues; thus,
it contributes the most to explaining variance. In addition, strong correlations exist
between VAT, Sky View Factor, and Openness, and the use of more than one of these
layers together in the analyses is not recommended because of redundancy in the data.
Therefore, correlations should be checked before using multilayer analyses.

- The VAT layer, which is a blended image that includes Hillshade, Slope, Sky View
Factor, and Positive Openness, proves an added value to the automatic classification
of various litho-geomorphological units since it explains most of the variance and
improves the classification of two overlapping units—slope sediments and flysch.

- The independent layers VAT, Aspect, and Elevation explain a large amount (90%) of
the total variance.

- The use of Range rather than TRI is preferable because of the dependence of TRI on
the elevation values.

- We see our method’s advantage in its wide data availability and the simplicity of
its application—only a Digital Elevation Model (DEM) is needed, from which all
input layers are derived. Certainly, the computer-generated image is not intended
as a substitute for traditional mapping methods, but it has proven very useful for
predicting landslide deposits before field mapping is performed.

- Although this methodology might not be appropriate for other and more complex
geological settings, we encourage researchers to use the additional geomorphological
DEM-derived rasters and blended images in spatial analyses of landslides along with
more familiar layers such as Slope, Hillshade, Aspect, and Curvature layers.
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36. Komac, M.; Ribičič, M. Landslide susceptibility map of Slovenia at scale 1:250,000. Geologija 2006, 49, 295–309. [CrossRef]
37. Popit, T.; Supej, B.; Kokalj, Ž.; Verbovšek, T. Comparison of methods for geomorphometric analyzes of surface roughness in the

Vipava Valley. Geod. Vestn. 2016, 60, 227–240. [CrossRef]
38. Verbovšek, T.; Košir, A.; Teran, M.; Zajc, M.; Popit, T. Volume determination of the Selo landslide complex (SW Slovenia):

Integrating field mapping, ground penetrating radar and GIS approaches. Landslides 2017, 14, 1265–1274. [CrossRef]
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Publishing house: Ljubljana, Republic of Slovenia, 2017. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.3390/rs14092016
http://doi.org/10.3986/9789612549848

	Introduction 
	Materials and Methods 
	Geological Settings 
	Input Layers 
	Workflow 

	Results 
	Discussion 
	Inspection of Layers 
	Eigenvalues and Relative Importance of the Layers 

	Conclusions 
	References

