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Abstract: The navigation and positioning of multi-autonomous underwater vehicles (AUVs) in
the complex and variable marine environment is a significant and much-needed area of attention,
especially considering the fact that cooperative navigation technology is the essential method for
multiple AUVs to solve positioning problems. When the extended Kalman filter (EKF) is applied for
underwater cooperative localization, the outliers in the sensor observations cause unknown errors
in the measurement system due to deep-sea environmental factors, which are difficult to calibrate
and cause a significant reduction in the co-location accuracy of AUVs, and can even cause problems
with a divergence of estimation error. In this paper, we proposed a cooperative navigation method of
the EKF algorithm based on the combined observation of multiple AUVs. Firstly, the corresponding
cooperative navigation model is established, and the corresponding measurement model is designed.
Then, the EKF model based on combined observation is designed and constructed, and the unknown
error is eliminated by introducing a previously measured value. Finally, simulation tests and lake
experiments are designed to verify the effectiveness of the algorithm. The results indicate that the
EKF algorithm based on combined observation can approximately eliminate errors and improve the
accuracy of cooperative localization when the unknown measurement error cannot be calibrated by
common EKF methods. The effect of state estimation is improved, and the accuracy of co-location
can be effectively improved to avoid serious declines in—and divergence of—estimation accuracy.

Keywords: multiple AUVs; cooperative localization; unknown measurement errors; nonlinear filter;
combined observation; state estimation

1. Introduction

Autonomous underwater vehicles (AUVs) are a class of important autonomous nav-
igation carriers for human exploration of the marine environment. AUVs have a high
degree of autonomy, flexibility, and remote navigation capabilities in marine resources
exploration, underwater exploration, data acquisition, and other aspects of a wide range of
applications [1–4]. With the rapid development of air- and land-based navigation technol-
ogy, underwater navigation technology is also progressing rapidly [5–10]. However, due to
the complexity of the underwater environment, there is still a gap between the navigation
and positioning accuracy of underwater vehicles compared to those of air and land, and
for the time being, underwater navigation has become an important issue in the field of
AUV research [11–14].

Underwater high-precision navigation is key to AUVs’ mission, and the specific navi-
gation methods applied by AUVs vary depending on the area in which they navigate un-
derwater [15–17]. When an AUV sails in an offshore area (water depth <300 m), navigation
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technologies such as radio navigation (RADNAV) and global navigation satellite systems
(GNSS) can be used from time to time; in the near-sea area (from the seabed <100 m), terrain
matching navigation can be considered; and when sailing in deep-water environments, it is
difficult to obtain the above-mentioned navigation information [18,19]. To sum up, even if
there are more sensors, there are still many limitations and deficiencies in the independent
operation of AUVs underwater. However, multiple AUVs can use their navigation sensors
to obtain corresponding measurement information and then combine underwater acoustic
communication technology with underwater acoustic detection technology to share this
information and measure the relative positions of adjacent AUVs and obtain navigation
parameters by fusing information. Cooperative navigation enables highly accurate un-
derwater positioning and navigation, easily accomplishing complex tasks that would be
difficult for a single AUV to perform, and the simplicity of the system and the flexibility
of the range of use have led to a wide focus of researchers on cooperative underwater
positioning of multiple AUVs [20–22].

The key object of research in multi-AUV cooperative navigation is the information
fusion algorithm shared among the system’s AUVs, and most of the existing multi-AUV co-
operative positioning methods comprise improved Kalman filter (KF) algorithms combined
with measurement data from underwater navigation sensors. The model of a multi-AUV
cooperative localization system is often nonlinear. Therefore, an extended Kalman filter
(EKF) or unscented Kalman filter (UKF) is usually used for state estimation [23–25].

The problem of cooperative navigation and positioning is a state estimation problem,
and the accurate acquisition of observation information is key to realizing the optimal
state estimation of cooperative navigation [26]. At present, the use of hydroacoustic com-
munication devices to obtain relative observations, such as relative distance, between
individual AUVs is the most effective and reliable measurement method [27–29]. How-
ever, AUVs are used in complex marine environments where the cooperative navigation
of multiple sensors can be affected by harsh conditions and instability of measurement
sensors, causing unknown system noise and resulting in unknown measurement system
errors. This inevitably leads to the destruction of effective observation information, and
the extended KF filtering algorithm cannot accurately estimate and correct this unknown
measurement system error, thus directly leading to a significant decrease in filtering accu-
racy and stability or even divergence. Ref. [30] describes how, in acoustic ranging-based
cooperative navigation, sensors are subjected to temperature, salinity, depth, current, and
other factors in the underwater environment, which makes the statistical characteristics of
the measured sensor noise inaccurate and generates unknown measurement system errors.
In the framework of Kalman filters, these methods require that the statistical characteristics
of process noise and measurement noise are known and fixed during cooperative localiza-
tion [31,32]. However, this unknown measurement system error is difficult to calibrate with
the common EKF algorithm and, therefore, leads directly to a reduction in filter accuracy or
even divergence [33]. Ref. [34] presented the use of attenuated adaptive filtering to achieve
adjustment of the weights of new measurements, but the process of calculating the scalar
asymptotic factor is too cumbersome. Adaptive filters based on great likelihood can correct
the second-order moments of statistical properties of noise but rely on accurate estimates of
the new interest covariance [35]. The above-mentioned works all emphasize the influence
of measurement error information on the state estimation effect. To improve the robustness
of state estimation regarding measurement errors, it is still necessary to further seek a
more reliable and effective co-location algorithm. In Ref. [36], Sheng has proposed a novel
transfer alignment method based on combined double-time observations with velocity and
attitude to address the problem of static flexural deformation causing measurement system
errors, successfully eliminating this unknown system error, effectively improving filter
performance, and increasing the accuracy of transfer alignment. However, the linear KF
cannot be applied to multi-AUV cooperative navigation [37].

To solve the above problems, we need to redesign the cooperative navigation algo-
rithm, and realize the optimal state estimation of cooperative navigation by filtering and
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optimizing the measurement information with errors. In this paper, we proposed a coop-
erative navigation method of the EKF algorithm based on the combined observation of
multiple AUVs. The improved EKF algorithm model was designed and constructed to elim-
inate errors in the measurement system by combining previously measured information
with information from the current moment; current observations subtracted from the last
observation are used as new measurements for the improved algorithm. The final results
of the simulation and experiments verify the feasibility and effectiveness of the algorithm
in the field of cooperative localization for AUVs.

The rest of this paper is organized as follows: In Section 2, the formulation of a
discrete-time nonlinear model of the cooperative positioning system and the corresponding
standard EKF algorithm are described. In Section 3, by analysis and comparison with
the common algorithm, the improved EKF based on combined observation is proposed
and derived and is specifically applied to cooperative navigation for AUVs. In Section 4,
a simulation test and lake tests are designed, and the results verify the feasibility and
effectiveness of the algorithm. Finally, conclusions are presented in Section 5.

2. Theoretical Basis of Multi-AUV Cooperative Navigation
2.1. Principles of AUV Cooperative Navigation

It is assumed that multiple AUVs are currently working together in the middle-water
environment, AUVs can communicate with each other, and AUVs have independent navi-
gation. The navigation sensor used in the AUVs’ underwater navigation system is utilized
to obtain attitude, speed, position, relative distance, and orientation information. The
system includes the following: underwater acoustic communication equipment composed
of SINS, Doppler velocity log (DVL), terrain-assisted navigation (TAN), magnetic compass
pilot (MCP), and other related auxiliary equipment.

Each AUV uses its navigation sensors to obtain the required information, and then
uses a nonlinear filter to continuously estimate and update its position, and uses communi-
cation equipment to communicate with neighboring AUVs to exchange information for
information contribution and to fuse the relative position relationships of each AUV in
the whole cooperative navigation system. In this paper, we choose a multi-AUV parallel
cooperative navigation system solution to navigate and position each AUV with equal
status and comparable navigation accuracy. A schematic representation of the cooperative
navigation system in this paper is shown in Figure 1.

Figure 1. The network structure of multiple AUVs.

The system uses each AUV as the processing node, and each AUV can communicate
with other AUVs and has independent navigation. Neighboring nodes can communicate with
each other and they rely on sharing sensor measurements with neighboring AUVs to fuse
the relative position relationships of each AUV in the overall cooperative navigation system,
resulting in an equal improvement in the navigation positioning accuracy of all AUVs.
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2.2. Multi-AUV Motion Model

As described in the previous subsection, there is a wide range of underwater navi-
gation sensors available in the AUV underwater navigation system. This paper focuses
on medium- to high-accuracy SINS, which provides high-update-frequency navigation
information such as angular velocity, acceleration, attitude, velocity, and position. The
navigation center, centered on the inertial device, is an indispensable device for the AUV
and is an important guarantee to support the safe navigation of the AUV and the smooth
execution of its work tasks [38–40].

In the SINS-based AUV underwater navigation system, we use the error values of
the SINS output navigation parameters as the state variables; the SINS state has physical
properties, and its system model is based on Newton’s laws of motion, with a high degree
of coupling between the state quantities. In this paper, the attitude error φn, velocity error
vn, position error δpn, gyroscope constant zero bias εb, and accelerometer constant zero
bias ∇b are selected as the state variables of the EKF.

X =

[
(φn)T (δVn)T (δpn)T

(
εb
)T (

∇b
)T
]T

(1)

For navigation systems, the equation of state is the dynamic equation of the system,
also known as the equation of motion, which describes the state of the system over time;
the equation of observation describes the measurement of the state of the system by the
sensors [41]. The equation of state for transfer alignment is obtained from the SINS error
equation and state variables:

.
X = FX + GW (2)

where F is the transfer matrix, X is the state vector, G is the disturbance matrix, and W is
the random disturbance vector.

Suppose there are N AUVs in the multi-AUV collaborative system, and the state
quantity Xi(k) of the i-th AUV at time tk:

Xi(k) =
[
(φn)i

T(k) (δVn)i
T(k) (δpn)i

T(k)
(

εb
)

i
T(k)

(
∇b
)

i
T(k)

]T
(3)

Then, in the multi-AUV collaborative navigation system, the state quantity X(k) of
the system is:

X(k) =
[
X1(k) . . . XN(k)

]T (4)

2.3. Measurement Update Model

When AUVj is observed by AUVi at a certain time, the relative observations between
AUVij are measured by the hydroacoustic communication equipment carried by the AUVs;
the relative observations include mutual distance, bearing, etc. The mutual observations of
underwater vehicles are shown in Figure 2.

Figure 2. Mutual observation of multiple AUVs.
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dij is the relative horizontal distance between AUVi and AUVj, ϕi and ϕj are the
heading angles of AUVi and AUVj, respectively, and φij is the relative azimuth of AUVj to
AUVi. Time of arrival (TOA) is the most commonly used distance measurement method
for cooperative positioning in the underwater environment. The three-dimensional slope
distance between AUVi and AUVj can be calculated from the propagation time ∆t of the
hydroacoustic pulse signal between AUVi and AUVj and the propagation speed c of the
acoustic signal in seawater, and the three-dimensional slope information is converted into
a two-dimensional relative horizontal distance measurement based on the precise depth
information hi

k and hj
k of AUVi and AUVj:

dij =
√
(c · ∆t)2 − (hi − hj)

2 (5)

The relationship between the measured relative distance information and the naviga-
tion state quantity can be expressed specifically as follows:

dij =

√
[(Li − Lj)(Ri

M + hi)]
2
+ [(λi

k − λ
j
k)(Ri

N + hi) cos Li]
2

(6)

Based on the time delay difference between the hydroacoustic pulse signals indirectly
received by the different array elements of the sonar to determine the orientation of the
measured target, the relationship between the measured relative orientation information
and the navigation state quantity, considering the position relationship shown in Figure 2,
can be specifically expressed as:

φij = arctan

[
(λj − λi) cos Lj

l
Lj − Li

]
− ϕi (7)

The observation equation is written in general form:

Z = h(xi, xj) + v (8)

Due to the complexity and variability of the underwater environment, multiple AUVs
can observe each other at certain time steps; this allows each underwater robot to acquire
one or more relative observations until all relative observations of the other are acquired.
According to the ideal position information xj

k = (Lj
k, λ

j
k, hj

k) of AUVj and xi
k = (Li

k, λi
k, hi

k)
of AUVi at the time tk, the relative distance information is obtained. As can be seen from
the above figure, the observation equation of the relative distance is:

Zd
k = hd(xi

k, xj
k) + vd

k =

√
[(Li

k − Lj
k)(Ri

M,k + hi
k)]

2
+ [(λi

k − λ
j
k)(Ri

N,k + hi
k) cos Li

k]
2
+ vd

k

vd
k ∼ N(0, σ2

d,k)

(9)

where Zd
k represents relative distance measurements, hd(xi

k, xj
k) is the relative distance

measurement function, vd
k represents the hydroacoustic distance and the hydroacoustic

communication measurement noise, usually assumed to have a mean of zero and a variance
of σ2

d,k, and the relative distances observed are independent of each other and uncorrelated.

Then, the Jacobian matrix hd(xi
k, xj

k) is:

Hi
d =

∂hd

∂xi
k

∣∣∣∣∣
Xk=X̂k|k−1

=
[
01×6

∂hd
∂Li

k

∂hd
∂λi

k
0
]∣∣∣

Xk=X̂k|k−1

(10)

Hj
d =

∂h1

∂xj
k

∣∣∣∣∣
Xk=X̂k|k−1

=

[
01×6

∂hd

∂Lj
k

∂hd

∂λ
j
k

0
]∣∣∣∣

Xk=X̂k|k−1

(11)
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Take AUVi for example:

∂hd

∂Li
k
=

(Li
k − Lj

k)(Ri
M,k + hi

k)
2 − (λi

k − λ
j
k)(Ri

N,k + hi
k) sin Li

k cos Li
k√

[(Li
k − Lj

k)(Ri
M,k + hi

k)]
2
+ [(λi

k − λ
j
k)(Ri

N,k + hi
k) cos Li

k]
2

(12)

∂hd

∂λi
k
=

(λi
k − λ

j
k)
[
(Ri

N,k + hi
k) cos Li

k

]2√
[(Li

k − Lj
k)(Ri

M,k + hi
k)]

2
+ [(λi

k − λ
j
k)(Ri

N,k + hi
k) cos Li

k]
2

(13)

Similarly, it is known that, at the moment tl , AUVi observes AUVj and obtains
the relative orientation information [42]. Based on the reference attitude information
xi

l = (Li
l , λi

l , ϕi
l) received at moment tl for AUVi and the reference attitude information

xj
l = (Lj

l , λ
j
l , ϕ

j
l) for AUVj, the observation equation for the relative bearing is obtained as:

Zβ
l = hβ(xi

l , xj
l) + vβ

l = arctan

[
(λ

j
l − λi

l) cos Lj
l

Lj
l − Li

l

]
− ϕi

l + vβ
l , vβ

l ∼ N(0, σ2
β,l) (14)

where hβ(·) is the relative bearing measurement function, vβ
l is the hydroacoustic bearing

measurement noise, usually assumed to be a Gaussian white noise with zero mean and
variance σ2

β,l , and each relative bearing observation is independent of each other and

uncorrelated. Then, the Jacobian matrix of hβ(·) with respect to xi
l and xj

l is:

Hi
β =

∂hβ

∂xi
l

∣∣∣∣∣
Xl=X̂l|l−1

=

[
0 0 1 01×3

∂hβ

∂Li
k

∂hβ

∂λi
k

0
]

Xl=X̂l|l−1

(15)

Hj
d =

∂h1

∂xj
k

∣∣∣∣∣
Xk=X̂k|k−1

=

[
01×6

∂hd

∂Lj
k

∂hd

∂λ
j
k

0
]∣∣∣∣

Xk=X̂k|k−1

(16)

Take AUVi for example:

∂hβ

∂Li
k
=

[
cos Lj × (λj − λi)

(Lj − Li)
2

]
/

1 +

[
(λj − λi) cos Lj

Lj − Li

]2
 (17)

∂hβ

∂λi
k
=

(
cos Lj

Li − Lj

)
/

1 +

[
(λj − λi) cos Lj

Lj − Li

]2
 (18)

The research in this study is carried out based on obtaining these observations, even
if these observations are subjected to preprocessing methods such as removing outliers,
including the observation target and the matching of the observed target and the observed
target. Due to the complexity of the underwater environment, or the sensor installation error
angle and other reasons, often, unknown system errors are brought to the measurement
system [43,44]. Thus, it is necessary to consider how the filter can be used to calibrate for
this error.

3. Derivation of EKF Based on Combined Observation of Cooperative Navigation
3.1. Scheme of Common EKF

With a model of a multi-AUV cooperative navigation system in place, the algorithm
used for information fusion is central to solving the cooperative navigation problem [45–47].
It is known from Section 1 that for the filter problem of nonlinear cooperative navigation
systems under ideal communication conditions, most systems choose to use the EKF



Remote Sens. 2023, 15, 533 7 of 20

algorithm, and since EKF is an extension of the KF, the form of the KF algorithm needs to
be introduced first.

For the common KF, one-step predictive state estimation is adopted:

X̂k,k−1 = φk,k−1X̂k−1 (19)

The updated state estimate is:

X̂k = X̂k,k−1 + Kk
[
Zk −HkX̂k,k−1

]
(20)

The Kalman gain is:

Kk = Pk,k−1HT
k

[
HkPk,k−1HT

k + Rk

]−1
(21)

The one-step predicted estimate covariance is:

Pk,k−1 = φk,k−1Pk−1φT
k,k−1 + Γk,k−1Qk−1ΓT

k,k−1 (22)

The updated state estimate covariance is:

Pk = [I−KkHk]Pk,k−1 (23)

From the above KF calculation steps, we can learn that given the filter parameters
X0 and P0 at the initial moment, the optimal state estimate Xk+1 of the linear Gaussian
system at that moment can be obtained based on the observations at moment k. In the
case of cooperative navigation systems, the state and observation models are nonlinear, as
described in the previous subsection, and so require the use of nonlinear filter algorithms
for cooperative navigation information fusion.

The general nonlinear discrete system can be described as:

Xk = fk−1(Xk−1) + Γk−1Wk−1 (24)

Zk = hk(Xk) + Vk (25)

In the above equation, Xk is the state vector; fk(·) is the nonlinear vector dispersion
function; Γk−1 and Wk−1 are the system noise driver matrix and the system noise vector,
respectively, Zk is the measurement vector; hk(·) is the nonlinear vector dispersion function,
and Vk is the noise vector. The EKF builds on the KF by expanding the system’s nonlinear
equation of state around the state values Xk into a Taylor series and omitting the second-
order-and-higher terms, myopically transforming it into a linearized model and using the
KF framework for state estimation; the transformed equation of state is:

Xk = φk/(k−1)Xk−1 + Uk−1 + Γk−1Wk−1 (26)

where:

φk/k−1 =
∂fk−1(Xk−1)

∂Xk−1

∣∣∣∣
xk−1=x̂k−1

(27)

Uk−1 = fk−1
(
X̂k−1

)
−

∂fk−1(Xk−1)

∂Xk−1

∣∣∣∣
Xk−1=x̂k−1

× X̂k−1 (28)

In the above equation, Xk is the state vector, and Γk−1 and Wk−1 are the noise driver
matrix and the system noise vector, respectively.

The algorithm structure of the extended KF is essentially the same as that of the linear
KF, in that the filter results are obtained by performing temporal and quantitative updates
to the state estimates and covariances. In this paper, the EKF-based cooperative navigation
algorithm for underwater AUVs requires high accuracy in the measurement equations,
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while the marine environmental noise, as a disturbing background field in the hydroacoustic
channel, is characterized by complexity and variability. Wenz [48] made a summary of
deep-sea environmental noise through a submarine deep-water hydrophone. He proposed
that deep-sea environmental noise is relatively certain, resulting in unknown errors in
the corresponding underwater acoustic ranging measurement system, which affects the
accuracy of the measurement data. The traditional EKF algorithm cannot calibrate the
error of the measurement system, resulting in a decrease in the filtering accuracy and a
great impact on the accuracy of cooperative navigation. The EKF measurement equation
including the unknown systematic error is as follows:

Zk = hk(Xk) + Vk + ek (29)

The measurement system error ek is an unknown quantity. As can be seen from the
above equation, it is difficult to eliminate the unknown measurement system error ek with
a common EKF, so multi-AUV cooperative navigation based on EKF is susceptible to
divergence caused by the measurement system error, which directly affects the results of
the multi-AUV cooperative navigation in a bad way.

3.2. Scheme of Improved EKF Based on Combined Observation

As described in the previous section, deep-sea environmental noise makes the noise of
the measurement sensors change and, thus, the sensor data produces outliers, resulting in
an unknown measurement system error ek for the cooperative system, which is difficult to
model and, therefore, difficult to compensate for with a common EKF, which may make the
filter accuracy degrade or even diverge. In this paper, a new algorithm needs to be devised
to solve this problem. In engineering practice, the variation of two adjacent measurements
Zk and Zk−1 is small, and if the period we choose is the SINS period, typically 1s or
even 0.1s, we can well assume that the unknown errors of the adjacent measurement
systems are approximately equal. Therefore, this paper is based on the common EKF, where
the measurement information from the previous and subsequent moments is combined
and the unknown system error ek is effectively eliminated by re-establishing the quantity
measurement and using the difference between Zk and Zk−1.

The nonlinear measurement equation with system errors is shown in Equation (29).
Through analysis, the measurement equation is re-established in this paper to eliminate the
unknown error ek in the measurement system. It follows from the derivation that at mo-
ments before and after a sufficiently short update period ek ≈ ek−1, the following equation
uses the implementation of the difference process to eliminate the system error ek within
it and to transform the reconstructed measurement equation regarding the linearization
process of the nonlinear equation of state:

Zk = HkXk − BkXk−1 + Yk + Nk (30)

where:

Hk =
∂hk(Xk)

∂Xk

∣∣∣∣
Xk=X̂k/(k−1)

(31)

Bk =
∂hk−1(Xk−1)

∂Xk−1

∣∣∣∣
Xk−1=X̂k−1

(32)

Yk = hk

(
X̂k/(k−1)

)
− hk−1

(
X̂k−1

)
−
(
HkX̂k/k−1 − BkX̂k−1

)
(33)

where Zk is the newly constructed measurement vector, which is the measurement dif-
ference at moment k and moment k− 1, Nk = Vk − Vk−1 is the new measurement noise
vector, and Bk is white noise, which is the measurement matrix at moment k− 1. From
Equation (30), it is noted that the measurement equation of the EKF changes from the
current moment of observation to a combined observation. The next step is to derive an
improved EKF model based on combined observation from this.
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Firstly, the equation of state is not improved by combining observations, so no
changes have to be made compared to the common EKF. The set state vector Xk satis-
fies Equation (26), the measurement vector satisfies Equation (30), and the system process
noise Wk and measurement noise Vk satisfy:

E[Wk] = 0, E[WkWT
j ] = Qkδkj

E[Vk] = 0, E[VkVT
j ] = Rkδkj

E[WkVT
j ] = 0

(34)

where the system noise variance Qk is non-negative and the measurement noise variance
array Rk is positive; δkj is a function of Kronec ker− δ. Xk is uncorrelated with {Wk } as
well as {Vk }. The time update process of the combined-observation EKF can be obtained
as follows:

For the improved EKF based on combined observation, one-step predictive state
estimation is adopted:

X̂k,k−1 = fk−1(X̂k−1) (35)

The one-step predicted estimate covariance is:

Pk,k−1 = φk,k−1Pk−1φT
k,k−1 + Γk,k−1Qk−1ΓT

k,k−1 (36)

Then, based on the similar derivation method ideas in Ref. [49], the measurement
update process of the EKF based on combined observation is recursively derived, including
updating the state estimate X̂k, the Kalman gain matrix Kk, and the covariance estimate Pk:

X̂k = X̂k,k−1 + Kk
[
Zk − Ẑk/k−1

]
(37)

Kk =
(
Pk/k−1HT

k −φk/k−1Pk−1BT
k
)
×
(
HkPk/k−1HT

k −Hkφk/k−1Pk−1BT
k

−BkPk−1φT
k/k−1HT

k + BkPk−1BT
k + Rk

)−1 (38)

Pk = Pk/k−1 −Kk

(
HkPk/k−1HT

k −Hkφk/k−1Pk−1CT
k −BkPk−1φT

k/k−1HT
k + BkPk−1BT

k + Rk

)
KT

k (39)

To sum up, Equations (37)–(39) describe the derived measurement update process,
and Equations (35) and (36) describe the time update process of the combined double-time
observation algorithm.

3.3. The Combined-Observation EKF of Multi-AUV Cooperative Navigation

In the previous section, the common EKF model has been redesigned and the improved
EKF algorithm based on combined observation has been obtained. In Ref. [36], Sheng
proposed a KF algorithm based on combined double-time observation, but only for a linear
model of transfer alignment and based on a single sensor. This study extends the application
of the newly designed algorithm to nonlinear systems for cooperative navigation, and the
extension from a single sensor can make full use of information from multiple AUV data
sources to improve the reliability and performance of the filter.

In a multi-AUV cooperative navigation system, assuming that there are N sensors for
measurement, the corresponding measurement equation can be expressed as:

Zi
k = hi

k(Xk) + Vi
k + ei

k, i = 1, 2, . . . , N (40)

where Zi
k denotes the measurement vector of the i-th AUV at moment k; hi

k(Xk) denotes the
nonlinear vector dispersion function of the i-th AUV at moment k− 1; Vi

k denotes the noise
vector of the i-th AUV at moment k; and ei

k denotes the unknown measurement systematic
error of the i-th AUV at moment k. Vi

k is assumed to follow a Gaussian distribution
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with mean 0 and variance Ri
k, and the measured noise at the same time for each AUV is

uncorrelated, as is the measured noise at different times for each AUV.
Then, based on the derivation process in Section 3.2, the measurement equation of the

combined-observation EKF for multiple AUVs is constructed as:

Zi
k = Hi

kXk − Bi
kXk−1 + Yi

k + Ni
k, i = 1, 2, . . . , N (41)

where Zi
k is the newly constructed measurement vector; Bk is the measurement matrix

of the i-th AUV at the time k − 1, and Ni
k = Vi

k − Vi
k−1 follows a Gaussian distribution

with variance 2Ri
k. As can be seen from the above equation, in the process of multi-AUV

cooperative positioning and navigation, the error of the measurement system cannot
be calibrated by a common EKF but can be effectively eliminated by constructing the
combined-observation EKF model.

In this study, the parallel filter algorithm is used for the combined-observation EKF
model with multiple AUVs such that:

Zk =

[(
Z1

k

)T
,
(

Z2
k

)T
, · · · ,

(
ZN

k

)T
]T

(42)

Hk =

[(
H1

k

)T
,
(

H2
k

)T
, · · · ,

(
HN

k

)T
]T

(43)

Bk =

[(
B1

k

)T
,
(

B2
k

)T
, · · · ,

(
BN

k

)T
]T

(44)

Nk =

[(
N1

k

)T
,
(

N2
k

)T
, · · · ,

(
NN

k

)T
]T

(45)

Yk =

[(
Y1

k

)T
,
(

Y2
k

)T
, · · · ,

(
YN

k

)T
]T

(46)

Then, at the fusion center, the combined-observation measurement equation for all
AUVs can be expressed as:

Zk = HkXk − BkXk−1 + Yk + Nk, i = 1, 2, . . . , N (47)

Similarly, the equation of state is shown in Equation (26), and the model for a
two-moment combined-observation EKF consisting of multiple AUVs is shown in
Equations (36)–(39).

4. Experimental Validation and Discussion
4.1. Simulation Test
4.1.1. Test Setting

According to the previous analysis, this section uses the MATLAB platform to simulate
the new EKF method and verifies the performance and effectiveness of the improved
cooperative navigation algorithm [50].

First, a multi-AUV cooperative navigation system is established, which consists of
three AUVs, starting from three different positions and attitudes, and moving uniformly in
a certain area. The starting attitude of the three AUVs is the same, but the starting position
is different, and the three AUVs operate at a depth of −100 m underwater. The true linear
velocity of the three AUVs is 10 m/s. The true angular velocities are 2 ◦/s.

In practice, the multi-AUV cooperative navigation system does not need to be equipped
with different precision navigation equipment. Therefore, in the parallel cooperative navi-
gation system in this section, all AUVs have the same configuration, and each AUV has
the same or equal-precision navigation system and underwater acoustic communication
equipment. The cooperative navigation system is a network system composed of multiple
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AUVs, as shown in Figure 1. While each AUV relies on SINS for autonomous navigation
in the deep-sea environment, it cannot obtain other external auxiliary information such
as GNSS. However, each AUV can continuously integrate the navigation information of
adjacent AUVs, set the system update frequency of mutual observation f = 10 Hz, and ob-
serve and transmit the mutual distance and relative azimuth angle to each other. We adopt
different information fusion algorithms to achieve cooperative navigation for comparison.

When there are unknown errors ek in the measurement system, the improved EKF
based on combined observation and the common EKF are compared, and the error of ek in
the relative distance measurement equation is set to a value of 20 m. The common EKF and
the combined-observation EKF are used to fuse information for cooperative navigation,
respectively. A total of 100 statistically independent realizations are composed using Monte
Carlo simulation and only one of these simulations is given in this paper. The simulation
time is 1000 s.

The estimated trajectories of the three AUVs against the reference used by the common
EKF and the combined-observation EKF (COEKF) methods are shown in Figure 3. In this
figure, the three blue solid lines indicate the model trajectories of the three AUVs; the
three red lines show the trajectory estimated by the common EFK method when there is
a measurement error ek; and the three green lines show the trajectory estimated by the
COEKF when there is a measurement error ek.

Figure 3. The estimated trajectories of three AUVs.

4.1.2. Results of the Test

The velocity and position errors of the three AUVs are shown in Figures 4 and 5,
respectively. In Figures 4 and 5, the blue, red, and green dotted lines indicate the coop-
erative positioning error curves of AUV1, AUV2, and AUV3 based on the common EKF,
respectively. The red, green, and blue solid lines indicate the cooperative positioning error
curves of AUV1, AUV2, and AUV3 based on the combined-observation EKF, respectively.



Remote Sens. 2023, 15, 533 12 of 20

Figure 4. Velocity error comparison curve.

Figure 5. Position error comparison curve.

The relative horizontal distance error curves for cooperative multi-AUV navigation
based on the combined-observation EKF are shown in Figure 6; the red, green, and blue
dashed lines show the relative horizontal distance error curves between AUV1 and AUV2,
between AUV1 and AUV3, and between AUV2 and AUV3, respectively, when autonomous
navigation is based on pure SINS. The red, green, and yellow solid lines show the relative
horizontal distance error curves between the individual AUVs based on the combined-
observation EKF for cooperative navigation. The horizontal distance error statistics for
multi-AUV cooperative navigation based on the combined-observation EKF are shown in
Table 1.
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Figure 6. Relative horizontal distance error for multi-AUV cooperative navigation.

Table 1. Relative distance error statistics.

Content AUV12 AUV13 AUV23

RMSE/m 2.1449 1.9012 2.6130
AME/m 1.4524 1.4372 2.2626

From Figures 4 and 5, it can be seen that the velocity and position errors of the common
EKF for cooperative navigation have a rapid tendency to disperse over time when there
are unknown errors in the measurement system and the cooperative navigation relies
only on relative observation information. As mentioned in the introduction, cooperative
navigation is closely related to state estimation, and unknown errors in measurement
equations lead to a decrease in estimation accuracy or even divergence [36]. Therefore,
the combined-observation EKF can successfully eliminate the unknown error ek of the
measurement system, effectively using the relative observation information between AUVs
to delay the dispersion of cooperative navigation errors, and eliminating the influence of the
measurement system errors on the dispersion of cooperative navigation errors. In addition
to this, the horizontal positioning distance between the AUVs based on the combined-
observation EKF algorithm can maintain high accuracy, as can be seen in Figure 6 and
Table 1.

In summary, the simulation test results show that when there are unknown errors in
the measurement system, the multi-AUV cooperative navigation and positioning algorithm
based on the combined-observation EKF can effectively eliminate the influence of unknown
errors, effectively use the relative observation information to delay the dispersion of
navigation errors, improve the cooperative navigation and positioning accuracy to a certain
extent, and has a high degree of flexibility and reliability.

4.2. Lake Experiments
4.2.1. Experiment Setting

The simulation test results above have proved that the combined-observation EKF
algorithm proposed in this paper can effectively eliminate the measurement system error
and, thus, can delay the dispersion of navigation errors. To continue to test the performance
of the algorithm in practical engineering applications, we carried out lake experiments at
Yuandang Lake in Suzhou city, using navigation data from three 9-ton surface boats for
algorithm validation.

In this cooperative experiment, the reference value of each boat’s navigation position is
provided by real-time kinematic (RTK) differential positioning data. The boats are equipped
with a certain type of strapdown inertial navigation system, a RTK-GNSS receiver, and
a navigation computer. The equipment diagram is shown in Figure 7. The equipment
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parameters of the SINS are shown in Table 2; the RTK-GNSS receiver includes a base station
and multiple mobile terminals. The differential GNSS plane positioning accuracy is better
than 0.5 m, the RTK plane positioning accuracy is 1 cm + 1 ppm, and the signal coverage
area after access to the network is represented as a 10 km circle.

Figure 7. Equipment and platforms in the boat.

Table 2. Sensor errors.

Gyro Accelerometer

Constant Random Constant Random

<0.02 ◦/h <0.01 ◦/h <500 µg <500 µg

Before the cooperative navigation of the boats, the SINS of each boat independently
completes the initial alignment. In the initial alignment process, the boats use GNSS to
complete the analytical rough alignment and then use the GNSS position and velocity mea-
surement to achieve fine alignment [51]. After the initial alignment of the SINS is completed,
the SINS is used as the onboard equipment to obtain measurement information stably.
Due to the lack of available ranging data between boats, the inter-ship ranging reference
value is obtained by the difference in the position reference values at the corresponding
time, adding 0.2% of the Gaussian white noise of the ranging value to simulate cooperative
information. To obtain comparison results of different cooperative navigation algorithms
for the unknown error of the measurement system, following Ref. [22], an error ek = 50 is
added to the measurement system. To simulate multiple AUVs that cannot acquire GNSS
signals underwater, each boat broadcasts to the other boats during the algorithm validation
process, relying only on the relative measurement information shared between each boat
for cooperative navigation, and each boat’s information broadcast frequency is set to 1 Hz.
We used GNSS for clock synchronization before sailing, and sailing data comprising three
segments of 500 s of circular motion after 2 h of sailing away from the pier were selected
for algorithm verification, and the trajectory schematic is shown in Figure 8.
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Figure 8. Schematic diagram of the trajectory.

4.2.2. Results of the Lake Experiment

The velocity and position errors of the three boats’ cooperative navigation are shown
in Figures 9 and 10, respectively. In Figures 9 and 10, the blue, red, and green dotted lines
indicate the cooperative positioning error curves of Boat 1, Boat 2, and Boat 3 based on the
conventional EKF, respectively. The red, green, and blue solid lines indicate the cooperative
positioning error curves of each boat based on the combined-observation EKF.

Figure 9. Velocity error comparison curve.



Remote Sens. 2023, 15, 533 16 of 20

Figure 10. Position error comparison curve.

The relative horizontal distance error curves for cooperative multi-boat navigation
based on the combined-observation EKF are shown in Figure 11; the red, green, and
blue dashed lines show the relative horizontal distance error curves between Boat 1 and
Boat 2, between Boat 1 and Boat 3, and between Boat 2 and Boat 3, respectively, when
autonomous navigation is based on pure SINS. The red, green, and blue solid lines show
the relative horizontal distance error curves between the individual boats based on the
combined-observation EKF for cooperative navigation.

Figure 11. Relative horizontal distance error for multi-boat cooperative navigation.
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From the results of the lake experiment in Figures 9 and 10, we can find that when
there is a measurement error in the actual measurement test of cooperative navigation, the
position error based on the common EKF algorithm has a certain amount of error offset,
and each shows a divergent trend; this shows that the common EKF cannot eliminate the
influence of errors of the measurement system.

However, in these figures, it can be seen that the error value of the combined-
observation EKF is smaller, and the respective error values are closer, which is more
effective for the error processing of the measurement system. The horizontal distance error
statistics for multi-AUV cooperative navigation based on the combined-observation EKF
are shown in Table 3. It can be seen that, compared with Table 1, the error index is higher.
Because the actual test is different from the ideal environment of the simulation, there are
environmental factors and related sensor influences, such as GPS interference, that directly
affect the measurement of the ideal position, but the performance of different algorithms
under the same conditions can still show the superiority of the improved algorithm.

Table 3. Relative distance error statistics.

Content AUV12 AUV13 AUV23

RMSE/m 15.6219 15.7213 20.9426
AME/m 13.2191 13.6113 16.1552

To sum up, this section verifies the feasibility and effectiveness of the multi-AUV
cooperative navigation algorithm based on the combined-observation EKF proposed in
this paper through simulation tests and lake experiments.

5. Conclusions

In this study, a cooperative navigation method based on a combined-observation
algorithm is presented to solve the problem that unknown errors of measurement system
are difficult to calibrate by common EKF methods, which affects the accuracy of multi-
AUV cooperative navigation. The concept of combined observation is introduced into the
underwater multi-AUV cooperative nonlinear system and re-establishes the EKF model.
In the observation process of the algorithm, the measurement sampling values of the
current moment and the previous moment are included. The combined observation can
approximately eliminate the measurement system error at the algorithm level, avoid the
impact of the measurement system errors on the performance of the filter, and improve the
accuracy of cooperative navigation. Therefore, each AUV has the capability of bounded
navigation and positioning errors, which can effectively reduce the impact of measurement
system errors on the system’s navigation and positioning accuracy. Finally, the effective-
ness and reliability of the improved algorithm are proven by simulation tests and lake
experiments, respectively.
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Abbreviations
The following abbreviations are used in this manuscript:

AUV autonomous underwater vehicle
RADNAV radio navigation
GNSS global navigation satellite system
SINS strapdown inertial navigation system
KF Kalman filter
EKF extended Kalman filter
UKF unscented Kalman filter
COEKF combined-observation EKF
RTK real-time kinematic
DVL Doppler velocity log
TAN terrain-assisted navigation
MCP magnetic compass pilot
2D two-dimensional
3D three-dimensional
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