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Abstract: In image-based three-dimensional (3D) reconstruction, texture-mapping techniques can
give the model realistic textures. When the geometric surface in some regions is not reconstructed,
such as for moving cars, powerlines, and telegraph poles, the textures in the corresponding image
are textured to other regions, resulting in errors. To solve this problem, this letter proposes an
image consistency detection method based on the Binary Robust Independent Elementary Features
(BRIEF) descriptor. The method is composed of two parts. First, each triangle in the mesh and its
neighboring triangles are sampled uniformly to obtain sampling points. Then, these sampled points
are projected into the visible image of the triangle, and the corresponding sampled points and their
RGB color values are obtained on the corresponding image. Based on the sampled points on these
images, a BRIEF descriptor is calculated for each image corresponding to that triangle. In the second
step, the Hamming distance between these BRIEF descriptors is calculated, outliers are removed
according to the method, and noisy images are also removed. In addition, we propose adding
semantic information to Markov energy optimization to reduce errors further. The two methods
effectively reduced errors in texture mapping caused by objects not reconstructed, improving the
texture quality of 3D models.

Keywords: 3D reconstruction; texture mapping; BRIEF descriptors; outlier detection

1. Introduction

Image-based three-dimensional (3D) reconstruction has achieved great success in
recent decades. This technology can recover not only the geometric structure of the object
surface but also the color information of the object surface from multi-view images. The
pipeline for geometric reconstruction by this technology is the structure from motion [1–3],
dense matching [4–6], and surface construction [7–9]. However, the images are taken
at different times, and there are problems involving weak texture, repeated texture, and
moving targets. Furthermore, objects such as power lines, pedestrians, and moving vehicles
cannot be reconstructed by multi-view stereo algorithms, and these objects are often
textured to other regions during the texture-mapping process [10]. These problems result
in errors, and solving them is important for improving the quality of realistic 3D models.

In the field of image-based 3D reconstruction, traditional texture-mapping methods fall
into two main categories: the image-fusion-based method [11–13] and the view-selection-
based approach [10,14–16]. The former uses image-weighted fusion to reconstruct textures
for the mesh. If there is a moving vehicle on the road, some of the visible images of the
mesh triangle have captured the moving vehicle, while others have not. If the image-fusion-
based method is used for reconstructing texture, fuzzy problems will inevitably occur
in the vehicle area. The latter selects an optimal image for each triangle in the mesh by
view selection and then maps the corresponding region of that image to the corresponding
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triangle to obtain the texture. If this type of method includes an image that has not been
reconstructed for a triangle of the mesh, an error will occur when the image is mapped to the
mesh. Therefore, it is necessary to remove the images containing unreconstructed objects
in advance, but the existing methods cannot meet the needs of texture mapping, which is
described in detail in the next paragraph. Iteration-based methods [17,18] can be used to
reconstruct clear textures, but they are not suitable for large-scale texture mapping because
they require too many iterations and are time-consuming. With the development of deep
learning technology, we can use neural networks to represent the entire scene and then give
a new perspective to render a new image by volume rendering. This has become a salient
topic in recent years, especially in the neural radiance field (NeRF) [19–21]. Moreover, this
method can be applied to texture mapping to provide real textures for the entire scene.
For example, Martin [22] proposed NeRF-W, which can deal with the color consistency of
images and remove mobile people. Other researchers [23–25] reconstructed the normal
vector, albedo, and BRDF of the object surface so that the entire scene can be relighting.
However, how to combine NeRF with traditional texture-mapping technology to generate
high-quality textures still needs further exploration, so it is a method worth studying.

There are two main solutions that may be able to account for the influence of non-
reconstructed objects on texture-mapping results. One is the method based on image
consistency detection. Because only a few images in the visible image list of a single
mesh triangle contain objects not reconstructed, consistency detection can be performed
in the visible image list based on the color information within the projection of the tri-
angle to eliminate the images containing objects not reconstructed. Sinha et al. [26] and
Grammatikopoulos et al. [27] used the median or average value of color information to
detect image consistency. Waechter et al. [10] used a mean-shift-based image consistency
detection method to remove the images containing objects that have not been reconstructed.
These methods can achieve good results, but for the texture mapping of urban 3D models
with many objects not reconstructed, these methods still produce many texture-mapping
errors. Another approach based on masked images introduces semantic information in
the texture-mapping process. This is an effective method that uses deep-learning-based
object detection methods [28,29] to detect objects that have not been reconstructed, such as
mobile vehicles and pedestrians, and then remove them [30–32]. These deep-learning-based
algorithms can only process specific objects based on specific training datasets, such as cars
and pedestrians. However, too many objects that have not been reconstructed cannot be
detected by deep learning, which also limits the application scope of such methods.

In this article, we propose a BRIEF-based texture-mapping image consistency detection
method that assigns a modified BRIEF descriptor [33] to each image to perform outlier
detection. This method can eliminate “outlier” images in the visible image of a single mesh
triangle list by calculating the Hamming distance of the corresponding descriptors, which
is equivalent to eliminating images containing non-reconstructed objects. In addition, we
also take the mobile vehicle as an example to show how to introduce semantic information
into view selection to reduce texture-mapping errors further.

2. Methods
2.1. Principle of the BRIEF Descriptor

The BRIEF descriptor is a binary descriptor proposed by Calonder et al. [33] to describe
image feature points. The BRIEF descriptor method is as follows:

(a) A neighborhood space p of size S ∗ S centered on the feature points is selected. Gaus-
sian kernel convolution smoothing is performed on the neighborhood space p to
diminish the effect of noise.

(b) A total of n sets of point pairs (x, y) are selected in the neighborhood space p, where
x obeys the Gaussian(0, 0.04 ∗ S2)distribution and y obeys the Gaussian(xi, 0.01 ∗ S2)
distribution for sampling.
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(c) BRIEF descriptors are constructed as follows. First,define τ:

τ(p; x, y) =
{

1, if p(x) < p(y)
0, if p(x) ≥ p(y)

(1)

where p(x) is the pixel intensity value of p at x. If p(x) < p(y), τ is 1; otherwise, it is 0.
Then,define the BRIEF descriptor as a binary string of nd bits containing only values
of 1 and 0:

fnd(p) = ∑
1≤i≤nd

2i−1τ(p; xi, yi) (2)

After obtaining the BRIEF descriptors according to the (a) and (b) above, we can
perform feature matching using the Hamming distance. The authors of BRIEF found
through experiments that the effect of 512 was the best, the effect of 128 was less
good, and the effect of 256 was slightly worse than that of 512, but with fewer bits.
Hamming distance is a concept that represents the number of different characters in
corresponding positions of two (same length) strings. This distance is the number
of different characters between BRIEF descriptors at the corresponding positions
of the feature vector. When performing feature matching, the following principles
are followed:

(d) If the Hamming distance between BRIEF descriptors of two feature points is greater
than 128, then they must not match.

(e) The pair of feature points with the smallest Hamming distance between the BRIEF
descriptors will be matched.

2.2. Proposed BRIEF-Based Method

For objects not reconstructed, we assume that for a particular mesh triangle, only
a small portion of its visible image list contains these objects. Most of the images have
similar texture information corresponding to that mesh triangle. Therefore, the problem
of removing the visibility impact of objects not reconstructed can be transformed into the
problem of removing “outlier” images from the list of visible images of the mesh triangle.
In this section, we propose a BRIEF-based texture-mapping image consistency detection
method, as shown in Figure 1. This method assigns a modified BRIEF descriptor to each
image based on the image color values in the mesh triangle projection range. The “outlier”
images are removed by calculating the Hamming distance of the corresponding descriptors.
This means that images containing non-reconstructed objects, such as moving vehicles, are
excluded. The process is as follows:

(a) For each image in the list of visible images of one mesh triangle Fi, the color values of
several points within the projection range on the image of mesh triangle Fi and the
three mesh triangles that have common borders with it are sampled uniformly. In
practice, the extent of the field and the number of sampled points can be determined
according to the scale. In this article, seven points are sampled within each mesh
triangle, the vertices of the mesh triangle, and the six points sampled on the borders,
as shown in Figure 1.

(b) The sampling points obtained in the first step are combined into pairs of points nd(x, y),
and we define τ, which is the same as in Equation (1).
The nd results are formed into a string fnd(Fi) from the lowest bit to the highest bit,
with the following formula:

fnd(Fi) = ∑
1≤j≤nd

2j−1τ
(

Fi; xj, yj
)
. (3)

Note that the order of the point pairs in each image in the list of visible images for
mesh triangle Fi should remain consistent.
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(c) The Hamming distance of any two images’ feature vectors is calculated. The Ham-
ming distance of two feature vectors is the number of different characters in the
corresponding positions.

(d) Outliers are detected using the following method. Define the distance factor r and
the scale factor f , and calculate the number of images whose Hamming distance from
each image’s corresponding feature vector to the corresponding string of other visible
images is greater than r. If the number of images is greater than f ∗m (m is the number
of all visible images of the triangle), the current image is removed. In this method, r is
taken as half of the maximum Hamming distance between the image corresponding
feature vector, and f is taken as 0.6 based on our experimental experience. To ensure
the quality of texture mapping, we stopped the detection if the number of images was
less than four during the image consistency detection.

Figure 1. Schematic diagram of feature vector generation. From left to right is a triangle Ti of 3Dmesh,
Ti in the projection area Rk of the visible image Ik, the sampling points in the Rk area, and the final
feature vector.

2.3. View Selection with Semantic Information

Although the above proposed BRIEF-based method can remove most of the errors in
texture mapping, it will fail when encountering some weak texture regions because the
brief descriptor depends on the color information of the image. In this section, we take the
mobile vehicle as an example to show how semantic information can be introduced into
view-selection-based [10] texture-mapping methods to reduce errors. Images containing
semantic information can be obtained easily by deep learning methods. The image semantic
segmentation technique, however, is not the focus of this letter. Instead, we directly adopted
the manual segmentation to obtain a set of vehicle-masked images of the multiview image
dataset to show our view selection method with semantic information. The semantic
information mask of the image is shown in Figure 2.

The energy function of the Markov random field (MRF) has a data term and a smooth-
ing term. We used the data term to describe the quality of the image selected by a triangle.
We introduced the view selection method with vehicle semantic information and defined a
new data term. The data term is set to a minimal value if vehicles are in the projection range
of the vehicle mask image; otherwise, it takes the gradient amplitude of the triangle surface
in the projection range of the image as mvs-texturing. Note that because mvs-texturing
only uses gradient data items, the algorithm tends to select images with clear textures, that
is, images with large gradients. However, in areas with vehicles, power lines, and other
objects, the gradient is often large. Therefore, this kind of data item tends to map these
unreconstructed objects to the road surface, thus, causing errors. This is also the problem
to be solved in this article. The proposed data term is shown in the following equation:

Edata (Fi, li, mi) =

{
min, Fi ∈ mask

−
∫

φ(Fi ,li)

∥∥∇(Ili (p)
)∥∥2dp, Fi /∈ mask

(4)

where mi is the sum of all pixel values of the mesh triangle Fi in the projection range of
the vehicle mask image corresponding to label li. When mi > 0, there are vehicles in the
projection range of the mesh triangle in the vehicle mask image; when mi = 0, there are no
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vehicles. In addition, the method in this article uses the Potts model [10] as the smoothing
term as shown in Equation (5).

Esmooth
(

Fi, Fj, li, lj
)
=

{
0, li = lj

1, li 6= lj
(5)

where Fi and Fj represent the two adjacent triangles, and li and lj represent the image tags
selected by Fi and Fj.

Figure 2. Schematic diagram of vehicle mask images. The first row is the original image; the second
row is the moving vehicle mask of the original image.

A multi-labeled graph is constructed as shown in Figure 3. The blue area of the multi-
label graph corresponds to the undirected graph generated by the 3D model, and the nodes
of the undirected graph correspond to the triangular surface of the 3D model. There are
also k terminal nodes in the figure, and each terminal node corresponds to an image tag. In
addition, a multi-label graph contains two kinds of edges: the edges of an undirected graph
are called n-links, which represent the adjacent relationship between two triangular faces,
and the edge connecting the terminal node and the vertex of the undirected graph is called
a t-link, which means that the triangular surface is visible on the corresponding image.
Each edge in the multi-label graph has weight, and the weight of these edges is determined
by the MRF energy function: the data item of the MRF energy function determines the
weight of the t-link edge in the multi-label graph, and the smooth item determines the
weight of the n-link edge in the multi-label graph, as described in Section 2.3. When we
take these edges as water pipes, the process of obtaining optimal image labels for each
triangle is equivalent to finding the maximum water flow between nodes. According to
the maximum flow minimum cut theorem, when n-link edges are located in the maximum
flow and the terminal nodes are divided, the cut of these edges is the minimum cut. In
this way, a bridge between graph cut theory and view selection is built through the MRF
energy function.
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Figure 3. Schematic diagram of multi-label graph cut.

We solved the texture-mapping view selection with semantic information by min-
imizing the Markov random field (MRF) energy function. The view selection method
introducing semantic information has two main parts: (1) constructing the MRF energy
function with semantic information and (2) graph cut solving [34]. The swapping algorithm
and α-expansion algorithm are only different in the way of label adjustment, which is a
key step of the two algorithms. The processes of the two algorithms can be summarized as
follows: first, generate initial tags randomly. Then, each expansion (swap) adjusts one (two)
labels to reduce the value of the energy function, traversing all possible label combinations.
If, under all combinations, the value of the energy function can no longer be reduced by
readjusting the label, the locally optimal solution is obtained.

3. Experiments
3.1. Datasets

We compared and analyzed the texture-mapping results without image consistency
detection, using BRIEF-based image consistency detection and mvs-texturing [10] on three
datasets, as shown in Figure 4 and Table 1. Except for the image consistency detection
method, all other parameter settings remained the same.

Figure 4. Three datasets used in experiments. The datasets from left to right are TJH-0078, TJH-008812,
and TJH-009634.
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Table 1. Details of the three datasets.

Datasets Platform No. of Images Size Altitude (m) Focal (mm)

TJH-0078 Fixed wing UAV 323 5472 ∗ 3648 135 8.440
TJH-008812 Fixed wing UAV 511 6000 ∗ 4000 118 25.766
TJH-009634 Fixed wing UAV 687 5566 ∗ 3713 330 50.000

3.2. Results and Discussion

Figure 5 shows a comparison of the texture-mapping results, and the errors on the road
area are marked with red boxes. The texture-mapping results without image consistency
detection had many moving vehicle textures on the road area, and the texture-mapping
results with mvs-texturing reduced the number of moving vehicle textures. However,
there are still some moving vehicles. In contrast, the results of this letter using the BRIEF-
based image consistency method had few moving vehicle textures, which proves that the
proposed BRIEF-based image consistency method is more effective than mvs-texturing.
Mvs-texturing considered only the average color values in the triangular projection range.
In contrast, the BRIEF-based image consistency method used multiple point pairs in the
triangular projection range to form a binary string, which better reflected the texture
information. In addition, note the BRIEF-based image consistency method indiscriminately
rejected “outlier” images; the effectively removed not only erroneous textures of moving
vehicles but also erroneous textures of other moving objects. Note, for example, the
pedestrian shown in Figure 5.

Figure 5. Comparison of the results of the three methods on dataset TJH-0078: (a) results of experi-
ments without image consistency detection; (b) results of the method of mvs texturing; and (c) results
of our method.

Similarly, this BRIEF-based image consistency detection method essentially eliminated
“outlier” images from the list of visible images in the mesh triangle. For small objects, such
as power lines and streetlights that are not geometrically reconstructed, only the images
from a specific viewpoint in the list of visible images in a specific triangle contained such
small objects. Most of the images from a specific viewpoint did not contain these objects, so
the images containing them also could be identified as “outlier” and be removed. Figure 6
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compares the texture-mapping results of road wires and shows the zoomed-in portion
of the road containing wires. Compared with the results obtained by mvs-texturing, the
texture-mapping results of BRIEF-based image consistency detection effectively reduced
the errors caused by wires. This shows that our method has better generalization than
some deep learning method [30–32] that can only remove vehicles.

Figure 6. Comparison of texture-mapping results of the road wires of in dataset TJH-0078. (a) results
of experiments without image consistency detection; (b) results of the method of mvs-texturing; and
(c) results of our method.

We also performed a quantitative comparison of the methods. However, because there
is no unified quantitative evaluation criteria for removing texture-mapping errors, this
letter counts the number of errors in texture-mapping as a quantitative evaluation criterion.
The fewer errors, the better the method. The numbers of mvs-texturing errors on the three
datasets are 65, 41, and 205, respectively, and the numbers of our method’s errors are 13, 11,
and 67, respectively, as shown in Table 2. It can be seen that the number of errors of the
method proposed method in this article is far fewer than those of mvs-texturing, which
also indicates that the proposed image consistency detection method based on BRIEF used
in this article can more effectively avoid errors and, thus, improve the semantic accuracy of
texture-mapping results.

Table 2. Statistics of texture-mapping errors of mvs-texturing and ours on three datasets. The fewer
the errors, the better the algorithm.

TJH-0078 TJH-008812 TJH-009634

mvs-texturing 65 41 205
ours 13 11 67

In addition, because the occlusion detection model does not include the 3D models
of adjacent tiles, the occlusion detection in the texture-mapping process may fail, which
will cause the triangle surface corresponding to the background object to include the
wrong texture of the foreground object within the projection range of some images in
its visible image list. Like the small volume objects that have not been reconstructed,
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only the images with specific viewing angles in the triangle visible image list contain
foreground objects, so the images containing foreground objects can also be recognized as
“outlier” image elimination. Here, image consistency detection can complement occlusion
detection. When occlusion detection fails, image consistency detection can also remove
images containing foreground objects from the visible image list. As shown in Figure 7,
the architectural texture pasting errors of the texture-mapping results of the dataset TJH-
008812 are compared, and the pavement part containing architectural error texture is
enlarged and displayed. It should be the case that for some areas of the lower right
building, the occlusion detection algorithm fails, resulting in the wrong building texture
on the road surface. It can be seen that compared with the texture-mapping results using
the image consistency detection algorithm based on the mean shift, this paper uses the
texture-mapping method based on BRIEF image consistency detection to avoid the building
paste error when occlusion detection fails. The semantic accuracy of the road area texture-
mapping results is high, which shows the effectiveness of this algorithm.

Figure 7. Results comparison without occlusion detection model. (a) results of experiments without
image consistency detection; (b) results of the method of mvs-texturing; and (c) results of our method.

Figure 8 compares the texture-mapping results for the three methods on the dataset
TJH-0078. Both methods in this article were better than mvs-texturing in terms of removing
moving vehicle error textures, and the view selection method with the vehicle semantic
information worked best. The limitation of the proposed method with semantic information
was the accuracy of the vehicle mask image. This method avoided almost all moving vehicle
error textures as long as the acquired vehicle mask image was sufficiently accurate. In this
article, the accuracy of the manually segmented vehicle mask images was high, and as a
result, the effect of removing moving vehicle error textures was better. The BRIEF-based
image consistency detection method is based on the color information within the mesh
triangle projection to eliminate the “outlier” images. It was not effective in removing some
of the moving vehicles whose color values were close to the road surface. Therefore, the
BRIEF-based image consistency detection method was not as good as the method with
semantic information of vehicles in reducing moving vehicle error textures on urban roads.
The proposed BRIEF-based image consistency detection method, however, effectively
reduced the error of objects not reconstructed, such as streetlights and powerlines. It also
reduced the error textures of objects whose detection failed because occlusion occurred at
the same time and could improve the texture-mapping quality in many aspects. The view
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selection method with semantic information was ineffective in reducing other erroneous
textures, such as power lines and telegraph poles, because it considered only specific
semantic information, just as other deep learning methods [31,32].

Figure 8. Comparison of texture-mapping results of the road wires of in dataset TJH-0078. (a) results
of experiments without image consistency detection; (b) results of mvs texturing; (c) results of our
method; (d) results of our method with semantic information.

4. Conclusions

In image-based 3D reconstruction, unreconstructed objects can lead to the problem of
inconsistency between model geometry and texture, resulting in texture-mapping errors.
To address this problem, firstly, we uniformly sample the color values of the triangular
surface and its adjacent triangular surface within the projection range of the visible image,
and we calculate a BRIEF descriptor for each image according to the sampled color values.
Then, the Hamming distance between the corresponding descriptors of the visible image
is calculated to remove the “outlier” images. The experiments showed that the BRIEF
descriptors had stronger feature description ability than the color averages used in existing
works. Thus, the outlier detection method better removed the noisy images in the image
list and reduced the probability of the noisy images being selected in the view selection
stage. At the same time, adding the semantic information to the MRF energy function also
effectively reduced the probability of the noisy images being selected. Thus, the errors
of inconsistent geometric structure and texture information caused by unreconstructed
objects can be removed effectively, which is important for improving the texture quality of
realistic 3D models. However, when faced with some small objects, if the sampling point
does not fall on the small objects, or the object detection algorithm does not detect it, then
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the algorithm in this paper may fail; this is also the shortcoming of the algorithm in this
paper, which we will improve in the future.
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