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Abstract: Multiband antenna arrays have the capability of effectively working in multiple frequency
bands and thus significantly simplify the antenna system. To further reduce the system overhead,
this paper discusses the joint design of antenna selection and adaptive beamforming for multiband
antenna arrays, where the sidelobe level is also controlled so as to alleviate the effect of unknown
sporadic interference. Based on the maximum signal-to-interference-plus-noise ratio (SINR) criterion
and sidelobe level constraints, the proposed multiband sparse array design is formulated into a
nonconvex constrained nonlinear optimization problem with an l0,2-mixed norm regularization. This
problem ensures that the same antenna positions are selected at all operating frequencies while the
beamformer weights of each frequency are optimized independently. By exploiting the semi-definite
relaxation and the reweighted l1,∞-norm approximation, the problem is converted into a series of
convex subproblems and is then effectively solved by the proposed iterative reweighted method.
Numerical results show that the proposed multiband sparse array significantly reduces the sidelobe
levels in all operating frequencies while maintaining the maximum SINR, so it provides superior
performance of interference suppression.

Keywords: multiband antenna; sparse array; adaptive beamforming; sidelobe level control

1. Introduction

A multiband antenna is a specialized type of antenna that is designed to effectively
operate across multiple preset frequency bands simultaneously. This versatile technology
substantially reduces the volume, cost, weight, and complexity associated with antenna
systems. As a result, multiband antennas are increasingly being used in advanced commu-
nication and radar systems [1–3]. With the increasing requirement on the spatial resolution
and capacity, several kinds of multiband arrays have been developed for the application of
next-generation wireless communication [4]. However, in the utilization of medium- or
large-scale multiband arrays, the cost, hardware complexity, and power consumption are
high. Sparse arrays offer significant advantages in terms of reducing the system complexity
and hardware overhead. Compared to conventional uniform linear arrays, sparse arrays
use fewer antenna elements and radio-frequency channels while they have the same array
aperture and suffer from only a little performance loss. Therefore, one promising direction
in developing multiband antenna arrays is to design optimal sparse array configurations.
Different from conventional sparse arrays working at a single frequency, the configuration
of a multiband sparse array should possess the capability to deliver excellent performance
across all operating frequencies, tailored to specific functions such as transmit beampattern
synthesis or adaptive receive beamforming.

The design of narrowband sparse arrays, specifically focusing on single-frequency
operation, has been widely explored in various tasks and performance metrics [5–22].
Depending on the application and the performance metrics, sparse array design can be
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divided into two categories: environment-independent or environment-dependent. In
the environment-independent case, various structured sparse arrays, including minimum
redundancy arrays [5], nested arrays [6], and co-prime arrays [7], have been developed to
improve the direction-of-arrival (DOA) estimation performance, and then to provide good
beamforming performance [8,9]. Furthermore, to obtain a sparse array with the smallest
element number, sparsity-promoting algorithms for unstructured sparse arrays are used
to synthesize the desired beampattern [10] or to improve the parameter estimation perfor-
mance [11]. The representative algorithms include reweighted l1-norm [10,12,13], mixed
norm or norm combination [14], nonconvex lp-norm (0 < p < 1) [15], soft-thresholding
shrinkage [16], and Bayesian inference [17]. In the environment-dependent case, joint
optimization of antenna position and receive beamformer has been utilized to maximize
output signal-to-interference-plus-noise ratio (SINR) by exploiting environmental data.
These methods have been implemented by using reweighted l1-norm and semi-definite
relaxation (SDR) [18], sequential convex approximation (SCA) [19], and the alternating
direction method of multipliers (ADMM) [20], to name a few. Additional constraints have
also been introduced to achieve sidelobe level (SLL) control [21]. To further minimize
the number of required antennas, an l0-norm concave approximation approach has been
proposed in [22]. Since the unstructured sparse array designs are commonly coined as
nonconvex constrained optimization problems, the main challenge is how to resolve these
problems efficiently. Due to the powerful capability of deep neural networks (DNNs) in
solving nonlinear problems and performing fast computations, a fully connected DNN has
recently been applied to select antenna positions for adaptive beamforming [23,24].

Along with the continuous development of narrowband sparse arrays, wideband
sparse array design has also been studied extensively in the past two decades [25–32]. Due
to the significantly degraded performance of narrowband sparse arrays when the signal
bandwidth increases and the narrowband hypothesis no longer holds, which results in a
poor ability of interference suppression, it is necessary to consider wideband sparse array
design. By utilizing a limited number of available antennas, the wideband sparse array
design offers more degrees-of-freedom (DoFs) to control the beampattern over the frequen-
cies of interest. In wideband beamforming, there are two commonly used implementation
schemes: tapped delay line (TDL) filtering and discrete Fourier transform (DFT)-based
sub-band processing. Concretely, TDL implements temporal filtering by using a TDL to
capture the signal at different time instants, while DFT processes the signal in several
narrow sub-bands via DFT [33].

Based on the TDL and DFT schemes, several different goals involving frequency-
invariant (FI) beampattern synthesis, SLL control, and robust beampattern design [25–27]
have been achieved by many wideband sparse array design methods. To be specific, FI
beampattern synthesis is dedicated to generating a specific pattern regardless of the opera-
tion frequency, the SLL control aims to reduce the power of sidelobes around the mainlobe,
and the robust beampattern design focuses on maintaining desired beampatterns that are
not influenced by the array uncertainties or the changes of operating environment. Early
methods such as simulated annealing [28,29] and genetic algorithms [30], which rely on
heuristic methods, have been abandoned due to their high computational cost. Recently,
the sparsity-promoting algorithm has emerged as a prevalent solution to optimizing the
array design. For TDL implementation, FI beampatterns with a small number of antennas
are synthesized by several effective algorithms, including reweighted l1-norm [27], second-
order cone programming (SOCP) [26], and the generalized matrix pencil method [34].
Although these algorithms demonstrate outstanding performance, they are still compu-
tationally expensive and thus not suitable for large-scale arrays. In contrast, DFT-based
sub-band processing has become increasingly popular due to its remarkable computational
efficiency [31,32]. In this approach, the wideband signal is divided into several narrow
sub-bands via DFT. The beams in each sub-band are optimized by imposing group spar-
sity constraints through convex optimization techniques. This method has demonstrated
commendable performance while demanding lower computational requirements than
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TDL-based approaches. However, it requires storing blocked received signals and updating
the weights block by block.

In this paper, we consider the multiband sparse array design for adaptive beamform-
ing, which is partially distinct from existing narrowband and wideband sparse array design.
Since the multiband array works simultaneously at multiple frequencies, it can be consid-
ered as a narrowband array at each frequency. That is to say, the design of a multiband
sparse array is equivalent to the joint design of multiple narrowband sparse arrays with the
same antenna positions. From another perspective, the multiband sparse array design can
be considered as a special case of the DFT-based wideband sparse array design, in which
only partial DFT bins exist. However, the number of DFT bins depends on the bandwidth
of the multiband antenna. Hence, the DFT-based wideband schemes will be inefficient
when the frequency spacing between adjacent operation frequency bands is large enough.
For multiband sparse arrays, ref. [35] utilized the linear Cantor fractal array to construct
a structured sparse multiband array and then offered a Kalman filtering-based adaptive
beamformer. Ref. [31] considered the joint design of antenna selection and adaptive beam-
former by using group sparse regularization. The array has the same antenna position in
all frequencies, while the beamforming weights of each frequency are separately optimized.
However, the SLL control of receive beampattern is not taken into account. Uncontrol-
lable high sidelobes generated at some operating frequencies will reduce the interference
suppression performance, especially when unknown sporadic interference appears.

Based on the above observations, this paper discusses the problem of multiband sparse
array design for adaptive beamforming with SLL control. Concretely, we jointly design
an antenna selection and adaptive beamformer under the maximum SINR criterion and
the SLL constraints. Since it is essential for the antenna positions to be identical in all oper-
ating frequencies, we coin the proposed sparse array design as a nonconvex constrained
nonlinear optimization problem with an l0,2-mixed norm regularization. The proposed
problem is intractable since the objective function and all constraints are nonconvex, and the
beamforming weights of different frequencies are coupled in the objective function. By
employing the reweighted norm transformation and SDR techniques, we construct an itera-
tive reweighted method to solve this problem effectively. With the aid of the reweighted
norm approximation technique, we first equivalently express the original problem as a
series of l1,∞-norm regularized nonconvex constrained optimization subproblems. By using
SDR and linear fractional SDR schemes, we then relax the l1,∞-norm regularized noncon-
vex subproblem to the corresponding convex subproblem, which is tractably resolved by
off-the-shelf toolboxes. Numerical results demonstrate that the proposed method can effec-
tively reduce the SLL across all operating frequencies, thereby enhancing its interference
suppression performance.

The remainder of this paper is organized as follows. Section 2 introduces the sig-
nal model of adaptive beamforming for multiband arrays. Section 3 states the problem
formulation of multiband sparse array design for maximizing the output SINR under
SLL constraints and then provides an SDR-based iterative reweighted solution algorithm.
Section 4 analyzes the computational complexity of the proposed algorithm. Numerical
experiments are conducted in Section 5 to validate the superiority of the optimized multi-
band sparse array. Section 6 provides some discussions regarding the multiband sparse
array design. Concluding remarks follow at the end.

Notations: Throughout this paper, lower-case bold characters and upper-case bold
characters represent vectors and matrices, respectively. (·)T indicates the transpose and (·)H

denotes the conjugate transpose. | · | is the modulus operator. E{·} denotes the statistical
expectation. Tr(·) and Rank(·) stand for the trace and the rank operations, respectively. IN
stands for an N × N identity matrix. W � 0 means that W is positive semi-definite. R{·}
and I{·} represent the real and imaginary parts of the complex variables, respectively.
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2. Signal Model

Assume that the multiband array, consisting of N uniformly spaced multiband antenna
elements, has the capability of receiving narrowband signals belonging to M frequency
bands centered at the frequency ωi (i = 1, · · · , M), respectively. Consider a desired source
operating in the i-th band with the center frequency ωi, while there exist Pi sources of
interference. Both the desired source and interference signals impinge on the N-element
multiband array. The baseband signal received by the multiband array at the frequency ωi
is given by

xωi = αia(θsi , ωi) +
Pi

∑
pi=1

βpi a
(
θpi , ωi

)
+ vi, (1)

where vi ∈ CN is the additive, while Gaussian noises with variance σ2
vi

, αi, βpi ∈ C are
the complex amplitudes of the incident baseband source and the pi-th interference source,
respectively; a(θsi , ωi) and a

(
θpi , ωi

)
are the steering vectors at the frequency ωi with

respect to the desired source with the direction θsi and the interference source with the
direction θpi , which are defined by

a(θsi , ωi) = [1, e
j 2π

λωi
d cos θsi , . . . , e

j 2π
λωi

d(N−1) cos θsi ]T (2)

where d is the element spacing and λωi is the wavelength at the frequency ωi. To prevent
spatial aliasing, we set d = λωm

2 , where ωm is the highest frequency of {ωi}M
i=1. Then the

steering vector a(θsi , ωi) can be simplified as

a(θsi , ωi) = [1, ejπ ωi
ωm cos θsi , . . . , ejπ ωi

ωm (N−1) cos θsi ]T (3)

The received signal xωi is linearly combined by a beamformer at the receiver to
maximize the output SINR. Denote wi = [w1, . . . , wN ]

T ∈ CN as the beamformer weight
vector. Then the output of the beamformer is

ywi = wH
i xwi , i = 1, . . . , M. (4)

Let the adaptive beamformers be used at all frequencies {ωi}M
i=1. Based on the maximum

SINR (maxSINR) criterion, the optimal beamformers of all frequencies are determined by
the following optimization problem:

min
{wi}M

i=1

M

∑
i=1

wH
i Rini wi

s.t. wH
i Rsi wi = 1, ∀i ∈ 1, . . . , M

(5)

where Rsi = σ2
i a(θsi , ωi)aH(θsi , ωi) is the covariance matrix of the desired signal, and

σ2
i = E

{
αiα

H
i
}

is the average power of the source at the i-th frequency. Similarly, Rini =

∑Pi
pi=1

(
σ2

pi
a
(
θpi , ωi

)
aH(θpi , ωi

))
+ σ2

vi
IN is the interference-plus-noise covariance matrix

(INCM), where σ2
pi
= E

{
βpi β

H
pi

}
is the average power of the pi-th interference source at

the i-th frequency.
As for multiband uniform linear arrays, problem (5) can be decomposed into M

independent subproblems. The optimal beamformer at the frequency ωi is obtained
by wopti = P

{
R−1

ini
Rsi

}
according to the principle of minimum variance distortionless

response (MVDR), where the operator P{·} extracts the principal eigenvector of the input
matrix. We then obtain the optimal output SINR operating at the frequency ωi as [36]

SINRopti =
wH

opti
Rsi wopti

wH
opti

Rini wopti

= λmax

{
R−1

ini
Rsi

}
, i = 1, . . . , M, (6)
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where λmax{·} represents the principal eigenvalue of the matrix.

3. Proposed Multiband Sparse Array Design

To reduce the cost and system complexity of multiband arrays, this section addresses
the issue of multiband sparse array design. In the narrowband case, sparse array design
is equivalent to finding the beamforming weight wi, having only K non-zero entries at
the frequency ωi. As for the multiband sparse array design, the non-zero entries of wi
at all frequencies, {ωi}M

i=1, should occupy the same antenna positions. In other word,
the design of sparse beamforming weights, {wi}M

i=1, are mutually coupled and thus cannot
be resolved separately, which is different from that of the multiband uniform array in (6).
On the other hand, the multiband sparse array often results in uncontrollable high sidelobe
levels in some frequencies since all wi have to locate at the same antenna positions, leading
to the DoFs of antenna selection being considerably reduced. The designed beamformer
will be sensitive to unknown sporadic interference in the high SLL region, which degrades
the performance of interference suppression. Therefore, it is necessary to incorporate the
SLL constraints into the multiband sparse array design. Based on these considerations,
this section formulates the problem of multiband sparse array design under the MaxSINR
criterion and SLL constraints and then provides an effective solution algorithm.

3.1. Problem Formulation

To proceed, we define the normalized array power response at the direction θ and the
frequency ωi as

B(θ, θi,0, ωi) ,

∣∣wHa(θ, ωi)
∣∣2

|wHa(θi,0, ωi)|
2 , (7)

where θi,0 is the desired source direction at the frequency ωi; that is, the angle pointing to
the mainlobe. Denote the corresponding sidelobe region as Ωi and discretize Ωi to obtain a
set of angles as {θi,l}, l = 1, · · · , Li. The sidelobe steering vector is then a(θi,l , ωi), and the
normalized array power response at the direction θi,l is [21]

B(θi,l , θi,0, ωi) ,
wHa(θi,l , ωi)aH(θi,l , ωi)w
wHa(θi,0, ωi)aH(θi,0, ωi)w

. (8)

Therefore, SLL constraints at all frequencies, {ωi}M
i=1, can be expressed as

B(θi,l , θi,0, ωi) ≤ δi, ∀i, ∀l, (9)

where δi is the desired SLL at the frequency ωi.
Note that the received multiband signal consists of M sub-bands. The multiband

array correspondingly yields M beamformer weight vectors: w1, w2, . . . , wM. Define the
vector wn = [w1(n), · · · , wi(n), · · · , wM(n)]T ∈ CM, where wi(n) is the n-th component
of wi. That is to say, wn represents the beamforming weights of all M frequencies at the
n-th antenna position. If we avoid the n-th antenna receiving the signal, the vector wn
must be set to 0M. This means that for all M sub-bands, the n-th entry of each wi must
be set to 0 at the same time. To effectively express the selection of K elements from N
multiband antennas, we generate the concatenated vector ŵ , [wT

1 , wT
2 , . . . , wT

M]T ∈ CNM

and define its l0,2-mixed norm as ‖ŵ‖0,2 , |{n : ‖wn‖2 6= 0}| [37]. The requirement on
antenna selection is then expressed as

‖ŵ‖0,2 ≤ K. (10)

Based on the MaxSINR criterion, the proposed multiband sparse array design under
SLL constraints is then formulated into
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min
{wi}M

i=1

M

∑
i=1

wH
i Rini wi

s.t. wH
i Rsi wi ≥ 1, ∀i,

B(θi,l , θi,0, ωi) ≤ δi, ∀i, ∀l,

‖ŵ‖0,2 ≤ K

(11)

In lieu of the sparsity constraint, the mixed l0,2-norm can be used as a penalty term in
the objective function to promote sparsity. Therefore, problem (11) is translated into the
following optimization problem:

min
{wi}M

i=1

M

∑
i=1

wH
i Rini wi + µ‖ŵ‖0,2

s.t. wH
i Rsi wi ≥ 1, ∀i,

wH
i A(θi,l , ωi)wi

wH
i A(θi,0, ωi)wi

≤ δi, ∀i, ∀l,

(12)

where µ is a regularized factor that controls the sparsity of the solution [37] and A(θi,l , ωi) ,
a(θi,l , ωi)aH(θi,l , ωi) for l = 0, 1, · · · , Li.

Unfortunately, solving problem (12) requires exhaustively searching all possible sparse
combinations of ŵ due to the mixed l0,2-norm. Therefore, (12) is a combinational optimiza-
tion problem and cannot be solved in polynomial time [38]. Moreover, the two kinds of
constraints are both nonconvex and thus increase the difficulty of problem solving. To this
end, the following section will provide an SDR-based iterative reweighted method to solve
problem (12) effectively.

3.2. Proposed SDR-Based Iterative Reweighted Algorithm

For the convenience of solving the group-sparse regularized problem, it is usual to
replace the nonconvex l0,2-norm by a convex l1,∞-norm as the group sparsity-inducing
regularization [37], where the l1,∞-norm is defined as ‖ŵ‖1,∞ , ∑N

n=1‖wn‖∞. Furthermore,
we introduce the reweighted vector u = [u(1), u(2), . . . , u(N)]T to enhance the group
sparsity [39], where u(1), u(2), . . . , u(N) are all positive numbers. Moreover, the square
of l1,∞-norm does not change its original sparsity. Given all that, we adopt the squared
reweighted l1,∞-norm (∑N

n=1 u(n)‖wn‖∞)2 in place of ‖ŵ‖0,2, and therefore relax problem
(12) to

min
{wi}M

i=1

M

∑
i=1

wH
i Rini wi + µ(

N

∑
n=1

u(n)‖wn‖∞)2

s.t. wH
i Rsi wi ≥ 1, ∀i,

wH
i A(θl , ωi)wi

wH
i A(θ0, ωi)wi

≤ δi, ∀i, ∀l.

(13)

It can be noticed that the introduction of reweighted vector u to enhance the group
sparsity stems from the original iterative reweighting scheme. As we known, l0-norm is
the natural representation of sparse antenna selection, but the minimization of l0-norm
is NP-hard and it is often relaxed as a l1-norm. According to the iterative reweighting
principle [39], the reweighted l1-norm can well approximate to the l0-norm, and thus has
better sparsity than l1-norm. With the help of reweighting, the contribution of nonzero
entries with large amplitudes is gradually weakened, and the nonzero entries with small
amplitudes therefore can be successfully found. As for problem (13), the reweighted vector
u has the similar ability to improve the group sparsity of l1,∞-norm.



Remote Sens. 2023, 15, 4929 7 of 20

Denote w̃i ,
[
R{wT

i }, I{wT
i }
]T and define the matrices Ã(θi,l , ωi) and R̃ini (R̃si ) as

Ã(θi,l , ωi) ,
[

R
{

A(θi,l , ωi)
}
−I
{

A(θi,l , ωi)
}

I
{

A(θi,l , ωi)
}

R
{

A(θi,l , ωi)
} ]

(14)

and

R̃ini ,
[

R
{

Rini

}
−I
{

Rini

}
I
{

Rini

}
R
{

Rini

} ]
. (15)

Problem (13) can then be rewritten as the following real number form:

min
{w̃i}M

i=1

M

∑
i=1

w̃H
i R̃ini w̃i + µ(

N

∑
n=1

u(n)‖wn‖∞)2

s.t. w̃H
i R̃si w̃i ≥ 1, ∀i,

w̃H
i Ã(θi,l , ωi)w̃i

w̃H
i Ã(θi,0, ωi)w̃i

≤ δi, ∀i, ∀l.

(16)

Due to the existence of non-continuous objective function and nonconvex quadratic or
fractional constraints, it is still difficult to solve problem (16) directly. Therefore, we further
relax (16) by using SDR and linear fractional SDR [21], simultaneously. To this end, we
rewrite the quadratic objective function in (16) as

w̃H
i R̃ini w̃i = Tr(w̃H

i R̃ini w̃i) = Tr(R̃ini W̃i), (17)

where W̃i = w̃iw̃H
i ∈ R2N×2N . Similarly, we relax the linear fractional constraint in (16) to

Tr((Ã(θi,l , ωi)− δiÃ(θi,0, ωi))W̃i) ≤ 0. (18)

Furthermore, we relax the squared reweighted l1,∞-norm by using convex SDP. Denote
U , uuT ∈ RN×N , Wi = wiwH

i ∈ CN×N , and Ŵ , max
i=1,...,M

|Wi| ∈ RN×N . By invoking the

properties of rank relaxation, we can rewrite the squared reweighted l1,∞-norm as [37]

(
N

∑
n=1

u(n)‖wn‖∞)2 =
N

∑
n1=1

N

∑
n2=1

((max
k

u(n1)|wk(n1)|)(max
k

u(n2)|wk(n2)|))

=
N

∑
n1=1

N

∑
n2=1

u(n1)u(n2) max
i∈{1,...,M}

|Wi(n1, n2)|

=
N

∑
n1=1

N

∑
n2=1

U(n1, n2)Ŵ(n1, n2)

=Tr(UŴ).

(19)

Since Ŵ is a real matrix, we can deduce that matrices Ŵ and Wi satisfy the element-
wise inequality as

|Wi| ≤ Ŵ, i = 1, . . . , M, (20)

which is specifically expressed as

‖
√
−1(−W̃i(p, N + q) + W̃i(N + p, q)) + W̃i(p, q) + W̃i(N + p, N + q)‖2 ≤ Ŵ(p, q) (21)

After the above relaxation process, problem (16) is converted into
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min
{W̃i}M

i=1,Ŵ

M

∑
i=1

Tr(R̃ini W̃i) + µ Tr(UrŴ)

s.t. Tr(R̃si W̃i) ≥ 1, ∀i,

Tr((Ã(θi,l , wi)− δiÃ(θi,0, wi))W̃i) ≤ 0, ∀i, ∀l,

W̃i � 0, ∀i,

‖
√
−1(−W̃i(p, N + q) + W̃i(N + p, q))+

W̃i(p, q) + W̃i(N + p, N + q)‖2 ≤ Ŵ(p, q),

∀p, q ∈ 1, . . . , N, ∀i,

(22)

where the nonconvex constraints Rank(W̃i) = 1 are discarded in the process of convex
relaxation [40]. The superscript r of U represents the r-th reweighted iteration, and the
iterative update formula of U is [39]

Ur(p, q) =
1

|Ŵr−1(p, q)|+ ε
(23)

where ε is a small positive number.
By iteratively solving problem (22), we finally obtain the desired weight matrices

W̃i ∈ R2N×2N , i ∈ 1, . . . , M. The principal eigenvector w̃i is then extracted from W̃i,
i.e., w̃i = P{W̃i}. Ultimately, we restore the multiband beamforming vectors by

wi = [IN jIN ]w̃i, i = 1, . . . , M. (24)

For clarity, we summarize the proposed multiband sparse array design method in Algorithm 1.

Algorithm 1 Multiband Sparse Array Design with Sidelobe Level Control

Input: N,K,δi, ε, µmin, µmax.
Initialization: Set r = 0, U0 is an N × N all-one matrix.

1: while ‖ŵ‖0,2 6= K do
2: Obtain W̃r+1

1 · · · W̃r+1
i · · · W̃r+1

M , Ŵr+1 using (22);
3: Obtain wr+1

1 · · ·wr+1
i · · ·wr+1

M using (24);
4: Obtain Ur+1 using (23);
5: Update the value of µ by the binary search approach;
6: r = r + 1;
7: end while

Output: Multiband beamforming weights w1, w2, · · · , wM.

4. Analysis of Computational Complexity

This section analyses the computational complexity of the proposed algorithm. It is
obvious that the computational complexity is primarily determined by solving the problem
(22). For the problem (22), we use the off-the-shelf toolboxes, such as CVX, to effectively find
the optimal solution, where the interior point method is invoked. Following [37], the worst-
case complexity order of the problem (22) remains the same as the problem without antenna
selection, which is only solving the variables {W̃i}M

i=1. Therefore, the problem without the
antenna selection has M matrix variables of size 2N× 2N, and (M + ML) linear constraints.
The interior point method will take O(

√
MN log(1/ε)) iterations, where ε stands for the

accuracy of the solution at the algorithm’s termination, and each iteration requiring at most
O(M3N6 + LM2N2 + M2N2) arithmetic operations [41]. Therefore, the overall worst-case
complexity of the proposed algorithm is O(M3.5N6.5 + LM2.5N2.5 + M2.5N2.5) log(1/ε).
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5. Numerical Results

In this section, we evaluate the effectiveness of the proposed method for multiband
sparse array design by several numerical experiments. We compare it with other typical
algorithms in [21,31]. Specifically, Zheng considered the design of narrowband sparse
arrays working at a single frequency under SLL constraint in [21], while Hamza designed a
multiband sparse array without SLL control in [31]. It is worth pointing out that Zheng’s
and Hamza’s methods cannot tackle the proposed problem (12) since Zheng’s method is
only applicable to the single frequency sparse array design while Hamza’s method has
no capability of controlling SLL. We only design several different single frequency sparse
arrays by using Zheng’s method and a multiband sparse array without SLL control by
using Hamza’s method as a benchmark. In fact, the proposed problem has less DoFs than
Zheng’s and Hamza’s problems since it is limited by more constraints. In comparison
with the proposed problem, Zheng’s problem does not impose restrictions on the sparse
weights of all single frequency arrays locating at the same antenna location, while Hamza’s
problem has no constraint on the SLLs. Therefore, from the perspective of system DoFs,
the performance of the proposed problem would naturally not exceed those of Zheng’s
and Hamza’s problems. However, thanks to the adopted solving scheme, the performance
of the proposed method may be close to or even better than that of Zheng’s method or
Hamza’s method, which is displayed in the following experiments.

In the experiments, the multiband array has the capability of effectively working
at M = 4 frequencies, ω1 = ωM, ω2 = 0.972ωM, ω3 = 0.944ωM, and ω4 = 0.931ωM,
respectively, where the maximum frequency is ωM = 3.6 GHz, which is commonly used in
5G communications and emerging integrated sensing and communication systems. We
select K = 20 antennas from a uniform linear array with N = 26 locations. For the proposed
algorithm, we set µ = 0.01, ε = 5× 10−4, and δi = −20 dB for all four frequencies. We
assume the desired source is located at the direction 80◦ and three interference sources are
located at the directions 10◦, 120◦, and 140◦, respectively. The SNR of the desired source is
0dB and the INR of each interference source is 40dB.

5.1. Beamforming with Multiple Interferences at the Same Desired DOA

Since Zheng’s method can only design a narrowband sparse array working at a single
frequency, four optimal narrowband sparse arrays are independently designed at different
frequencies, which are provided in Figure 1a–d. On the contrary, Hamza’s method provides
a multiband sparse array directly, and its optimal sparse array is shown in Figure 1e. The
multiband sparse array obtained by the proposed method is illustrated in Figure 1f. As
seen in Figure 2, all three methods form deep nulls at the directions of three interference
sources, and thus effectively suppress the interference. Due to the lack of consideration
for the sidelobe suppression in Hamza’s method, its SLL is significantly higher than that
in Zheng’s method and the proposed one. The proposed method has almost the same
SLLs as Zheng’s method. That is to say, compared with Hamza’s method, the proposed
method and Zheng’s method will be less sensitive to unknown sporadic interference and
thus have superior capability of interference suppression. The null depths of all three
methods at each frequency are shown in Table 1. In general, we find that the proposed
method has a weakly shallower null than Zheng’s and Hamza’s methods, but it is still
deep enough to effectively suppress the interferences. From Table 2, we observe that
the proposed method has better output SINRs performance than Hamza’s method and
is slightly inferior to Zheng’s method. It is worth pointing out that Zheng’s method is
actually the performance upper bound of the multiband sparse array design because it is
not constrained by the consistency of antenna locations at each frequency and thus owns
more DoFs of antenna selection.
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10 141 8 9 11 12 13 15 16 17 18 19 20 21 22 23 24 25 262 3 4 5 6 7

10 141 8 9 11 12 13 15 16 17 18 19 20 21 22 23 24 25 262 3 4 5 6 7

Figure 1. Sparse array configurations for the experiment 5.1, N = 26, K = 20. (a) Zheng’s method for
ω1. (b) Zheng’s method for ω2. (c) Zheng’s method for ω3. (d) Zheng’s method for ω4. (e) Hamza’s
method. (f) Proposed method. (Dots mean selected antennas while crosses mean discarded antennas).

Table 1. Null depths (dB) of the three methods at each frequency for the experiment 5.1.

Hamza’s method

Interference
Frequency

ω1 ω2 ω3 ω4

10◦ −83.60 −83.60 −83.22 −77.56
120◦ −74.35 −74.35 −75.84 −74.58
140◦ −87.38 −87.38 −88.64 −82.39

Zheng’s method

Interference
Frequency

ω1 ω2 ω3 ω4

10◦ −80.88 −75.81 −74.66 −78.79
120◦ −79.05 −78.02 −81.36 −84.77
140◦ −82.02 −82.50 −77.95 −82.41

Proposed method

Interference
Frequency

ω1 ω2 ω3 ω4

10◦ −79.33 −62.62 −84.10 −72.68
120◦ −76.67 −61.02 −79.84 −68.79
140◦ −75.59 −59.63 −78.29 −66.52

Table 2. Output SINR (dB) of the three methods at each frequency for the experiment 5.1.

Frequency ω1 ω2 ω3 ω4

Hamza’s method 11.22 11.74 11.55 11.20
Zheng’s method 11.93 13.07 12.59 12.17

Proposed 11.78 10.34 12.07 11.77
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Figure 2. Normalized receive beampatterns of sparse arrays in Figure 1a–f at four different frequencies.
(a) ω1. (b) ω2. (c) ω3. (d) ω4.
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5.2. Beamforming with Multiple Interferences at the Distinct Desired DOAs

In multi-functional communication or radar systems, we also need to receive the
desired signals in each frequency band with different DOAs, such as multi-user com-
munications and multiband radars. In this experiment, we therefore set the mainlobe
of each frequency with distinct DOAs. From ω1 to ω4, the desired directions are set
sequentially as 70◦, 75◦, 80◦, and 85◦, while the sidelobes are correspondingly set as
ΘSL,1 = [0◦, 62◦] ∪ [78◦, 180◦], ΘSL,2 = [0◦, 67◦] ∪ [83◦, 180◦], ΘSL,3 = [0◦, 72◦] ∪ [88◦, 180◦],
and ΘSL,4 = [0◦, 77◦] ∪ [93◦, 180◦]. The other parameters are set to be the same as in
Section 5.1. The antenna selection results are shown in Figure 3, the normalized receive
beampatterns of sparse arrays are displayed in Figure 4, and the null depths at each fre-
quency are shown in Table 3. It can be observed from Figure 4 that the mainlobe always
points to the desired directions for all three methods, and all three methods form deep
null in the preset directions of interference sources. From Table 3, we observe that the
proposed method yields almost the same null depths as Zheng’s and Hamza’s methods at
each frequency. From Table 4, we can see that the proposed method achieves higher SINRs
than Hamza’s method, even though Hamza’s method did not consider the SLL control.
The output SINRs of the proposed method are still close to that offered by Zheng’s method.
These results reveal that the proposed method is an efficient method for multiband sparse
array design.

Table 3. Null depths (dB) of the three methods at each frequency for the experiment 5.2.

Hamza’s method

Interference
Frequency

ω1 ω2 ω3 ω4

10◦ −74.14 −84.16 −77.44 −77.22
120◦ −79.17 −90.14 −87.49 −89.83
140◦ −77.55 −77.62 −79.92 −80.79

Zheng’s method

Interference
Frequency

ω1 ω2 ω3 ω4

10◦ −76.50 −80.15 −83.78 −85.28
120◦ −74.86 −87.93 −82.38 −77.31
140◦ −77.27 −76.28 −76.92 −90.73

Proposed method

Interference
Frequency

ω1 ω2 ω3 ω4

10◦ −81.45 −71.98 −77.27 −75.81
120◦ −86.18 −74.81 −78.34 −93.93
140◦ −82.68 −80.69 −79.41 −78.29

Table 4. Output SINR (dB) of the three methods at each frequency for the experiment 5.2.

Frequency ω1 ω2 ω3 ω4

Hamza’s method 11.21 11.28 11.01 11.15
Zheng’s method 12.54 12.33 12.53 11.97

Proposed 12.09 12.11 12.22 11.59
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Figure 3. Sparse array configurations for the experiment 5.2, N = 26, K = 20. (a) Zheng’s method for
ω1. (b) Zheng’s method for ω2. (c) Zheng’s method for ω3. (d) Zheng’s method for ω4. (e) Hamza’s
method. (f) Proposed method. (Dots mean selected antennas while crosses mean discarded antennas).
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Figure 4. Normalized receive beampatterns of sparse arrays in Figure 3a–f at four different frequencies.
(a) ω1. (b) ω2. (c) ω3. (d) ω4.

5.3. Nulling Forming at the Same Desired DOA

In real applications, it is often required to generate a deep null region to enhance
anti-interference performance at preset directions. In this experiment, we replace the
interference source at 120◦ by the null region in [120◦, 126◦] with a null depth of −40 dB.
As Hamza’s method cannot work in this case, we only demonstrate the results of Zheng’s
method and the proposed method. The optimum sparse array configurations are presented
in Figure 5. Based on these arrays, Figure 6a–d shows the beampatterns of null forming
at the frequencies ω1, ω2, ω3, and ω4, separately. Table 5 provides the null depths of
Zheng’s and the proposed method at each frequency. It can be seen that both the proposed
and Zheng’s methods can form a deep null within the preset region [120◦, 126◦] and the
interference directions 10◦ and 140◦. Surprisingly, the proposed method generally has
lower SLLs than Zheng’s method in the whole sidelobe region. As seen from Table 6,
the output SINRs of the proposed method are also close to that of Zheng’s method at all
frequencies, even though the constraints become stringent, which further validates the
efficiency of the proposed method.

5.4. Nulling Anti-Interference Performance

In order to verify the interference suppression performance of the deep null in the
proposed method and Zheng’s method, we add an interference source at the angle direction
122◦ or 124◦ in the null region, respectively. With the same parameters as in Section 5.3,
the INR of this interference source varies from 0 dB to 40 dB, and the variation of the output
SINRs are respectively shown in Figure 7a,b. It can be observed from Figure 7 that after
adding an interference source into the null region, the SINR does not change greatly as
a whole compared with the null region without an interference source. We can conclude
that the increasing INR of the interference source has a weak effect on the output SINR,
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which means that both the proposed method and Zheng’s method have the capability of
suppressing interference effectively in the null region.

(b)

(a)

(c)

(d)

(e)

10 141 8 9 11 12 13 15 16 17 18 19 20 21 22 23 24 25 262 3 4 5 6 7 10 141 8 9 11 12 13 15 16 17 18 19 20 21 22 23 24 25 262 3 4 5 6 7

10 141 8 9 11 12 13 15 16 17 18 19 20 21 22 23 24 25 262 3 4 5 6 7 10 141 8 9 11 12 13 15 16 17 18 19 20 21 22 23 24 25 262 3 4 5 6 7

10 141 8 9 11 12 13 15 16 17 18 19 20 21 22 23 24 25 262 3 4 5 6 7 10 141 8 9 11 12 13 15 16 17 18 19 20 21 22 23 24 25 262 3 4 5 6 7

10 141 8 9 11 12 13 15 16 17 18 19 20 21 22 23 24 25 262 3 4 5 6 7 10 141 8 9 11 12 13 15 16 17 18 19 20 21 22 23 24 25 262 3 4 5 6 7

10 141 8 9 11 12 13 15 16 17 18 19 20 21 22 23 24 25 262 3 4 5 6 7 10 141 8 9 11 12 13 15 16 17 18 19 20 21 22 23 24 25 262 3 4 5 6 7

(b)

(a)

(c)

(d)

(e)

10 141 8 9 11 12 13 15 16 17 18 19 20 21 22 23 24 25 262 3 4 5 6 7

10 141 8 9 11 12 13 15 16 17 18 19 20 21 22 23 24 25 262 3 4 5 6 7

10 141 8 9 11 12 13 15 16 17 18 19 20 21 22 23 24 25 262 3 4 5 6 7

10 141 8 9 11 12 13 15 16 17 18 19 20 21 22 23 24 25 262 3 4 5 6 7

10 141 8 9 11 12 13 15 16 17 18 19 20 21 22 23 24 25 262 3 4 5 6 7

Figure 5. Sparse array configurations for the experiment 5.3, N = 26, K = 20. (a) Zheng’s method for
ω1. (b) Zheng’s method for ω2. (c) Zheng’s method for ω3. (d) Zheng’s method for ω4. (e) Proposed
method. (Dots mean selected antennas while crosses mean discarded antennas).
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Figure 6. Normalized receive beampatterns of sparse arrays in Figure 5a–e at four different frequencies.
(a) ω1. (b) ω2. (c) ω3. (d) ω4.

Table 5. Null depths (dB) of Zheng’s and proposed methods at each frequency for the experiment 5.3.

Zheng’s method

Interference
Frequency

ω1 ω2 ω3 ω4

10◦ −78.00 −70.18 −79.79 −83.28
140◦ −85.39 −80.60 −70.88 −76.77

Proposed method

Interference
Frequency

ω1 ω2 ω3 ω4

10◦ −89.98 −77.42 −78.29 −77.00
140◦ −85.42 −75.73 −78.98 −75.90

Table 6. Output SINR (dB) of Zheng’s and proposed methods at each frequency for the experiment 5.3.

Frequency ω1 ω2 ω3 ω4

Zheng’s method 12.43 12.35 11.97 12.11
Proposed 12.31 11.78 11.71 12.07
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Figure 7. The output SINR with a varied interference in the nulling. (a) an interference source at 122◦.
(b) an interference source at 124◦.

6. Discussion

Traditional sparse array designs for adaptive beamforming are usually discussed
in the narrowband case or the wideband case. The multiband sparse array design is an
emerging topic due to the rapid development of multi-functional communication and radar
systems. Different from narrowband and wideband sparse arrays, the multiband sparse
array has some unique characteristics, such as a large frequency gap between two adjacent
operating frequencies and different desired source and/or interference directions at each
operating frequency. Due to the group sparse regularization of beamforming weights at
all operating frequencies, there exists a strong mutual coupling among all beamforming
weights, and the objective function or constraints are necessarily nonconvex. On the other
hand, the maximum SINR criterion often yields nonconvex quadratic equality constraints
to fix the gain of desired directions at each operating frequency. Moreover, if we consider
the SLL control, the SLL constraints are also nonconvex because they are the fractional
quadratic functions of the beamforming weights. Therefore, the multiband sparse array
design is commonly formulated into a complicated nonconvex constrained optimization
problem, and its essence is how to effectively solving this problem.

This paper mainly employs several different kinds of convex relaxation techniques
to tackle the problem (12), even though it uses the iterative reweighting scheme to pro-
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mote the group sparse performance. From the perspective of optimization, the relaxation
of constraints means that the constraints become more strict and thus the feasible set
correspondingly becomes smaller. Therefore, the optimized sparse array of (22) is not
necessarily the optimal sparse array of problem (12). Actually, SDR is a somewhat overly
strict relaxation technique. To improve the performance of multiband sparse array design,
we should utilize other loose relaxation techniques, such as SCA, the convex–concave
procedure, and majorization–minimization, or we should handle problem (12) directly
by using prevalent nonconvex optimization approaches, involving ADMM, quadratically
constrained quadratic programming, and proximal operator algorithms.

7. Conclusions

This paper provided a multiband spare array design method for adaptive receive
beamforming with SLL control. With the maximum SINR criterion and SLL constraints,
we formulated the proposed joint design of antenna selection and adaptive beamformer
as a group sparsity-regularized nonconvex constrained optimization problem. To deal
with this intractable problem, we first translated the l0,2-mixed norm regularization into
a series of reweighted l1,∞-norm regularizations by employing the iterative reweighting
technique. We then converted the l1,∞-norm regularized nonconvex optimization problem
into the corresponding convex problem by using SDR and linear fractional SDR schemes.
With the assistance of the iterative reweighting and SDR, we established the proposed
SDR-based iterative reweighted algorithm. We also analyzed the computational complexity
of the proposed algorithm. The numerical results verified that the proposed sparse array
substantially reduces the SLL in all operating frequencies while maintaining the maximum
output SINR performance at the same time, and its performance is approximate to the
optimal sparse array designed separately at each frequency.
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The following abbreviations are used in this manuscript:

SINR Signal-to-interference-and-noise ratio
DOA Direction-of-arrival
DoF Degree-of-freedom
SDR Semi-definite relaxation
SCA Sequential convex approximation
ADMM Alternating direction method of multipliers
DNN Deep neural network
TDL Tapped delay line
DFT Discrete Fourier transform
FI Frequency-invariant
SOCP Second-order cone programming
SLL Sidelobe level
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