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Abstract: Precise object detection for unmanned aerial vehicle (UAV) images is a prerequisite for
many UAV image applications. Compared with natural scene images, UAV images often have many
small objects with few image pixels. These small objects are often obscured, densely distributed, or in
complex scenes, which causes great interference to object detection. Aiming to solve this problem, a
GhostConv-based lightweight YOLO network (GCL-YOLO) is proposed. In the proposed network, a
GhostConv-based backbone network with a few parameters was firstly built. Then, a new predic-
tion head for UAV small objects was designed, and the original prediction head for large natural
scene objects was removed. Finally, the focal-efficient intersection over union (Focal-EIOU) loss was
used as the localization loss. The experimental results of the VisDrone-DET2021 dataset and the
UAVDT dataset showed that, compared with the YOLOvV5-S network, the mean average precision at
IOU = 0.5 achieved by the proposed GCL-YOLO-S network was improved by 6.9% and 1.8%, respec-
tively, while the parameter amount and the calculation amount were reduced by 76.7% and 32.3%,
respectively. Compared with some excellent lightweight networks, the proposed network achieved
the highest and second-highest detection accuracy on the two datasets with the smallest parameter

amount and a medium calculation amount, respectively.

Keywords: unmanned aerial vehicle (UAV); small object detection; lightweight network; efficient
network; YOLO; GhostConv

1. Introduction

Unmanned aerial vehicles (UAVs) equipped with optical remote sensing cameras have
the characteristics of simple operation, low cost, and few restrictions. They can easily
collect low-altitude remote sensing images, and they have been widely used in many fields,
such as smart cities [1], post-disaster rescue [2], agricultural monitoring [3], and traffic
management [4]. At present, with the rapid development of UAVs and optical cameras,
object details captured in UAV images are becoming more and more abundant, which
places higher requirements on the understanding and interpretation of UAV images. As a
key technology, the object detection of UAV images is a prerequisite for many subsequent
vision tasks, such as object tracking and object positioning. Therefore, there exists an
important research significance and application value in studying object detection from
UAV images.

At present, most UAV object detection methods are migrated from computer vision,
such as the famous you only look once (YOLO) network. The version of the YOLO network
has been updated from 1.0 to 8.0, and many impressive results have been obtained using
the YOLO network. However, the YOLO network was mainly proposed and used for object
detection in natural scene images rather than UAV images. For natural scene images, such
as the MS COCO [5] and Pascal VOC datasets [6], the scene contents are generally simple;
thus, the objects can be easily detected. Compared with natural scene images, UAV images,
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such as the VisDrone-DET2021 [7] dataset and the UAVDT [8] dataset, often have more
complex scene contents, and object detection becomes more difficult. It is not appropriate
to directly apply the YOLO network to detect objects in UAV images.

Generally, UAV platforms often have limited real-time computing and storage re-
sources. Therefore, a lightweight small object detection network that can achieve a good
detection accuracy for UAV images is often pursued in actual applications. Additionally,
the application of the YOLO network to UAV object detection faces the following problems:
First, as is shown in Figure 1a, due to variations in UAV flight altitudes and attitudes,
objects may appear at different viewpoints and scales, resulting in many small objects
and different features being displayed. Second, as is shown in Figure 1b, differences in
imaging angles and image coverage areas, as well as the presence of obstacles, increase
the complexity of UAV image scenes. Third, UAVs may be affected by wind, vibrations,
exposure, and other factors during flight, resulting in blurred or distorted images, as shown
in Figure 1c. These problems make UAV object detection very difficult. In practice, the
difficulty in detecting UAV small objects comes mainly from the small number of pixels
occupied by these objects. As a result, small object detection frame bias has a much larger
impact on the detection results than large object detection frame bias.

Figure 1. Examples for (a) object scale variations, (b) complex scenes, and (c) blurred images in
UAYV images.

Aiming at solving the above problems, a GhostConv-based lightweight YOLO (GCL-
YOLO) network for small object detection in UAV images is proposed in this study. The
proposed GCL-YOLO network is derived from the YOLOvV5 network, and the structure
of each part in the YOLOV5 network is analyzed and redesigned. As in the case of the
YOLOVS5 network, the proposed GCL-YOLO network introduced a width coefficient and a
depth coefficient, and it could also be categorized into four networks (i.e., GCL-YOLO-N,
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GCL-YOLO-S, GCL-YOLO-M, and GCL-YOLO-L) to meet the requirements of UAV object
detection in different applications. The experimental results on the VisDrone-DET2021
dataset show that, compared with other excellent lightweight networks, the proposed
GCL-YOLO-S network achieved the highest detection accuracy with the smallest param-
eter amount and a medium calculation amount, as shown in Figure 2. Additionally, the
proposed network achieved the second-highest detection accuracy on the UAVDT dataset.
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Figure 2. (a) Object detection accuracy versus parameter amount and (b) object detection accuracy

versus calculation amount in different networks.

The main contributions of this paper can be summarized as follows:

1. A GhostConv-based backbone network is proposed. Compared with the CSP-Dark-
net53 used by the YOLOV5 network, the proposed network can reduce the amount of
network parameters by half without losing the object detection accuracy.

2. The feature fusion network in the YOLOvV5 network is reconstructed. A shallow
feature fusion layer and a new object prediction head are added to precisely predict
the location of high-density small objects. Meanwhile, the prediction head for large
objects is removed to further reduce the amount of network parameters.

3. Alightweight network for UAV small object detection is proposed. Compared with
some lightweight networks, the proposed GCL-YOLO-5 network can achieve a bet-
ter object detection accuracy with the smallest parameter amount and a medium
calculation amount.

The remainder of this paper is organized as follows: Section 2 reviews related work
on the YOLO network, detection methods for UAV small objects, and lightweight neural
networks. Section 3 details the proposed GCL-YOLO network. Section 4 describes the
use of the VisDrone-DET2021 dataset to analyze the feasibility and effectiveness of the
proposed GCL-YOLO network. Section 5 describes the conclusions.

2. Related Work

At present, deep-learning-based detection methods have become the most popular
object detection methods for optical images. With the rapid development of deep learn-
ing, the object detection methods based on convolutional neural networks (CNNs) have
achieved many impressive results. As a representative one-stage object detection method,
the YOLO network has attracted more and more attention. In order to apply the YOLO
network for UAV small object detection successfully, many researchers have conducted a
considerable amount of research. Related studies are summarized in the following.
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2.1. YOLO Networks

In its early days, object detection research was mainly focused on two-stage networks.
Such networks searched regions of interest through a region proposal network (RPN);
then, an object classification and an anchor box prediction were performed. Although such
two-stage networks could achieve good object detection results, they were often bloated
and inefficient due to the use of RPNs.

In 2016, Joseph et al. [9] proposed a full convolutional neural network, YOLOv1. The
YOLOV1 network transformed the object detection task into a regression problem, and it
could achieve a high detection accuracy with an ultra-fast detection speed. The structure
of the YOLOV1 network consisted of three parts: backbone network, neck, and prediction
head. Compared with the conventional two-stage networks, the YOLOv1 network was an
end-to-end and one-stage network. Since the YOLOv1 network was proposed, the one-
stage object detection methods have attracted more and more attention. Many researchers
tried to optimize the YOLOv1 network and proposed several versions of the YOLO
network [10-14]. Generally, these proposed YOLO networks achieved great breakthroughs
in terms of both detection accuracy and detection speed.

At present, the YOLO network has become a very popular object detection network
in both industry and academia because of its real-time performance and high detection
accuracy. Benefitting from the researchers’ constant attention, the version of the YOLO net-
work was updated from 1.0 to 8.0. Considering the detection accuracy, the detection speed,
and the network size comprehensively, the YOLOvV5 network was more representative
and more popular compared with other versions. In the YOLOvV5 network, CSPDarknet53
was taken as the backbone network and a path aggregation network (PAN) was taken
as the feature fusion module. Optimization modules (e.g., SPPF) and data augmentation
modules (e.g., mosaic augmentation) were used, and the detection performance of the
YOLOV5 network was thereby greatly improved. Meanwhile, a scale factor was designed
to adjust the YOLOvV5 network into several networks of different network sizes; thus, that
the YOLOVS5 network could be better used in different applications.

2.2. UAV Small Object Detection

In the field of UAV small object detection, many researchers introduced deep-learning-
based detection methods to improve the detection effect of UAV small objects.

UAYV images often have the problem of an imbalanced distribution of small objects,
such as densely presented small objects (e.g., crowds). There may be a large number of small
object instances in some images, while there may be only a small number or even none in
other images, which is the reason for the reduction in the diversity of small object locations.
To address these problems, Kisantal et al. [15] proposed a data augmentation method for
small object detection. In the proposed method, small objects were copied and pasted sev-
eral times to increase the diversity of small object locations. The imbalanced distribution of
small objects could therefore be eliminated, and an effective accuracy improvement in small
object detection was achieved. However, such data augmentation required segmentation
annotations and was not suitable for all datasets. Bosquet et al. [16] proposed another data
augmentation method called the downsampling generative adversarial network (DS-GAN).
The proposed DS-GAN combined a GAN-based object generator with the techniques of
object segmentation, image inpainting, and image blending to produce high-quality syn-
thetic data. Due to the introduction of a vast number of computations and parameters, the
inference speed of the DS-GAN was seriously decreased. Aiming to solve the problem of
the features of small objects being easy to lose and difficult to be expressed, Ma et al. [17]
proposed an end-to-end and scale-aware feature split-merge—enhancement network (SME-
Net). The SME-Net eliminated salient information and suppressed background noise to
highlight the features of small objects in low-level feature maps.

In order to effectively improve the detection effect of small objects in UAV images,
Zhu et al. [18] integrated the transformer prediction heads (TPHs) and the convolutional
block attention model into the YOLOv5 network and proposed a TPH-YOLOV5 network.
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Based on the YOLOv3 network, Sun et al. [19] proposed a new real-time small object
detection (RSOD) method in UAV-based traffic monitoring. Li et al. [20] investigated the
image cropping strategy and proposed a density-map-guided object detection network
(DMNet). The DMNet fully utilized the spatial and contextual information between objects
to improve the detection performance. Based on the YOLOv4 network, Liu et al. [21]
used the MobileNet as the backbone network and proposed an improved lightweight
MYOLO-lite network. In the proposed network, the number of network parameters and
the calculation complexity were effectively reduced in order to meet the speed requirements
of UAV object detection in practical applications. Zhang et al. [22] developed a UAV object
detection network called SlimYOLOV3 by pruning the YOLOv3 network. The detection
speed of the SimYOLOv3 network was twice as fast as that of the YOLOv3 network.
Generally, the above detection methods could achieve good results in terms of the
detection accuracy, the detection speed, or the network size. However, in order to better
meet the application requirements of UAV object detection, we should further improve the
detection accuracy, increase the detection speed, and optimize the network size.

2.3. Lightweight Neural Networks

To achieve better feature extraction results, the existing neural networks often require
a large number of parameters and calculations. Accordingly, the structures of these large
networks are very complicated. Due to the limitation of computational resources, it is
difficult to use such large and complicated networks on UAV platforms. Therefore, a series
of previous studies have been devoted to designing lightweight networks to achieve a
better trade-off between speed and accuracy.

MobileNet, ShuffleNet, and GhostNet are three series of representative lightweight
neural networks. In the MobileNet series [23-25], a deep separable convolution (DSConv)
module was proposed to decompose the standard convolution into a depthwise convolu-
tion and a pointwise convolution. Consequently, the number of network parameters was
significantly reduced. In the ShuffleNet series [26,27], a DSConv -based group convolution
module and channel shuffling module were added, and four principles for designing
lightweight networks were proposed. Additionally, a channel split structure was intro-
duced, in which the add operation was replaced with a join operation. The number of
network parameters was then reduced. Aiming to improve upon the large number of
redundant features, a GhostConv module was proposed in the GhostNet series [28,29]. The
GhostConv module only performed depth-separable convolution on half of the channels
and then stitched original feature channels to improve the utilization of redundant features.
An attractive advantage of the GhostNet was that an excellent feature extraction result
could be achieved, while the number of parameters could be greatly reduced. Benefiting
from such an advantage, GhostNet attracted more and more attention.

3. Proposed Network
3.1. Overview of the Proposed Network

The GCL-YOLO network is a lightweight and high-performance detection network
that was built based on the GhostConv. The network structure is shown in Figure 3. As in
the case of the YOLOV5 network, the GCL-YOLO network can also be differentiated into
GCL-YOLO-N, GCL-YOLO-S, GCL-YOLO-M, and GCL-YOLO-L networks by changing the
channel width coefficient and the depth coefficient, as shown in Table 1; thus, the detection
requirements of different UAV applications can be met.
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Figure 3. Structure of the GCL-YOLO network. The G-ELAG3 module represents a combined module
of the G-Bneck2 module and the ELAG3 module. The backbone network outputs feature maps C2,
C3, C4, and C5, whose number of channels are 128, 256, 512, and 512, respectively. The neck is an
efficient layer aggregation and path aggregation network (ELA-PAN), whose inputs are four feature
maps and outputs are three feature maps. The number of channels of three feature maps is 128, 256,
and 512, respectively, and the downsampling rate is 4, 8, and 16, respectively. Note that the channel
number of C5 is adjusted to 512 and is consistent with that of C4.

Table 1. Specifications of the different GCL-YOLO networks.

Number of Feature

Network @ B Channels
GCL-YOLO-N 0.33 0.25 (32, 64, 128)
GCL-YOLO-S 0.33 0.50 (64, 128, 256)
GCL-YOLO-M 0.67 0.75 (96, 192, 384)
GCL-YOLO-L 1.00 1.00 (128, 256, 512)

Note: The network size is adjusted according to width multiplier & and depth multiplier 3. Number of feature
channels denotes the number of feature channels of prediction heads P2, P3, and P4.

In terms of the GCL-YOLO network structure, large changes were made to the back-
bone network, the neck, and the prediction head of the YOLOvV5 network in order to
improve the detection results of UAV small objects. Firstly, a GhostConv-based backbone
network with fewer parameters was built. Secondly, a lightweight neck was designed.
Finally, the Focal-EIOU loss was introduced into the prediction head.

3.2. GhostConv-Based Backbone Network

In the YOLOV5 network, the CSP-Darknet53 was used as the backbone. Although the
cross-stage partial (CSP) module can reduce the number of network parameters to a certain
extent, the network size is still too large for the application of UAV object detection.

For the compression and pruning of deep learning networks, many studies have
showed that the feature maps generated by many mainstream CNNs often contain consid-
erable redundant features, and some of these features are similar to each other. Based on
this situation, GhostNet assumes that redundant features in feature maps are the key to
the good detection results achieved by some neural networks; then, a GhostConv module
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was proposed, as shown in Figure 4. Compared with conventional convolution modules,
the GhostConv module uses half of the feature channels for 5 x 5 DSConv to expand the
receptive field at one time. Then, the other half of the feature channels are spliced to reuse
the original features. Benefiting from these cheap operations, more redundant feature maps
are generated and better detection results can be achieved by GhostNet.

input output

Identity

1x1Conv

—

5x5 DSConv

Figure 4. Structure of the GhostConv module.

Inspired by this advantage, the GhostConv module was introduced into the YOLOv5
network to reduce the parameter and calculation amounts in this study. As it is shown in
Figure 4, the GhostConv module uses half of the features for convolution and then connects
them with the original features, which aims to create redundant features and reduce the
parameter and calculation amounts. However, the main purpose of the backbone network
is to extract richer features. Directly replacing the convolution modules in the YOLOvV5
network with the GhostConv modules inevitably leads to a performance degradation,
due to only half of the features being used in the GhostConv modules. In order to solve
this problem, a ghost bottleneck with stride = 1 (G-Bneck1) and a ghost bottleneck with
stride = 2 (G-Bneck2) were designed. Then, an efficient layer aggregation ghost bottleneck
with a 3 convolutions (ELAG3) module was proposed to replace the CSP-Bottleneck module
in the YOLOVS5 network, in order to reduce the parameter and calculation amounts with
little performance loss. Additionally, a GhostConv-based fast spatial pyramid pooling
(GSPPF) module was proposed to reduce the number of network parameters. With the
help of the redesigned ghost bottleneck, the ELAG3 module, and the GSPPF module, a
GhostConv-based backbone network with fewer parameters was built.

Ghost Bottleneck. In order to achieve an expansion and squeeze effect in the GCL-
YOLO network, two different ghost bottleneck structures were designed according to the
locations where the ghost bottleneck is used. The G-Bneckl was used as a feature extrac-
tion layer, as shown in Figure 5a; the bottleneck structure was used and the number of
intermediate channels was halved to reduce the number of parameters, just as in the case
of the bottleneck structure in the YOLOvV5 network. In Figure 5a, the first GhostConv was
used to compress the number of channels, reduce the parameter amount, and reduce the
influence of high-frequency noises. The second GhostConv was used to restore the number
of channels. The original features were then added through a residual connection operation
to supplement the information loss caused by the channel compression. Generally, such a
bottleneck structure is conducive to reducing the parameter amount with little informa-
tion loss. The G-Bneck2 was used as a downsampling layer, as shown in Figure 5b; the
fusiform structure was used to double the number of intermediate channels. Therefore, the
DSConv acting as the sampling module can have more channels and more powerful feature
extraction capabilities. Additionally, an efficient channel attention (ECA) [30] module was
inserted into the ghost bottleneck module in order to suppress noisy information.
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Figure 5. Structure of the ghost bottleneck. (a) The G-Bneck1 with stride = 1 was used as a feature
extraction layer and (b) the G-Bneck2 with stride = 2 was used as a downsampling layer. C denotes
the number of channels; SiLU denotes the activation function; BN denotes the normalization; k
denotes the convolution kernel size; Gap is the global maximum pooling; and o is the sigmoid.

ELAGS3. In the YOLOVS network, the CSP [31] module used can reduce the repeated
gradient calculations, but at the same time, it misses the transmission of intermediate
gradient information. In our feature extraction module, the proposed ELAG3 module
was used to replace the CSP-Bottleneck. As it is shown in Figure 6a, the ELAG3 module
was proposed based on the ELAN [14] and the redesigned G-Bneckl. In the backbone
network, the feature extraction module usually has multiple bottlenecks. The ELAN can
splice and aggregate the intermediate information, and the G-Bneck1 can further reduce
the number of parameters. Compared with the CSP module, the ELAN can achieve
better detection results, although a few parameters and calculations were added. There-
fore, all of the CSP-Bottleneck modules were replaced with an ELAG3 module in the
GCL-YOLO network.

| 1x1 Conv I GhostConv BN,SiLU
l 1x1 Conv
G-Bneckl MaxPool2d k=5
|
i MaxPool2d k=5
G-Bneckl
MaxPool2d k=5
C <4 v h 4 C :
| 1x1 Conv | GhostConv BN

(a)

(b)

Figure 6. Structures of (a) the ELAG3 and (b) the GSPPE.

GSPPE. At the end of the backbone network, the SPPF module has vast calculations
due to the considerable number of channels. Therefore, two pointwise convolutions were
used to reduce the calculation amount and the parameter amount in the YOLOv5 network.
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In the proposed GCL-YOLO network, a GSPPF module was introduced, as shown in
Figure 6b, that is, two GhostConvs were used to replace the two pointwise convolutions to
further compress the network. Meanwhile, the activation function in the second GhostConv
was not used to maintain the linear relationship of the feature information.

3.3. Lightweight Neck

In the process of object detection, semantic information is needed for object classi-
fication, and location information is needed for object localization. With the continuous
sampling in the backbone network, rich semantic information can be captured, but a vast
quantity of location information is lost at the same time, especially for small objects. For this
reason, researchers proposed a multi-scale feature fusion method, which fully integrates
high-level semantic information and low-level location information in the feature extraction
layer to improve the detection effect.

In the YOLOV5 network, the PAN module is used to fuse three feature maps of
different resolutions in the deep part of the backbone network. Three prediction heads
(i.e., P5 for large objects, P4 for medium objects, and P3 for small objects) were designed,
and then three feature maps were used to detect objects of different sizes. However, the
YOLOV5 network is generally used to detect objects in natural scene images. In comparison,
objects in UAV images are much smaller. When the size of an object in UAV images is only
several or a dozen pixels, it is very difficult to capture the feature information of such a
small object in feature maps. As a result, it will be unable to detect the object.

For UAV small object detection, the location information of small objects in low-level
feature maps is theoretically required. Figure 7 shows the feature maps and the heat maps
of a UAV example image obtained with different sampling rates. It can be seen from
Figure 7c,f that, when the sampling rate reaches 32, the receptive field of the feature map
is too large. It is very difficult to see the texture and outline of small objects. In contrast,
when the sampling rate is 4 in Figure 7b,e, the receptive field of the feature map is smaller,
and more detailed location information of small objects is captured. According to such a
characteristic of small objects in UAV images, an ELA-PAN was designed in the proposed
GCL-YOLO network, as shown in Figure 3. Compared with the PAN module, low-level
features were fused and a new prediction head P2 for UAV small objects was added in the
ELA-PAN. By fusing low-level features, the multi-level features of small objects in UAV
images can be learned better, and the detection effect of small objects can be improved.

Figure 7. Feature maps and heat maps of a UAV example image obtained with different sampling
rates: (a) original image, (b) fine-grained feature map obtained with the sampling rate of 4, (c) fine-
grained feature map obtained with the sampling rate of 32, (d) object detection result, (e) gradient-
weighted class activation mapping (Grad-CAM) heat map obtained with the sampling rate of 4, and
(f) Grad-CAM heat map obtained with the sampling rate of 32.
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In addition, high-level feature fusion in the PAN module needs a large number of
parameters and calculations. As is shown in Table 2, approximately 75% of the parameters
were used by the prediction head P5. In other words, high-level feature fusion was mainly
used to improve the detection effect of large objects. There are often few large objects in
UAV images; thus, it is unnecessary to pay such a high price to improve the detection effect
of large objects. In order to balance the detection accuracy and speed, the prediction head
P5 for large objects was abandoned. Meanwhile, three convolutions used to adjust the
number of channels in the upsampling process were deleted in the ELA-PAN. Therefore,
the number of channels at the end of the backbone network can be reduced and the number
of network parameters can be significantly reduced.

Table 2. Parameter comparisons of different prediction heads.

Prediction Head Downsampling Rate Feature Map Size Number of Channels Parameters (MB)
P2, P3, P4, and P5 4x/8x/16x/32x 160/80/40/20 128/256/512/1024 13.26

P5 32x 20 1024 9.97

P2 4x 160 128 0.17

Note: The size of input images is 640 x 640 pixels.

3.4. Focal-EIOU Loss

The loss function of the YOLOvV5 network consists of a classification loss (L), an
object confidence loss (Lopj), and a localization loss (Ljoc). The localization loss often uses
the intersection over union (IOU) to calculate the similarity between a predicted box and
the corresponding ground truth, as shown in Figure 8. In the latest version of the YOLOv5
network (i.e., version 7.0), a complete IOU (CIOU) is used as its bounding box loss [32].
Unlike the IOU, the CIOU considers not only the overlap between the two bounding boxes
but also their sizes and location relationship. The expression of the CIOU loss is as follows:

%(b, b8
Leou = 1 — 10U + p(cz) + o (1)
where b and b8' are the center points of the predicted box and the ground truth, respectively;
p(-) represents the Euclidean distance; and c represents the diagonal length of the smallest
enclosing box covering the two boxes. The IOU, the positive trade-off parameter o, and the
consistence parameter v of the aspect ratio are calculated as follows:

I0U = ‘BﬂBgt| (2)
~ [BUBE|
— 4 (arean®  arctan® ) 3
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)
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where B and B8' are the predicted box and the ground truth, respectively; w8t and h#" are
the width and height of the ground truth, respectively; and w and h are the width and
height of the predicted box, respectively.

We can see from Equation (1) that the aspect ratio of a predicted box was used as
an influencing factor in the CIOU loss. When the aspect ratios of two predicted boxes
of different widths and heights are the same and both center points of these two boxes
are coincident with the center point of the ground truth, the two CIOU losses may be the
same, while these two predicted boxes may be greatly biased. Therefore, using the CIOU
loss will inevitably result in uncertainties, especially for UAV small object detection. As
the aspect ratios of UAV objects (e.g., the VisDrone-DET2021 dataset in Section 4.1) differ
significantly, the effect of the CIOU loss will be unsatisfactory. For this reason, the efficient
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IOU (EIOU) [33] loss is commonly used as the localization loss. The EIOU loss uses the real
width and height of a predicted box rather than the aspect ratio for regression, which can
eliminate the negative influence of the uncertainty of the aspect ratio. Compared with the
CIOU loss, the EIOU loss is unfriendly to tiny objects in small objects. For relatively large
objects in small objects, using the EIOU loss often can achieve a better detection accuracy.
Hence, the overall accuracy difference between the CIOU loss and the EIOU loss is not
significant. However, the EIOU loss is more beneficial to network optimization.

(Rt st

[ B: predict Box

w [ Bs: ground truth Box

C: Union of B and Bst
oy . & h « b « b8t het

b: Central point of box
w: Width of box

h: Height of box

cu‘ E,,w
Figure 8. Overlap between the predicted boxes and ground truth boxes.
The EIOU loss is calculated as follows:
2 gt 2 t 2 st
p=(b,b w, w8 h, h
(b,b5)  p*(w, w)  p*(h,h¥)

©)
c? c, Cﬁ

Lgioy =1 - 10U +

where ¢, and ¢}, are the width and height of the smallest box covering the two predicted
boxes, respectively.

However, the existing UAV object datasets often have a large deviation in the object
number of different object categories. The EIOU loss is generally not suitable for such a
dataset. Aiming to solve this problem, the Focal-EIOU loss proposed by Zhang et al. [33]
was introduced in the proposed GCL-YOLO network. Based on the EIOU loss, the Focal-
EIOU loss uses a focal loss to solve the problem of imbalanced object labels, and it can be
calculated as follows:

Lrocal—E10U = IOUY -Lgiou (6)

where v is a parameter to control the degree of inhibition of outliers.

4. Experimental Results

In this section, the implementation details and experimental results of the proposed
GCL-YOLO network are presented. The proposed network was compared with other
lightweight networks, UAV object detection networks, and YOLO networks using the
VisDrone-DET2021 dataset and the UAVDT dataset. Additionally, ablation experiments
were performed to verify the effectiveness of the proposed network.

4.1. Experimental Datasets

In this study, the VisDrone-DET2021 dataset and the UAVDT dataset were used as the
experimental datasets. These datasets are two of the most representative datasets for UAV
small object detection.

The VisDrone-DET2021 dataset has 6471 training images, 548 validation images, and
3190 test images. The dataset consists of ten object categories: pedestrian, people, bicycle,
car, van, truck, tricycle, awning tricycle, bus, and motor. The label number of different
object categories differs significantly, as shown in Figure 9a, that is, the number of object
labels are imbalanced. Figure 9b shows the number of object labels of different sizes.
Generally, objects smaller than 32 x 32 pixels are considered as small objects, while objects
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larger than 96 x 96 pixels are considered as large objects. Objects whose size ranges from
32 x 32 to 96 x 96 pixels are considered as medium objects. It can be seen from Figure 9b
that approximately 60% of the objects in this dataset were small objects, while large objects
accounted for only 5.5%.
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Figure 9. (a) The label number of each object category and (b) the number of object labels of different
sizes in the VisDrone-DET2021 dataset.

The UAVDT dataset consists of 50 videos with a total of 40,376 images and has three
object categories: car, truck, and bus. Since the UAVDT dataset is taken from videos,
image sequences in the same video contain a number of similar contents. This leads
to many redundancies and is not conducive to the performance comparison of different
networks. Therefore, only 20% of image sequences in each video were extracted to construct
a subset. Finally, the number of training, testing, and evaluation images was 4756, 1568,
and 1841, respectively.

4.2. Evaluation Metrics

In this study, the mean average precision at IOU = 0.5 (mAP50) and the mean average
precision at IOU = 0.5:0.05:0.95 (mAP50-95) were used to evaluate the detection accuracy
of all object categories. The indicator of frames per second (FPS) was used to evaluate the
detection speed of the networks. The indicator of giga floating-point operations per second
(GFLOPs) was used to evaluate the calculated amount of the networks, and the parameter
indicator was used to evaluate the parameter amount of the networks.

4.3. Implementation Details

The experiments in this study were implemented on an Ubuntu 20.04 system. The
experimental environment was Python 3.7, PyTorch 1.8, and CUDA 11.1. All the networks
were trained on two NVIDIA GeForce RTX3060 GPUs using the dual-card-distributed
hybrid training method, and the epochs of all the networks were set to 300. In the training
process, the stochastic gradient descent (SGD) optimizer was used. The initial learning
rate was set to 0.01, and the final learning rate was set to twelve percent of the initial
learning rate. The sizes of all the input images were adjusted to 640 x 640 pixels. For a fair
comparison, all the networks in the experiments were trained from scratch without using
the official pre-training weights.

4.4. Comparisons with the YOLOv5 Network

In this section, a comprehensive comparison is made between the GCL-YOLO network
proposed in this paper and the YOLOvV5 network on VisDrone-DET2021 dataset in terms of
detection accuracy, detection speed, and network size. The experimental results are shown
in Table 3.
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Table 3. Comparison between the GCL-YOLO network and the YOLOv5 network.

Network Params(M) GFLOPs FPS mAP50 (%)
YOLOV5-N 1.77 4.2 68 26.4
GCL-YOLO-N 0.43 3.2 58 31.7
YOLOV5-S 7.04 15.8 60 32.7
GCL-YOLO-S 1.64 10.7 53 39.6
YOLOvV5-M 20.89 48.0 57 36.4
GCL-YOLO-M 4.30 25.9 48 43.2
YOLOvV5-L 46.15 107.8 53 38.7
GCL-YOLO-L 8.76 50.7 42 45.7

It can be seen from Table 3 that, compared with the YOLOvS5 network, the proposed
GCL-YOLO network achieved a better detection accuracy with fewer parameters and
calculations. For example, compared with the YOLOv5-S network, the mAP50 achieved
by the GCL-YOLO-S network was improved by 6.9%, while the parameter amount was
reduced from 7.04 MB to 1.64 MB. In addition, the calculated amount was reduced from
15.8 GFLOPs to 10.7 GFLOPs, and the detection efficiency was slowed down, but it still
maintained a detection speed of 53 FPS. Overall, compared to the improved detection
accuracy, the reduced parameter amount, and the reduced calculation amount, the reduced
detection speed was acceptable.

4.5. Ablation Experiments

In order to demonstrate the effectiveness of the proposed GCL-YOLO network, we
performed ablation experiments based on the most popular YOLOvV5-S network. The
experiments were conducted using the VisDrone-DET2021 dataset in a single comparison
and stack-by-stack fashion. The ablation experiments were designed as follows:

(1) Ablation Al: Each convolution module was replaced by a GhostConv module;

(2) Ablation A2: The G-Bneck2 was used as the downsampling layer;

(3) Ablation A3: Each CSP-Bottleneck module was replaced by an ELAG3 module in the
feature extraction layer;

(4) Ablation A4: The GSPPF module combined with a GhostConv was used to reduce the
parameter amount;

(5) Ablation A5: The prediction head P2 for UAV small objects was added;

(6) Ablation A6: The prediction head P5 for large natural objects was removed, and the
number of channels at the end of the backbone network was reduced;

(7) Ablation A7: The CIOU loss was replaced by the Focal-EIOU loss.

For a fair comparison, the training configurations from ablation Al to ablation A7
were set to be the same. The experimental results are shown in Table 4.

Table 4. Comparisons between the GCL-YOLO-S network and the YOLOv5-S network.

Network A1 A2 A3 A4 A5 A6 A7 Params(M) GFLOPs FPS  mAP50(%)  mAP50-95 (%)
YOLOV5-S 7.04 15.8 60 32.7 17.2
v 3.70 7.8 64 28.8 15.4
v 6.24 16.2 59 345 18.6
v 418 111 55 32.9 17.4
GCL-YOLO-S v v Y 3.87 10.9 54 327 17.2
v v v Y 3.97 12.7 50 37.2 202
v v v vV 1.64 10.7 53 38.3 20.9
v v v v VvV 1.64 10.7 53 39.6 215
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From the results in Table 4, several conclusions were drawn, as follows:

(1) Directly replacing the convolution modules with the GhostConv modules in ablation
Al resulted in a detection accuracy degradation, due to only half of the features being
used in the GhostConv modules in order to reduce the parameter and calculation
amounts, as described in Section 3.2.

(2) Using the G-Bneckl as the downsampling layer reduced the parameter amount
and improved the detection accuracy. The reason for this was that the GhostConv
used only half the number of channels, while the fusiform structure provided more
intermediate channel numbers to extract features. Unfortunately, the calculation
amount was increased due to the continuous use of GhostConv in the ghost bottleneck.

(3) When all the CSP-Bottleneck modules were replaced with the ELAG3 module, the
parameter amount was reduced by approximately 40.6% and the calculation amount
was reduced by approximately 29.7%. With regard to the accuracy decrease, the main
reason was that the bottleneck in the CSP module was replaced by the G-Bneck1. Only
half of the features were used in the GhostConv modules in the G-Bneck1. To reduce
such a negative influence, the ELAG3 module was therefore designed based on the
ELAN rather than the CSP module in order to effectively splice and aggregate the
intermediate information.

(4) When the SPPF module was replaced by a GSPPF module, the parameter amount and
the calculation amount could be further reduced without a detection accuracy loss.

(5) When ablation A4 and ablation A5 were successively performed, the parameter
amount was reduced from 7.04 M to 1.64 M and the calculation amount was reduced
from 15.8 GFLOPs to 10.7 GFLOPs. Meanwhile, the mAP50 and the mAP50-95 were
improved by 5.6% and 3.7%, respectively. This demonstrated that the prediction head
P5 for natural large objects was indeed unnecessary for UAV object detection in the
test dataset. The added new prediction head P2 for UAV small objects effectively
fused the low-level feature information and improved the detection accuracy. The
main reason was that the anchor box sizes were generated by adaptive clustering.
After the prediction head P5 was removed, the feature map sizes of prediction heads
P2, P3, and P4 were changed from 80 x 80 pixels, 40 x 40 pixels, and 20 x 20 pixels
to 160 x 160 pixels, 80 x 80 pixels, and 40 x 40 pixels, respectively. Therefore, more
location information could be observed, and the anchor box generated by the adaptive
clustering was closer to the prediction box.

(6) When the CIOU loss was replaced by the Focal-EIOU loss, the negative influence
of the unstable aspect ratios of prediction boxes and the imbalances of object labels
was reduced. Accordingly, the detection accuracy was slightly improved without
increasing the parameter amount and the calculation amount.

4.6. Comparisons with Lightweight Object Detection Networks

In this section, in order to evaluate the advancement of the proposed network, a
comparison experiment between the GCL-YOLO-S network and some representative
lightweight networks was firstly performed on the VisDrone-DET2021 dataset. The experi-
mental results are shown in Table 5.

We can see from Table 5 that the proposed GCL-YOLO-S network achieved the best
detection accuracy with the smallest parameter amount, especially for pedestrian, bicycle,
car, and motor. The main reason for the relatively poor detection effect of other lightweight
networks is that these networks were mainly designed to detect objects in natural scenes. In
order to achieve an optimal detection effect, high-level features were mainly used. However,
when these lightweight networks were used for UAV small object detection, fewer features
of small objects were left in the high-level layers, as shown in Figure 7, resulting in a poor
detection effect.
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Table 5. Comparisons between the GCL-YOLO-S network and some lightweight networks on the
VisDrone-DET2021 dataset.

P mAP50 (%)
arams
Network M) GFLOPs  FPS All Pedestrian People Bicycle Car Van Truck Tricycle Avynmg Bus Motor
Tricycle
YOLOv3-Tiny [10] 8.68 12.9 86 159 19.4 18.4 32 499 127 97 8.2 4.0 146 189
YOLOvV4-Tiny [11] 5.89 7.0 78 195 21.1 25.1 4.3 575 151 15.0 12.0 5.3 237 164
YOLOvV5-N 1.77 4.2 68 264 33.1 27.1 6.9 678 235 184 12.9 9.1 32.0 313
YOLOv5-Lite-G 5.39 15.2 56 273 346 26.6 7.7 693 284 240 13.8 6.7 283 334
Nanodet-Plus-M-1.5x 244 3.0 78 304 27.9 24.1 74 73 351 278 17.9 8.4 493 333
YOLOX-Tiny [12] 5.04 15.3 70 313 358 21.9 9.6 733 347 281 18.1 10.2 46.3 349
YOLOV5-S 7.04 15.8 60 327 38.9 31.6 11.3 724 348 285 19.3 9.5 434 370
PP-PicoDet-L [34] 3.30 8.9 67 342 40.2 35.3 12.8 756 354 293 21.1 12.1 443 363
YOLOvV7-Tiny [14] 6.03 13.1 51 36.8 41.5 38.3 11.9 773 389 291 23.4 11.7 48.6 47.1
YOLOv8-S 11.10 28.8 56 392 420 325 13.5 79.6 452 35.6 28.3 15.0 55.8 44.6
GCL-YOLO-S 1.64 10.7 53 39.6 48.0 37.6 15.7 811 425 327 26.4 12.4 53.8 46.0

In the compared lightweight networks, the YOLOv8-S network was second only to
the GCL-YOLO-S network. The outstanding detection effects achieved were mainly due to
the feature extraction module used in the networks. Specifically, the feature information
under different gradients was aggregated in the feature extraction module. Compared with
gradient accumulations, gradient aggregations obtained a better return.

In order to fully demonstrate the superiority of the proposed GCL-YOLO-S network
for UAV small object detection, a comparison of detection effects under a typical complex
scene is shown in Figure 10. The scene contains a number of small objects to be detected.
These objects are densely distributed and some of them are heavily occluded by the adjacent
objects. In addition, different objects have different image sizes due to the influence of
the UAV flight altitude and camera imaging angles. It can be seen from Figure 10 that,
compared with other excellent lightweight networks, the proposed network achieved
a higher detection rate, a lower missed detection rate, and a lower false detection rate.
Our prediction boxes had fewer overlaps when the objects were densely distributed. The
detection was relatively more accurate, when the objects were heavily occluded.

In general, compared with other excellent lightweight networks, the proposed network
achieved better detection results with lower parameter and calculation amounts. Hence, it
is more suitable for the actual applications of UAV object detection.

Figure 10. Cont.
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Figure 10. (a) Original image and local object detection results achieved by (b) YOLOv3-Tiny,
(c) YOLOvV4-Tiny, (d) YOLOvV5-N (7.0), (e) YOLOv5-Lite-G, (f) Nanodet-Plus-M-1.5x, (g) YOLOX-Tiny,
(h) YOLOV5-S (7.0), (i) PP-PicoDet-L, (j) YOLOvV7-Tiny, (k) YOLOVS-S, and (1) GCL-YOLO-S.

The experimental results obtained from the UAVDT dataset are shown in Table 6 and
Figure 11. We can see that, compared with the YOLOv5-S network, the mAP50 achieved
by the proposed GCL-YOLO-S network was improved by 1.8%, while the parameter and
calculation amounts were reduced by 76.7% and 32.3%, respectively. Additionally, the
proposed network achieved almost the same detection accuracy as that achieved by the
YOLOVS-S network. However, the parameter amount was reduced by 85.2%, and the
calculation amount was reduced by 62.8%. This demonstrated the competitive advantage
of the proposed network.

Table 6. Comparisons between the GCL-YOLO-S network and some lightweight networks on the

UAVDT dataset.
mAP50 (%)
Network Params (M) GFLOPs FPS
All Car Truck Bus
YOLOv3-Tiny [10] 8.68 12.9 87 26.9 61.4 129 6.1
YOLOvV4-Tiny [11] 5.89 7.0 77 27.7 63.5 13.4 6.4
YOLOv5-N 1.77 4.2 68 29.5 66.7 14.7 7.1
YOLOvV5-Lite-G 5.30 15.1 58 27.6 65.2 12.7 4.8
Nanodet-Plus-M-1.5x 2.44 3.0 78 27.9 67.8 7.8 8.0
YOLOX-Tiny [12] 5.04 15.3 70 29.1 68.4 13.8 5.3
YOLOvV5-S 7.04 15.8 62 29.8 70.1 14.4 5.0
PP-PicoDet-L [34] 3.30 8.9 67 31.1 71.2 16.5 5.8
YOLOv7-Tiny [14] 6.03 13.1 50 31.2 70.4 16.8 6.8
YOLOvVS8-S 11.10 28.8 57 31.9 71.3 17.4 7.1

GCL-YOLO-S 1.64 10.7 54 31.6 72.2 16.2 6.4
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(k)

Figure 11. (a) Original image and local object detection results achieved by (b) YOLOv3-Tiny,
(c) YOLOvV4-Tiny, (d) YOLOvV5-N (7.0), (e) YOLOv5-Lite-G, (f) Nanodet-Plus-M-1.5x, (g) YOLOX-Tiny,
(h) YOLOVS5-S (7.0), (i) PP-PicoDet-L, (j) YOLOv7-Tiny, (k) YOLOVS-S, and (1) GCL-YOLO-S.

4.7. Extended Experiments
4.7.1. Comparisons with Large-Scale Object Detection Networks

In order to demonstrate the competitiveness of the proposed GCL-YOLO network
compared with other object detection networks, a comparison experiment was further
performed on the VisDrone-DET2021 dataset. The compared networks included RSOD,
SlimYOLOv3, and DMNet designed for UAV object detection, along with the state-of-the-art
TOOD, VENet, and TridentNet. The experimental results are shown in Table 7.

It can be seen from Table 7 that, compared with these advanced networks, the proposed
GCL-YOLO-L network still had a strong competitiveness. Among all of these networks,
the proposed network achieved the second-highest detection accuracy with the fewest
parameters and calculations. Such an excellent detection effect achieved by the proposed
network mainly benefited from the lightweight design of the GhostConv-based network
and the feature fusion structure that was more suitable for small object detection.
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Table 7. Comparisons between the GCL-YOLO-L network and some large-scale networks on the
VisDrone-DET2021 dataset.

mAP50 (%)

. Params i
Network Input size ™M) GFLOPs All  Pedestrian People Bicycle Car Van Truck Tricycle ?:vmr;gg Bus Motor
TOOD [35] 1333 x 800  31.81 14440  41.0 415 319 192 814 465 39.6 31.8 14.1 53.5 50.5
VENet [36] 1333 x 800 33.50 140.10 41.3 41.8 25.4 20.0 804 474 417 35.1 15.5 57.0 488
Tridentnet [37] 1333 x 800  32.85 822.19 43.3 54.9 29.5 20.1 814 47.7 414 34.5 15.8 58.8 489
RSOD [19] 608 x 608 63.72 84.21 43.3 46.8 36.8 17.1 81.8 498 39.3 32.3 19.3 61.2 48.6
SimYOLOv3

[22] 832 x 832 20.80 122.00 459 - - - - - - - - - -

DMNet [20] 640 x 640 41.53 194.18 47.6 - - - - - - - - - -
GCL-YOLO-L 640 x 640 8.77 50.70 45.7 55.2 43.1 20.8 84.5 50.0 409 33.3 15.7 60.3 52.8

Note: Limited by the code openness, the experimental results of the RSOD network, the SimYOLOv3 network,
and the DMNet network in their respective published papers were used here.

4.7.2. Comparisons with YOLO Series Networks

Considering the different requirements of UAV object detection in different appli-
cations, the derived GCL-YOLO-N, GCL-YOLO-S, GCL-YOLO-M, and GCL-YOLO-L
networks were comprehensively compared with the excellent YOLO series networks on
the VisDrone-DET2021 dataset. The experimental results are shown in Figure 12.
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Figure 12. Comparisons between (a) the GCL-YOLO networks and (b) the YOLO networks.

In Figure 12, the proposed GCL-YOLO network achieved a detection accuracy that
was second only to the YOLOvV7 network on the VisDrone-DET2021 dataset, but the GCL-
YOLO network had much fewer parameters and calculations. Overall, compared with
the corresponding derived networks of the YOLO networks, the four derived networks
of the GCL-YOLO network were lighter and more effective. Hence, it is expected that the
GCL-YOLO network will have a wide application in the field of UAV object detection.

4.8. Qualitative Visualization of Detection Results

In order to visually demonstrate the performance of the proposed GCL-YOLO network,
more detection results on the VisDrone-DET2021 dataset and the UAVDT dataset are shown
in Figures 13 and 14. It can be seen that the proposed network performed well in terms of
detecting small objects, dense objects, occluded objects, and blurred objects.
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Figure 13. More detection results on the VisDrone2021 dataset. Different colored bounding boxes

denote different object categories.

s
s,
-
e,

Figure 14. More detection results on the UAVDT dataset.

5. Discussion

Compared with the YOLOvV5-S network, the mAP50 achieved by the GCL-YOLO-
S network was improved by 6.9%, while the parameter amount was reduced by 76.7%
and the calculation amount was reduced by 32.3%. Regrettably, the detection speed was
reduced by 7 FPS. The detection accuracy improvement was mainly due to the fusion of
the low-level feature information. Accordingly, the low-level feature information is too
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Precision-Recall Curve

large and requires a longer inference time; the detection speed was therefore reduced. The
reduction in the parameter amount and calculation amount was mainly due to the use
of the GhostConv module and the removal of the prediction head P5. Generally, such a
reduced detection speed was acceptable compared to the improved detection accuracy and
the reduced parameter amount and calculation amount.

In order to further demonstrate the feasibility and effectiveness of the proposed
network, Figure 15 shows the precision-recall (P-R) curves obtained by the YOLOv5-S
network and the GCL-YOLO-S network. In addition to the P-R curves of each object
category in the VisDrone-DET2021 dataset, the corresponding mAP50 of each category
is shown in the legend. It can be seen from Figure 15 that the detection accuracies of all
object categories achieved by the proposed GCL-YOLO-S network were better than those
achieved by the YOLOvV5-S network. Especially for the four categories of pedestrian, van,
bus, and motor, the mAP50 was improved by 9%-10%. Generally, pedestrian and motor in
the test dataset had fewer image pixels. Such an accuracy improvement was mainly due to
the fusion of object location information in the low-level feature maps and the processing
of prediction boxes by the Focal-EIOU loss.
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Figure 15. P-R curves obtained by (a) the YOLOV5-S network and (b) the GCL-YOLO-S network.

Additionally, the confusion matrix obtained by the GCL-YOLO-S network is shown
in Figure 16 to visualize the classification of each object category. In Figure 16, each row
represents a predicted category and each column represents a true category. Each value
on the diagonal represents a proportion of correct classifications in that category. It can
be seen from Figure 16 that bicycle, tricycle, and awning tricycle had the highest rate of
false negatives (FNs), which means that the predictions of these categories had a high rate
of missed detection. Pedestrian and car had the highest rate of false positive (FPs), which
means that the predictions of these categories also had a high rate of false detection. From
the proportions of correct classifications on the diagonal, we can see that car had the best
detection results, while awning tricycle had the worst detection results. The main reason
for this was that the label number of different object categories used for training had a
large deviation, as shown in Figure 9. The imbalance in the label number of different object
categories had a great negative impact on the training of the network.

Opverall, the proposed GCL-YOLO network is a lightweight UAV small object detection
network. It is able to achieve a good detection accuracy with fewer computing and storage
resources. Therefore, it is more suitable for real-time object detection on UAV platforms
with limited computing resources and storage resources.
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Figure 16. Confusion matrix obtained by the GCL-YOLO-S network with the IOU threshold of
0.45 and the confidence threshold of 0.25.

6. Conclusions

As the application requirement is that UAV small objects should be precisely detected
with limited computing resources and storage resources, the structure of each part in the
YOLOV5 network was analyzed and redesigned; then, a GCL-YOLO network for UAV
small object detection was proposed in this study.

The proposed GCL-YOLO network was tested on the VisDrone-DET2021 dataset.
The experimental results show that, compared with the YOLOvV5 network, the proposed
GCL-YOLO network could effectively improve the object detection accuracy and reduce
the parameter and calculation amounts. Compared with some lightweight networks, the
proposed GCL-YOLO-S network achieved the best detection accuracy with the smallest
parameter amount and a medium calculation amount. Compared with some large-scale
networks, the proposed GCL-YOLO-L network achieved the second-highest detection
accuracy with the fewest parameters and calculations. As such, the experimental results
demonstrate the effectiveness of the proposed network.

At present, limited by appropriate UAV platforms, the proposed GCL-YOLO network
was only evaluated on the VisDrone-DET2021 dataset and the UAVDT dataset. Further
studies on a UAV platform and more UAV datasets are necessary to evaluate the effective-
ness of the proposed network in a real-world application.
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Abbreviations

UAV Unmanned Aerial Vehicle

YOLO You Only Look Once

GCL-YOLO GhostConv-Based Lightweight YOLO

CNN Convolutional Neural Network

RPN Region Proposal Network

PAN Path Aggregation Network

DS-GAN Downsampling Generative Adversarial Network
SME-Net Scale-Aware Feature Split-Merge—Enhancement Network
TPH Transformer Prediction Head

RSOD Real-Time Small Object Detection

DMNet Density-Map-Guided Object Detection Network
DSC Deep Separable Convolution

ELA-PAN Efficient Layer Aggregation and Path Aggregation Network
CSP Cross-Stage Partial Bottleneck

ELAG3 Efficient Layer Aggregation Ghost Bottleneck with 3 convolutions
GSPPF Fast Spatial Pyramid Pooling

G-Bneckl Ghost Bottleneck with Stride=1

G-Bneck2 Ghost Bottleneck with Stride=2

ECA Efficient Channel Attention

Grad-CAM Gradient-Weighted Class Activation Mapping
10U Intersection over Union

CIOU Complete IOU

EIOU Efficient IOU

SGD Stochastic Gradient Descent

P-R Precision—Recall

FP False Positive

FN False Negative

mAP Mean Average Precision

FPS Frames Per Second

GFLOPs Giga Floating-Point Operations Per Second
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