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Abstract: To enable the accurate assessment of landslide susceptibility in the upper reaches of
the Minjiang River Basin, this research intends to spatially compare landslide susceptibility maps
obtained from unclassified landslides directly and the spatial superposition of different types of
landslide susceptibility map, and explore interpretability using cartographic principles of the two
methods of map-making. This research using the catalogs of rainfall and seismic landslides selected
nine background factors those affect the occurrence of landslides through correlation analysis finally,
including lithology, NDVI, elevation, slope, aspect, profile curve, curvature, land use, and distance
to faults, to assess rainfall and seismic landslide susceptibility, respectively, by using a WOE-RF
coupling model. Then, an evaluation of landslide susceptibility was conducted by merging rainfall
and seismic landslides into a dataset that does not distinguish types of landslides; a comparison was
also made between the landslide susceptibility maps obtained through the superposition of rainfall
and seismic landslide susceptibility maps and unclassified landslides. Finally, confusion matrix and
ROC curve were used to verify the accuracy of the model. It was found that the accuracy of the
training set, testing set, and the entire data set based on the WOE-RF model for predicting rainfall
landslides were 0.9248, 0.8317, and 0.9347, and the AUC area were 1, 0.949, and 0.955; the accuracy
of the training set, testing set, and the entire data set for seismic landslides prediction were 0.9498,
0.9067, and 0.8329, and the AUC area were 1, 0.981, and 0.921; the accuracy of the training set, testing
set, and the entire data set for unclassified landslides prediction were 0.9446, 0.9080, and 0.8352,
and the AUC area were 0.9997, 0.9822, and 0.9207. Both of the confusion matrix and the ROC curve
indicated that the accuracy of the coupling model is high. The southeast of the line from Mount
Xuebaoding to Lixian County is a high landslide prone area, and through the maps, it was found
that the extremely high susceptibility area of seismic landslides is located at a higher elevation than
rainfall landslides by extracting the extremely high susceptibility zones of both. It was also found that
the results of the two methods of evaluating landslide susceptibility were significantly different. As
for a same background factor, the distribution of the areas occupied by the same landslide occurrence
class was not the same according to the two methods, which indicates the necessity of conducting
relevant research on distinguishing landslide types.

Keywords: background factors; landslide susceptibility; WOE-RF; rainfall landslide; seismic
landslide; space comparison

1. Introduction

China is one of the countries where geological hazards such as landslides, avalanches,
and mudslides occur frequently; geological hazards generally cause serious human and
socio-economic losses. The exploration of the spatial relationship between geological
hazards and occurrence factors can reduce the risk of geological hazards to a certain extent.
Landslide hazard susceptibility is the answer to the question of where landslides are likely
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to occur in space, and it aims to establish the relationship between landslides and the factors
that affect landslide occurrence and evaluate the regional landslide hazard susceptibility
based on this relationship [1–3].

Canadian geologist Agterberg proposed the weight of evidence model based on the
GIS platform [4–6]; Dahal et al., 2008 [7] explored the weight of evidence approach in the
evaluation of the landslide susceptibility of small watersheds using two small watersheds
in Shikoku, Japan as the study area; Sadisun et al., 2021 [8] used Sigi Biromaru as the study
area to undertake a landslide susceptibility evaluation based on the weight of evidence
model; and Yang et al., 2020 [9] and Hu et al., 2020 [10] evaluated the landslide susceptibility
of Jiuzhaigou and Badong County based on the weight of evidence method, respectively,
and the studies all showed that the accuracy of the model was high, and then many scholars
improved and applied it based on the common weight of evidence method [7,8,11,12]. With
the development of spatial–temporal data mining, machine learning has also been gradually
applied to the evaluation of geological hazards by scholars. Bai et al., 2011 [13] studied the
landslide susceptibility of Lianyungang city in China using a rare event logistic regression
model in 2011; Mao et al., 2015 [14] found that, compared with plain Bayesian, uncertainty-
based Bayesian classification in evaluating the landslide hazard in Baota district of Yan’an
city could better reflect the landslide hazard development characteristics; Wang et al.,
2021 [15] carried out a landslide susceptibility evaluation in Jingzhou County, Hunan
Province using an SVM algorithm. The random forest model is a popular model for
landslide susceptibility evaluation that is less sensitive to noise and outliers, less prone to
overfitting, more inclusive of data imbalance, and more stable in prediction [16,17]. Wu
et al., 2017 [18] evaluated the landslide hazard in the Dongjiang Basin based on the random
forest model; Liu et al., 2018 [19] evaluated the landslide susceptibility in Sha and Xi
township–Xeitan township in the Three Gorges reservoir area using a random forest model.
Gradually, deep learning has also been applied to predict the susceptibility of hazards such
as landslides owing to its superiority. Mandal et al., 2021 used a CNN convolutional neural
network to predict the landslide susceptibility of Rorachu river basin [20]; and Wang et al.,
2023 used a deep learning algorithm to predict the landslide susceptibility of the Jiuzhaigou
area [21]. But deep learning algorithms are often implicit in the expression of knowledge
structures, so they have the disadvantage of difficult interpretability.

The coupling of multiple models for landslide susceptibility evaluation is currently
receiving more and more attention. Arabameri et al., 2019 evaluated landslide susceptibility
in the Gorganroud watershed of northern Iran using the LNRF-LMR coupled model [22];
Pourghasemi et al., 2019 evaluated the susceptibility of flood and landslide hazards in
the Lorestan province of Iran using a SWARA-ANFIS-Gray wolf coupled model, respec-
tively [23]; Guo et al., 2019 [24] evaluated the landslide susceptibility of the Wanzhou
district in the Three Gorges reservoir area based on a coupled model of weight of evidence
and a BP neural network; Li et al., 2021 [25] coupled an information quantity model with
a logistic regression model to predict landslide susceptibility in Chongyi county, Jiangxi
province; Ma et al., 2022 [26] used a coupled random forest-frequency ratio model to
evaluate the landslide susceptibility in Lueyang County, which improved the accuracy by
10.7% and 4.9%, respectively, compared with the two single models; Bai et al., 2022 [27]
evaluated the landslide susceptibility in the northeast of Yu based on the entropy index
and a random forest coupled model, and the studies all showed that the coupled model
has a higher prediction accuracy than the single prediction model.

The multi-hazard direction in hazard science research is one of the hotspots at home
and abroad [28–33], but, at present, the whole is still dominated by single hazard research.
In terms of the susceptibility mapping of hazards, a large number of studies have also
mapped the susceptibility of single hazards, such as landslides, floods, forest fires, etc.,
due to the differences in the background and triggering factors of each hazard [34–36]
and, among the methods used to span the spatial susceptibility from a single hazard to
a multi-hazard, the spatial superposition of single hazards has mainly been used [23].
From the big concept of hazards to the small concept of landslides, the same background
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factor or triggering factor has different impacts on the development of different types
of landslides, so when mapping the landslide susceptibility of a certain area, different
landslide catalogs should also be used as input. Currently, some scholars have also carried
out studies to distinguish landslide types with different trigger factors: Wang et al., 2012
analyzed the causal mechanism of landslide hazards triggered by rainfall and earthquakes
through physical simulation experiments [37]; Ding 2013 used suitable models to study
the mechanisms of landslides under earthquakes and rainfall [38]; Bai et al., 2013 used a
logistic regression model to separately assess rainfall and seismic landslide susceptibility;
and the necessity of separating rainfall and seismic landslides was also proposed through
related studies [39]. In this research, we propose to evaluate the landslide susceptibility of
the upper reaches of the Minjiang River Basin by using different mapping principles and
using both unclassified and classified types of landslides, respectively.

At present, there has been relatively little research on the classification of rainfall and
seismic landslides in the upper reaches of the Minjiang River Basin conducted by prede-
cessors. Therefore, the susceptibility mapping of the two types of landslides is lacking,
making it difficult to provide sufficient support for the prevention and control of landslide
geological disasters. This research intends to take the upper reaches of the Minjiang River
Basin as an example to obtain evaluation maps of rainfall, seismic, and unclassified land-
slide susceptibility, respectively. The development patterns of different types of landslides
based on background factors will be explored at the same time. Meanwhile, this research
proposes to refer to the spatial superposition of multiple hazards [40], obtaining spatial
comparisons of landslide susceptibility maps obtained from unclassified landslides and
the final landslide susceptibility map obtained by overlaying rainfall and seismic landslide
susceptibility maps, and it also attempts to explain the variability in spatial distribution in
terms of cartographic principles. In addition, this research combines the weight of evidence
with the random forest algorithm. The reason for coupling the weight of evidence with the
random forest model is that this research mainly investigates the effect of different land-
slide catalogs on the prediction results of compound landslide susceptibility (i.e., spatial
superposition of rainfall and seismic landslide susceptibility maps to obtain the compound
landslide susceptibility map, and susceptibility map obtained by using unclassified land-
slides), and attempts to explain the two results in terms of the mapping principle in order
to help elucidate the need to use different landslide catalogs for different problems. The
contribution of different cataloged landslides to each background factor is different since
the two methods use different landslide catalogs, which makes the spatial relationship
between landslides and background factors not the same, so it is necessary to firstly get the
spatial relationship to derive the contribution of each background factor to the landslide
prediction, as opposed to directly inputting the values of the background factors into the
model for prediction. The coupling of the two models can make the prediction results
more realistic.

2. Study Area

The upper Minjiang River Basin is located in the eastern margin of the Tibetan Plateau,
covering an area of about 22,000 km2 [41], and its elevation changes are between 694
and 5840 m. The geological structure is complex, mainly composed of NE- and NW-
oriented faults, with frequent seismic activity [42]. The stratigraphic lithology is dominated
by sandstones and siltstones interspersed with micaceous rocks; shales, micaceous, and
siltstones; limestones and sandstones; and granitic rocks. It is also influenced by the
southwest monsoon, with rainfall concentrated in summer, and it experiences serious
effects of geological hazards such as landslides. The region is similar to other regions
located on the Tibetan Plateau, with the same active environmental conditions and more
intense climate change [43]. The upper reaches of the Minjiang River Basin studied in this
research mainly include Songpan, Maoxian, Lixian, Wenchuanxian, and Dujiangyan where
several major cities are located, and 3343 landslide sites were collected here, including
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407 rainfall landslides and 2936 seismic landslides. The catalogued data of landslides used
in this research and the overview of the study area are shown in Figure 1.
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3. Research Data and Methods
3.1. Data

This study used the inventory data of rainfall and seismic landslide point sites in the
upper reaches of the Minjiang River Basin, as well as background factors related to the
occurrence of two types of landslides. The specific data and sources are shown in Table 1:

Table 1. Data sources for spatial susceptibility assessment of landslides in the upper reaches of
Minjiang River Basin.

Data Source

Rainfall landslides
Ministry of Land and Resources of China:

Survey and mapping of 1:100,000 landslides in
China from 1999 to 2008 [41]

Seismic landslides
Ministry of Land and Resources of China:

Investigation of Landslide Hazard Caused by
2008 Wenchuan Earthquake in China [41]

Factors related to landslide occurrence DTM image with 90 m spatial resolution [41]

NDVI Resource and environmental science data
registration and publishing system [44]
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Among the data we used in this research, the rainfall landslides were obtained from
the 1:100,000 landslide hazard survey and mapping of China from 1999 to 2008 by the
Ministry of Land and Resources of China, and there were 407 rainfall landslide point
sites; the seismic landslides were obtained from the Ministry of Land and Resources of
China. According to the investigation of landslide disasters caused by the 2008 Wenchuan
earthquake, there were a total of 2936 landslide point sites. From Figure 1, it can be seen that
landslide point sites were roughly distributed along the main stream of the Minjiang River
and its tributaries. The geologic background factors related to the occurrence of landslides
(such as slope, slope direction, etc.) were extracted from DTM images with 90 m spatial
resolution. The NDVI index data related to the occurrence of landslides were obtained
from the year-by-year NDVI maximum dataset of China with 30 m spatial resolution
released by Xu Xinliang in the Resource and Environmental Science Data Registration and
Publication System.

3.2. Study Methods
3.2.1. Weight of Evidence Model

Taking landslide as an example, weight of evidence method is a data-driven model
based on the uncertainty of probability and Bayes’ law to find the posterior probability
of landslide occurrence by spatially superimposing the evidence factors assigned weights
based on exploring the spatial correlation between landslides and the evidence factors
affecting landslide occurrence.

The basic principle is as follows [45,46]: Suppose there are m landslide point sites in
the study area. Firstly, the study area is spatially divided into a grid according to a certain
scale, and there is only one landslide point site in each grid, then, the priori probability of
landslide occurrence in the study area is (m/a), and n1, n2, n3, etc. are n geological factors
related to landslide occurrence. Choose the jth geological factor, make nj that a geological
factor exists and ¬nj that a geological factor does not exist, then overlay the landslide
layer with the geological factor nj layer to obtain 4 cases of nj ∩m, ¬nj ∩m, nj ∩ ¬m, and
¬nj ∩ ¬m, and the following 4 conditional probabilities can be defined based on these:

P
(

m|n j

)
=

nj ∩m
nj

(1)

P
(
¬m|nj

)
=

nj ∩ ¬m
nj

(2)

P
(

m|¬n j

)
=
¬nj ∩m
¬nj

(3)

P
(
¬m|¬n j

)
=
¬nj ∩ ¬m
¬nj

(4)

Based on the above four conditional probability formulas, the Bayes’ law yields
the following:

P
(

m|¬n j

)
=

P
(
¬nj |m

)
P(m)

P(¬n j

) (5)

The jth evidence layer has positive weight W+
j and negative weight W−j , respectively,

and is taken as W+
j when nj exists and W−j when nj does not exist:

W+
j = ln

P(n j|m)

P(n j|¬m)
(6)

W−j = ln
P(¬n j|m)

P(¬n j|¬m)
(7)
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This leads to a relationship between the evidence power of the nj layer and the
likelihood ratio and conditional ratio of the occurrence of landslides, which is expressed as
the evidence power in the form of

W+
j = ln(

O
(

m|n j

)
O(m)

) (8)

W−j = ln(
O
(

m|¬n j

)
O(m)

) (9)

In this research, we obtain the total weight W of the evidence factors by finding each
evidence factor W+

j and W−j based on the SDM toolbox developed on Arcgis platform.

3.2.2. Random Forest Model

Breiman [47] proposed random forest as an integrated method in 2001. The sampling
method used in random forest is bootstrap resampling, and its randomness lies in the
random sampling of the feature factors and the number of samples. Then, decision trees
are used to model each bootstrap sample based on the extracted samples. When modeling
the random forest, the number of decision trees ultimately used to construct the random
forest can be determined by the trend of the model’s error variation. The decision trees
are independent of each other, and each one of them yields a classification result; the final
classification result is obtained by the result of the plurality of all decision trees.

The construction of a decision tree often goes through 3 processes: feature selection,
decision tree generation, and decision tree pruning. The selection of features is based on
the information gain. The information gain of feature factor nj on dataset d is denoted as
g
(
d, nj

)
, which is the difference between the empirical entropy H (d) of dataset d and the

empirical conditional entropy of d under the given condition of feature factor nj [48].
Suppose X is a discrete random variable taking finite values with probability dis-

tribution P(X = xi)= pi, I = 1, 2, . . ., n, then the entropy of the random variable X is
as follows:

H ( X )= −∑n
i=1 pilogpi (10)

Suppose the random variable (X, Y) with joint probability distribution
P(X = x i, Y = yi)= pij, i = 1, 2, . . ., n; j = 1, 2, . . ., m, then the conditional entropy is
as follows:

H ( Y | X ) = ∑n
i=1 pi H ( Y | X = x i ) (11)

where pi= P ( X = x i ), i = 1, 2, . . ., n.
Then, the information gain of feature factor nj on dataset D is noted as follows:

g
(

D, nj
)
= H (D) − H ( D | nj ) (12)

The criterion for decision tree generation is to select the feature factors with the greatest
information gain in order from the root node for the construction of root and leaf nodes. To
improve the generalization ability of the model, the generated decision tree also needs to
be pruned.

3.2.3. WOE-RF Model

The weight value calculated in the WOE model is an expression of the spatial re-
lationship between the factors affecting the occurrence of landslides and landslides. By
calculating the weight of factors on landslides, the secondary factors with similar effects
on landslides can be grouped into one category based on the weight value, which can
reduce the redundancy of the input data of machine learning models and improve the
accuracy of machine learning to a certain extent. Figure 2 shows the schematic diagram of
the application of the combination of the weight of evidence and the random forest model.
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3.2.4. Accuracy Validation of WOE-RF Model

In this research, the confusion matrix [49] and the ROC curve [50] are used to validate
the accuracy of the WOF-RF model.

Through the confusion matrix, we can obtain four cases: actual landslide and predicted
landslide (TP), actual not landslide and predicted not landslide (TN), actual landslide but
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predicted not landslide (FN), and actual not landslide but predicted landslide (FP), from
which we can obtain the model prediction accuracy and recall based on the formula:

Accuracy =
TP + TN

TP + TN + FN + FP
(13)

Recall =
TP

TP + FN
(14)

The accuracy of the model was also evaluated by AUC area under the ROC curve,
with the horizontal axis of the ROC curve representing false positives and the vertical axis
representing true positives. Generally, the larger the AUC area under the ROC curve, the
higher the accuracy is indicated. The above two ways of evaluating the prediction accuracy
of the model can roughly assess the applicability of the model.

3.2.5. Landslide Susceptibility Classification

The obtained landslide susceptibility maps of rainfall, seismic, and unclassified land-
slide in the upper Minjiang River Basin were classified based on natural intermittent
points [10,51], and the natural intermittent point method can be able to make the smallest
differences within the classified classes and the largest differences between classes. Since
the landslide and non-landslide threshold in this research was set to 0.9, the value of class 5
will be changed to [0.9, 1] on the basis of the natural interruption point classification.

4. Results
4.1. Landslide Background Factors Pretreatment

Considering the area of the upper reaches of the Minjiang River Basin, the distribution
of landslides, and the accuracy of the original topography, this research chose to establish a
200 × 200 m grid for analysis, and initially selected lithology, NDVI, elevation, slope, as-
pect, relief amplitude, surface cutting depth, profile curve, plan curve, curvature, land use,
distance to faults, and distance to rivers for analysis, which are the 13 most relevant back-
ground factors to the landslides in the upper reaches of Minjiang River Basin. Among them,
two linear elements of faults as well as rivers were buffered at 200 m intervals throughout
the whole study area, and correlation analysis was performed for the 13 selected factors,
then correlation coefficients that were less than 0.3 were considered uncorrelated between
the factors [52]; finally, there were nine background factors involved in the model build-
ing through correlation analysis. The nine landslide susceptibility modeling background
factors included the following: lithology, NDVI, elevation, slope, aspect, profile curve,
curvature, land use, and distance to faults. Among them, the two discrete variables of
lithology and land use by category were renumbered; the aspects were divided into nine
categories according to the values, where -1 was divided into plane, (0, 22.5) and (337.5,
360) for north, (22.5, 67.5) for northeast, (67.5, 112.5) for east, (112.5, 157.5) for southeast,
(157.5, 202.5) for south, (202.5, 247.5) for southwest, (247.5, 292.5) for west, and (292.5, 337.5)
for northwest; the remaining continuous type factors were divided into equal intervals
according to the distribution of the data. The specific factor grades are shown in Figure 3.

4.2. Acquisition of Weights for Landslide Background Factors

Based on the nine landslide background factors of lithology, NDVI, elevation, slope,
aspect, profile curve, curvature, land use, and distance to faults, the factor weights of
rainfall, seismic, and unclassified landslides were obtained after grading; the weights of
the nine factors are as shown in Tables 2–4, respectively:
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Table 2. Weight value of rainfall landslides background factors.

Evidence Factors Classification of Factors Weight

Aspect Lithology

Flat 1 0.0007 Sandstone, siltstone interbedded
with phyllite 1 −0.9971

N 2 −0.6819 Shale, phyllite, and siltstone 2 −1.7158

NE 3 0.0007 Granitic rocks 3 −0.1886

E 4 0.0007 Syenite 4 −0.1886

SE 5 0.3216 Diorite 5 1.4918

S 6 0.0007 Limestone and sandstone 6 0.8567

SW 7 0.0007 Unconsolidated deposits 7 −0.1886

W 8 0.0007 Sandstone, siltstone, and shale 8 −0.1886

NW 9 0.0007 Limestone intercalated with shale 9 0.5665

NDVI Limestone, sandstone, and shale 10 −0.1886

(46, 396.9) 1 −0.1110 Limestone and dolomite
intercalated with phyllite 11 0.9109

(396.9, 747.8) 2 −0.1110 Dolomite, silicalite, phyllite,
sandstone, and siltstone 12 0.7918

(747.8, 1098.8) 3 −0.1110 Amphibolite 13 1.8850

(1098.8, 1449.7) 4 −0.1110 Sandstone and siltstone
intercalated with slate 14 −0.1886

(1449.7, 1800.6) 5 −0.1110 Sandstone and siltstone
interbedded with shale 15 −0.1886

(1800.6, 2151.5) 6 −0.1110 Profile curve

(2151.5, 2502.4) 7 −0.1110 (−38.6, −28.6) 1 −1.6067

(2502.4, 2853.4) 8 1.0049 (−28.6, −18.6) 2 −1.6067

(2853.4, 3204.3) 9 0.8565 (−18.6, −8.6) 3 2.0356

(3204.3, 3555.2) 10 0.8724 (−8.6, 2.6) 4 −0.0839

(3555.2, 3906.1) 11 −0.1110 (2.6, 12.6) 5 0.8969

(3906.1, 4257.0) 12 −0.1110 (12.6, 22.6) 6 2.3935

(4257.0, 4608.0) 13 0.7309 (22.6, 32.6) 7 −1.6067

(4608.0, 4958.9) 14 0.7546 (32.6, 44.3) 8 −1.6067

(4958.9, 5309.8) 15 −0.1110 Curvature

(5309.8, 5660.7) 16 −0.1110 (−87, −71) 1 −2.0171

(5660.7, 6011.6) 17 −0.1110 (−71, −55) 2 −2.0171

(6011.6, 6362.6) 18 0.4277 (−55, −39) 3 −2.0171

(6362.6, 6713.5) 19 −0.1110 (−39, −23) 4 −2.0171

(6713.5, 7064.4) 20 −0.1110 (−23, −7) 5 1.1956

(7064.4, 7415.3) 21 −0.1110 (−7, 9) 6 −0.0528

(7415.3, 7766.2) 22 −0.2762 (9, 26) 7 1.5568

(7766.2, 8117.2) 23 −0.2694 (26, 42) 8 −2.0171

(8117.2, 8468.1) 24 −0.1110 (42, 58) 9 −2.0171

(8468.1, 8819.0) 25 0.7211 (58, 73) 10 −2.0171
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Table 2. Cont.

Evidence Factors Classification of Factors Weight

Elevation Land use

(712.0, 1132.5) 1 2.7367 Garden plot 1 −0.5322

(1132.5, 1553.0) 2 2.9041 Woodland 2 0.1154

(1553.0, 1973.5) 3 2.2586 Land for water bodies and water
conservancy facilities 3 −4.4595

(1973.5, 2394.0) 4 1.0646 Grassland 4 1.7991

(2394.0, 2814.5) 5 −1.7875 Commercial area 5 3.0203

(2814.5, 3235.0) 6 −1.3411 Land for industrial and
mining warehousing 6 −4.4595

(3235.0, 3655.5) 7 −2.9547 Other land 7 −4.4595

(3655.5, 4076.0) 8 −1.7875 Distance to faults

(4076.0, 4496.5) 9 −1.7875 (0, 17.8) 1 0.6291

(4496.5, 4917.0) 10 −2.8276 (17.8, 35.6) 2 0.4427

(4917.0, 5337.5) 11 −1.7875 (35.6, 53.4) 3 −0.7052

(5337.5, 5758.0) 12 −1.7875 (53.4, 71.2) 4 −0.3361

Slope (71.2, 89.0) 5 −0.3361

(0, 10) 1 0.9478 (89.0, 106.8) 6 −1.1051

(10, 20) 2 −0.6397 (106.8, 124.6) 7 −0.8145

(20, 30) 3 −0.3065 (124.6, 142.4) 8 −1.4800

(30, 40) 4 −0.1079 (142.4, 160.2) 9 −1.1470

(40, 50) 5 0.3697 (160.2, 178) 10 −1.8685

(50, 60) 6 0.7293 (178, 195.8) 11 −1.0934

(60, 70) 7 1.3741 (195.8, 213.6) 12 −1.0272

(70, 80) 8 −0.1079 (213.6, 231.4) 13 −0.3361

(80, 90) 9 −0.1079 (231.4, 249.2) 14 −0.3361

(249.2, 267.0) 15 −0.3361

Table 3. Weight value of seismic landslides background factors.

Evidence Factors Classification of Factors Weight

Aspect Lithology

Flat 1 −0.0223 Sandstone, siltstone interbedded
with phyllite 1 −0.7654

N 2 −0.0223 Shale, phyllite, and siltstone 2 −2.2745

NE 3 −0.0223 Granitic rocks 3 0.1397

E 4 0.2072 Syenite 4 −2.7594

SE 5 0.2476 Diorite 5 1.6636

S 6 0.1265 Limestone and sandstone 6 0.4612

SW 7 −0.1626 Unconsolidated deposits 7 −3.2859

W 8 −0.3399 Sandstone, siltstone, and shale 8 0.0117

NW 9 −0.2294 Limestone intercalated with shale 9 0.0117
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Table 3. Cont.

Evidence Factors Classification of Factors Weight

NDVI Limestone, sandstone, and shale 10 0.0117

(46, 396.9) 1 0.0249 Limestone and dolomite
intercalated with phyllite 11 0.7738

(396.9, 747.8) 2 0.0249 Dolomite, silicalite, phyllite,
sandstone, and siltstone 12 1.0732

(747.8, 1098.8) 3 −3.2095 Amphibolite 13 2.0384

(1098.8, 1449.7) 4 −2.3885 Sandstone and siltstone
intercalated with slate 14 0.0117

(1449.7, 1800.6) 5 −1.2734 Sandstone and siltstone
interbedded with shale 15 0.0117

(1800.6, 2151.5) 6 −0.9951 Profile curve

(2151.5, 2502.4) 7 −0.5969 (−38.6, −28.6) 1 1.0324

(2502.4, 2853.4) 8 0.0249 (−28.6, −18.6) 2 1.0324

(2853.4, 3204.3) 9 0.0249 (−18.6, −8.6) 3 2.0926

(3204.3, 3555.2) 10 0.0249 (−8.6, 2.6) 4 −0.1531

(3555.2, 3906.1) 11 0.0249 (2.6, 12.6) 5 1.4408

(3906.1, 4257.0) 12 0.0249 (12.6, 22.6) 6 2.3560

(4257.0, 4608.0) 13 0.3107 (22.6, 32.6) 7 1.0324

(4608.0, 4958.9) 14 0.2456 (32.6, 44.3) 8 1.0324

(4958.9, 5309.8) 15 0.0249 Curvature

(5309.8, 5660.7) 16 0.4826 (−87, −71) 1 0.6172

(5660.7, 6011.6) 17 0.2905 (−71, −55) 2 0.6172

(6011.6, 6362.6) 18 0.1779 (−55, −39) 3 0.6172

(6362.6, 6713.5) 19 0.2509 (−39, −23) 4 0.6172

(6713.5, 7064.4) 20 0.0249 (−23, −7) 5 1.5330

(7064.4, 7415.3) 21 0.0249 (−7, 9) 6 −0.0776

(7415.3, 7766.2) 22 −0.2809 (9, 26) 7 1.8013

(7766.2, 8117.2) 23 −0.1779 (26, 42) 8 0.6172

(8117.2, 8468.1) 24 0.1977 (42, 58) 9 0.6172

(8468.1, 8819.0) 25 0.7341 (58, 73) 10 0.6172

Elevation Land use

(712.0, 1132.5) 1 2.2752 Garden plot 1 −0.6334

(1132.5, 1553.0) 2 2.5161 Woodland 2 0.3175

(1553.0, 1973.5) 3 1.9906 Land for water bodies and water
conservancy facilities 3 −1.1400

(1973.5, 2394.0) 4 1.3606 Grassland 4 1.2023

(2394.0, 2814.5) 5 0.5051 Commercial area 5 1.0398

(2814.5, 3235.0) 6 −0.4698 Land for industrial and
mining warehousing 6 −1.1400

(3235.0, 3655.5) 7 −1.6533 Other land 7 −1.1400

(3655.5, 4076.0) 8 −2.7238 Distance to faults

(4076.0, 4496.5) 9 −4.4023 (0, 17.8) 1 0.8153

(4496.5, 4917.0) 10 −3.7094 (17.8, 35.6) 2 0.1081

(4917.0, 5337.5) 11 −7.3573 (35.6, 53.4) 3 −0.5102

(5337.5, 5758.0) 12 −7.3573 (53.4, 71.2) 4 −0.3852
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Table 3. Cont.

Evidence Factors Classification of Factors Weight

Slope (71.2, 89.0) 5 −0.5233

(0, 10) 1 −0.1749 (89.0, 106.8) 6 −0.6628

(10, 20) 2 −0.7377 (106.8, 124.6) 7 −1.2068

(20, 30) 3 −0.5357 (124.6, 142.4) 8 −1.8504

(30, 40) 4 0.0610 (142.4, 160.2) 9 −1.3686

(40, 50) 5 0.6785 (160.2, 178) 10 −1.1733

(50, 60) 6 1.0211 (178, 195.8) 11 −1.2810

(60, 70) 7 1.0880 (195.8, 213.6) 12 −1.7543

(70, 80) 8 1.5884 (213.6, 231.4) 13 −2.2307

(80, 90) 9 0.8379 (231.4, 249.2) 14 −7.9980

(249.2, 267.0) 15 −7.9980

Table 4. Weight value of unclassified landslides background factors.

Evidence Factors Classification of Factors Weight

Aspect Lithology

Flat 1 0.0331 Sandstone, siltstone interbedded
with phyllite 1 −0.7916

N 2 −0.1245 Shale, phyllite, and siltstone 2 −2.1887

NE 3 0.0331 Granitic rocks 3 0.1404

E 4 0.1680 Syenite 4 −2.8900

SE 5 0.2614 Diorite 5 1.6488

S 6 0.0981 Limestone and sandstone 6 0.5199

SW 7 −0.1140 Unconsolidated deposits 7 −2.7231

W 8 −0.2686 Sandstone, siltstone, and shale 8 −0.7046

NW 9 −0.2340 Limestone intercalated with shale 9 0.2194

NDVI Limestone, sandstone, and shale 10 −0.2741

(46, 396.9) 1 0.0010 Limestone and dolomite
intercalated with phyllite 11 0.7933

(396.9, 747.8) 2 0.0010 Dolomite, silicalite, phyllite,
sandstone, and siltstone 12 1.0446

(747.8, 1098.8) 3 −2.6467 Amphibolite 13 2.0284

(1098.8, 1449.7) 4 −2.5191 Sandstone and siltstone
intercalated with slate 14 −0.7046

(1449.7, 1800.6) 5 −1.3168 Sandstone and siltstone
interbedded with shale 15 −0.7046

(1800.6, 2151.5) 6 −0.7417 Profile curve

(2151.5, 2502.4) 7 −0.4388 (−38.6, −28.6) 1 0.9019

(2502.4, 2853.4) 8 0.0010 (−28.6, −18.6) 2 0.9019

(2853.4, 3204.3) 9 0.3448 (−18.6, −8.6) 3 2.0946

(3204.3, 3555.2) 10 0.3301 (−8.6, 2.6) 4 −0.1445

(3555.2, 3906.1) 11 0.0010 (2.6, 12.6) 5 1.3907

(3906.1, 4257.0) 12 0.0010 (12.6, 22.6) 6 2.3735

(4257.0, 4608.0) 13 0.3733 (22.6, 32.6) 7 0.9019

(4608.0, 4958.9) 14 0.3242 (32.6, 44.3) 8 0.9019
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Table 4. Cont.

Evidence Factors Classification of Factors Weight

(4958.9, 5309.8) 15 0.0010 Curvature

(5309.8, 5660.7) 16 0.4448 (−87, −71) 1 0.4866

(5660.7, 6011.6) 17 0.2405 (−71, −55) 2 0.4866

(6011.6, 6362.6) 18 0.2123 (−55, −39) 3 0.4866

(6362.6, 6713.5) 19 0.2279 (−39, −23) 4 0.4866

(6713.5, 7064.4) 20 0.0010 (−23, −7) 5 1.5008

(7064.4, 7415.3) 21 0.0010 (−7, 9) 6 −0.0746

(7415.3, 7766.2) 22 −0.2807 (9, 26) 7 1.7797

(7766.2, 8117.2) 23 −0.1889 (26, 42) 8 0.4866

(8117.2, 8468.1) 24 0.1636 (42, 58) 9 0.4866

(8468.1, 8819.0) 25 0.7339 (58, 73) 10 0.4866

Elevation Land use

(712.0, 1132.5) 1 2.3614 Garden plot 1 −0.6211

(1132.5, 1553.0) 2 2.5933 Woodland 2 0.2952

(1553.0, 1973.5) 3 2.0378 Land for water bodies and water
conservancy facilities 3 −1.2705

(1973.5, 2394.0) 4 1.3316 Grassland 4 1.3025

(2394.0, 2814.5) 5 0.4473 Commercial area 5 1.6173

(2814.5, 3235.0) 6 −0.5438 Land for industrial and
mining warehousing 6 −1.2705

(3235.0, 3655.5) 7 −1.7469 Other land 7 −1.2705

(3655.5, 4076.0) 8 −2.8544 Distance to faults

(4076.0, 4496.5) 9 −4.5328 (0, 17.8) 1 0.7957

(4496.5, 4917.0) 10 −3.5522 (17.8, 35.6) 2 0.1558

(4917.0, 5337.5) 11 −7.4878 (35.6, 53.4) 3 −0.5325

(5337.5, 5758.0) 12 −7.4878 (53.4, 71.2) 4 −0.3549

Slope (71.2, 89.0) 5 −0.4789

(0, 10) 1 0.0442 (89.0, 106.8) 6 −0.7080

(10, 20) 2 −0.7259 (106.8, 124.6) 7 −1.1509

(20, 30) 3 −0.5053 (124.6, 142.4) 8 −1.7985

(30, 40) 4 0.0442 (142.4, 160.2) 9 −1.3398

(40, 50) 5 0.6464 (160.2, 178) 10 −1.2371

(50, 60) 6 0.9914 (178, 195.8) 11 −1.2571

(60, 70) 7 1.1309 (195.8, 213.6) 12 −1.6333

(70, 80) 8 1.5557 (213.6, 231.4) 13 −2.3612

(80, 90) 9 0.0442 (231.4, 249.2) 14 −3.2262

(249.2, 267.0) 15 −6.7693

4.3. Landslide Susceptibility Evaluation by WOF-RF Model
4.3.1. Comparison of Rainfall and Seismic Landslide Posteriori Probability Calculation
and Zoning

The 407 rainfall and 2936 seismic landslides collected were used as positive samples
for the respective models, then a 5 km buffer zone was established with the positive sample
points of rainfall and seismic landslides as the center, and the negative samples of the two
types of landslides were selected from outside the buffer zone according to the ratio of
positive samples:negative samples of 1:1 to form the data set; the data sets of rainfall and



Remote Sens. 2023, 15, 4947 15 of 28

seismic landslides were randomly selected according to 3:1 to form the training set and
testing set, and input into the random forest model respectively.

When the number of decision trees are 3000 and 2000, respectively, the errors of
rainfall and seismic landslide random forest models tend to stabilize. Based on the average
reduction Gini coefficients obtained from the constructed models, the importance ranking of
the two influence factors was obtained. The importance of the background factors of rainfall
landslides from high to low are as follows: DEM, land use, distance to faults, lithology,
profile curve, NDVI, aspect, slope, curvature, and the importance of the background factors
of seismic landslides from high to low are as follows: DEM, lithology, distance to faults,
slope, land use, NDVI, aspect, curvature, and profile curve.

The rainfall and seismic landslide susceptibility maps obtained based on the WOE-RF
model are shown in Figure 4a,b, respectively, and the susceptibility maps of the two types
of landslides are divided into five zones, namely, extremely high, high, medium, low, and
extremely low based on natural interruption points. The statistical results of the distribution
of rainfall and seismic landslides on each zone are shown in Table 5. Figure 4 and Table 5
all show that both rainfall and seismic landslides generally show the trend that the lower
the landslide susceptibility level is, the less the known landslides are distributed on it and
the larger the proportion of its area of the whole study area.

Table 5. Susceptibility classification and distribution of rainfall and seismic landslides in the upper
reaches of Minjiang River Basin.

Landslide Type Landslide Probability
Grading Interval

Landslide Probability
Grading Category

Proportion of Known
Landslides Corresponding

to the Landslide
Probability Grading

Category

Area Occupied by
Landslide Probability

Grading Category

Rainfall landslide [0.9000, 1] Extremely high 80.34% 6.60%

[0.4745, 0.9000] High 15.72% 8.34%

[0.2588, 0.4745] Medium 1.97% 10.95%

[0.0902, 0.2588] Low 0.74% 22.06%

[0, 0.0902] Extremely low 1.23% 52.05%

Seismic landslide [0.9000, 1] Extremely high 88.18% 17.13%

[0.5922, 0.9000] High 8.62% 9.42%

[0.3333, 0.5922] Medium 1.77% 8.28%

[0.1137, 0.3333] Low 0.85% 12.58%

[0, 0.1137] Extremely low 0.58% 52.59%

Figure 5a,b show extremely high susceptibility areas of rainfall and seismic landslides.
Through comparison, it can be found that the similarities between the two are that both
extremely high areas of rainfall and seismic landslides are distributed along the main parts
and tributaries of rivers; both rainfall and seismic landslides are prone in Maoxian, Lixian,
Wenchuanxian, and Dujiangyan, whereas Songpanxian is less prone to landslides compared
with the other four counties and cities, especially rainfall landslides; along the line from
Xueboding mountain to Lixian, there are relatively few rainfall and seismic landslides
in the northwest, while they are mainly concentrated in the southeast area of the upper
Minjiang River Basin.

The distribution of the three geological conditions of elevation, land use, and lithology,
which are the most important for the evaluation of the susceptibility of rainfall and seismic
landslides in extremely high susceptibility areas, were analyzed separately, and the results
are shown in Figure 6:
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Figure 4. (a) Spatial distribution of rainfall landslides in the upper reaches of Minjiang River Basin;
(b) Spatial distribution of seismic landslides in the upper reaches of Minjiang River Basin.

Figure 6a,b show that the extremely high susceptibility areas of rainfall and seismic
landslides are concentrated at the altitudes of 1000–2500 m and 1500–3000 m, respectively,
which indicates that the development of seismic landslides is higher than that of rainfall
landslides. Figure 6c,d, 1–7 represent Garden plot, Woodland, Land for water bodies and
water conservancy facilities, Grassland, Commercial area, Land for industrial and mining
warehousing, and Other land, respectively, and Figure 6c,d show that both rainfall and
seismic landslides occur easily in Garden plot, Woodland, and Grassland. Figure 6e,f,
1–15 represent Sandstone and siltstone interbedded with phyllite; Shale, phyllite, and silt-
stone; Granitic rocks; Syenite; Diorite; Limestone and sandstone; Unconsolidated deposits;
Sandstone, siltstone, and shale; Limestone intercalated with shale; Limestone, sandstone,
and shale; Limestone and dolomite intercalated with phyllite; Dolomite, silicalite, phyllite,
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sandstone, and siltstone; Amphibolite; Sandstone and siltstone intercalated with slate;
and Sandstone and siltstone interbedded with shale. Figure 6e,f show that both rainfall
and seismic landslides are likely to occur in Sandstone and siltstone interbedded with
phyllite; Granitic rocks; Limestone and sandstone; Limestone and dolomite intercalated
with phyllite; Dolomite, silicalite, phyllite, sandstone, and siltstone; and Amphibolite.
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Figure 6. Comparison of distribution of rainfall and seismic landslides that are highly prone to occur
in elevation, land use, and lithology ((a) Distribution of highly prone areas of rainfall landslide in
elevation; (b) Distribution of highly prone areas of seismic landslide in elevation; (c) Distribution
of highly prone areas of rainfall landslide in land use; (d) Distribution of highly prone areas of
seismic landslide in land use; (e) Distribution of highly prone areas of rainfall landslide in lithology;
(f) Distribution of highly prone areas of seismic landslide in lithology).

4.3.2. Comparison of Landslide Susceptibility Areas from Two Methods

Due to the different ranges of background factors that favor the occurrence of rainfall
and seismic landslides, many studies currently do not distinguish the types of landslides
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(rainfall-type, seismic-type, or others) when evaluating landslide susceptibility, which may
lead to inaccurate results. Therefore, this research attempts to spatially overlay different
types of landslide susceptibility maps after distinguishing the types of landslides, and then
spatially compare with the landslide susceptibility map without distinguishing the types
of landslides in order to see the differences in the distribution of the same class of landslide
prone areas between the two.

The collected 3343 landslides of unclassified landslides (after removing landslides
distributed in the same grid, 3286 landslides remained) are used as positive samples for the
model, a 5 km buffer zone is established with the positive sample points as the center, and
the negative samples of landslides are selected from outside the buffer zone in the ratio
of positive samples: negative samples of 1:1 to form the data set; then, the unclassified
landslide data set is randomly generated in the ratio of 3:1 to form the training set and
testing set, and input to the random forest model. When the number of decision trees
is 3000, the error of the random forest model tends to be stable. Based on the average
reduction Gini coefficient obtained from the constructed model, the importance ranking
of the influencing factors obtained from the highest to the lowest are as follows: DEM,
lithology, distance to faults, NDVI, slope, land use, aspect, profile curve, and curvature.

The landslide susceptibility map of unclassified landslides obtained based on the
WOE-RF model is shown in Figure 7. The landslide susceptibility maps are divided into
five classes based on natural interruption points: extremely high, high, medium, low, and
extremely low, and the statistical results of landslide distribution on each interval are shown
in Table 6.

Table 6. Susceptibility classification and distribution of unclassified landslides in the upper reaches
of Minjiang River Basin.

Landslide Type Landslide Probability
Grading Interval

Landslide Probability
Grading Category

Proportion of
Known Landslides
Corresponding to

the Landslide
Probability Grading Category

Area Occupied by
Landslide Probability

Grading Category

Unclassified landslide [0.9000, 1] Extremely high 87.40% 16.88%

[0.5882, 0.9000] High 9.53% 10.24%

[0.3333, 0.5882] Medium 1.28% 7.95%

[0.1137, 0.3333] Low 1.13% 11.06%

[0, 0.1137] Extremely low 0.66% 53.87%

Spatial overlay Extremely high 89.06% 17.38%

High 8.23% 11.66%

Medium 1.61% 12.39%

Low 0.67% 21.28%

Extremely low 0.43% 37.29%

Figure 7a shows the landslide susceptibility map of the upper Minjiang River Basin
calculated based on the WOE-RF model regardless of landslide type. Figure 7b shows the
spatial superposition of the rainfall and seismic landslide susceptibility maps, and classi-
fies (extremely high, extremely high), (extremely high, high), (extremely high, medium),
(extremely high, low), (extremely high, extremely low) as extremely high landslide suscep-
tibility zones; (high, high), (high, medium), (high, low), (high, very low) as high landslide
susceptibility zones; (medium, medium), (medium, low), (medium, extremely low) as
medium landslide susceptibility zones; (low, low), (low, extremely low) as low landslide
susceptibility zones; and (extremely low, extremely low) as extremely low landslide suscep-
tibility zones [32].

The statistical information on the landslide susceptibility zones in the upper reaches
of the Minjiang River Basin obtained by the two methods is shown in Table 6, both of
which show that the higher the grade of the landslide susceptibility zone, the more the
number of known landslides falling into the zone. The difference in the proportion of
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known landslides in the corresponding susceptibility zones to all known landslides is
1.66%, 1.3%, 0.33%, 0.46%, and 0.23%, respectively, all within 2%; the difference in the
ratio of each landslide susceptibility zone to all known landslides is 0.5%, 1.42%, 4.44%,
10.22%, 16.58%, respectively; the overlapping areas of the corresponding susceptibility
intervals were superimposed and found to be 84.91%, 48.20%, 39.39%, 44.84%, and 65.44%
for extremely high, high, medium, low, and extremely low, respectively.
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ity map).

The results of the landslide susceptibility assessment obtained using spatial superpo-
sition and unclassified landslides are compared by using proportional statistics, and the
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results are shown in Figure 8. The solid line shows the distribution of different grades of
landslide susceptibility obtained by using the unclassified landslides, and the dashed line
shows the distribution of different grades of landslide susceptibility obtained using the
spatial superposition of rainfall and seismic landslide susceptibility maps.
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Figure 8a–i show the distribution of both in terms of elevation, lithology, distance to
faults, NDVI, slope, land use, aspect, profile curve, and curvature, respectively.

There are the same results between the two resources of landslide susceptibility: for
the elevation factor, the predicted landslide areas for extremely low, low, medium, high,
and extremely high grades are concentrated in (3500, 4500), (3000, 4000), (2500, 4000), (2500,
3500), and (1500, 3000) for both. For the lithology factor, extremely low, low, medium, high,
and extremely high grades are concentrated in Sandstone and siltstone interbedded with
phyllite, Granitic rocks; Sandstone and siltstone interbedded with phyllite; Sandstone and
siltstone interbedded with phyllite, limestone, and sandstone; Sandstone, and siltstone
interbedded with phyllite, limestone and sandstone, and limestone and dolomite inter-
calated with phyllite; Sandstone and siltstone interbedded with phyllite, limestone and
sandstone, limestone and dolomite intercalated with phyllite, and Amphibolite; they are
all concentrated in Sandstone and siltstone interbedded with phyllite. As for the fault
factor, extremely low-, low-, medium- and high-grade landslide prediction areas are mainly
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concentrated in (0, 150), which means (0, 30,000) m, and extremely high-grade areas are
concentrated in (0, 100), which means (0, 20,000) m. For the NDVI factor, extremely low-,
low-, medium-, high-, and extremely high-grade landslide prediction areas are mainly dis-
tributed in (6000, 9000). For slope factor, extremely low- and low-grade landslide prediction
areas are mainly distributed in (10, 40), and medium, high, and extremely high grade are
mainly distributed in (10, 50). For the land use factor, extremely low-, low-, medium-, high-,
and extremely high-grade landslide prediction areas are mainly distributed in Garden plot
and Woodland. For the aspect factor, except for the plane direction, the distributions of
extremely low, low, medium, high and extremely high landslide prediction areas are not
much different in each slope direction, and the distribution is relatively uniform. For the
profile curve and curvature factor, extremely low, low, medium, high, and extremely high
landslide prediction areas are all concentrated in (–10, 10).

There are also the different results between the two resources of landslide susceptibility:
a 10% difference was used as a threshold to determine whether the difference between
the two was too large, and it was found that the difference among the distributions of
each classification in lithology, NDVI, slope, aspect, profile curve, and curvature were all
within 10%. For the elevation factor, the low gradation of both (unclassified landslides
susceptibility, spatially superimposed landslide susceptibility) on (500, 1000), (1000, 1500),
(1500, 2000), (2000, 2500), (2500, 3000), (3000, 3500), (3500, 4000), (4000, 4500), (4500, 5000),
(5000, 5500), (5500, 6000) are 0, 0.03%, 0.36%, 0.85%, 11.79%, 42.65%, 36.27%, 7.18%, 0.77%,
0.10%, 0; 0, 0, 0, 0, 0.11%, 4.51%, 32.85%, 46.52%, 11.88%, 4.05%, 0.08%, and 0; the difference
between the two in the range (3500, 4000) is more than 10%. The medium grading on
each interval are 0, 0, 0.17%, 3.03%, 23.30%, 51.54%, 18.24%, 2.72%, 0.93%, 0.07%, 0; 0,
0.01%, 0.08%, 1.31%, 15.22%, 41.30%, 34.65%, 5.53%, 1.85%, 0.05%, and 0, and the difference
between the two is more than 10% in the range of (3000, 3500), (3500, 4000). For the distance
to faults factor, the medium grading of both (unclassified landslide susceptibility, spatially
superimposed landslide susceptibility) on (0, 20), (50, 100), (100, 150), (150, 200), (200,
250), (250, 300) are 48.12%, 25.15%, 12.69%, 8.39%, 5.64%, 0.01%; 58.30%, 19.96%, 11.20%,
6.53%, 3.94%, and 0.08%, and the difference between the two in the range of (0, 50) (within
(0, 10,000) meters) is more than 10%. For the land use factor, the low grading of both
(unclassified landslide susceptibility, spatially superimposed landslide susceptibility) on
Garden plot, Woodland, Land for water bodies and water conservancy facilities, Grassland,
Commercial area Land for industrial and mining warehousing, and Other land are 66.58%,
32.96%, 0.27%, 0.14%, 0.05%, 0, 0; 76.63%, 22.93%, 0.35%, 0.06%, 0.02%, 0, 0, 0, and both on
Garden plot and Woodland differ by more than 10%.

4.3.3. WOF-RF Model Accuracy Evaluation

(1) Confusion matrix

Based on the confusion matrix and calculated from Table 7, the accuracy, recall of
rainfall, and seismic and unclassified landslides can be calculated separately, as shown in
Table 8:

As can be seen from Table 8, the accuracy of rainfall, seismic and unclassified landslide
dataset are above 80%; meanwhile, except for the lower recall rate of the rainfall landslide
test set, all the others are above 80%, although the recall rate of rainfall landslide testing set
is lower, and the recall rate of the whole dataset of the rainfall landslide is above 90%, so
both the accuracy and recall rate show that the accuracy of the model is high.

(2) ROC curve

Figure 9a,b, and c show the ROC curves of rainfall, seismic, and unclassified landslides,
respectively. Figure 9a shows that the AUC areas of the rainfall landslide training set, testing
set, and the whole data set are 0.9997, 0.9485, and 0.9547, respectively. Figure 9b shows
that the AUC areas of the seismic landslide training set, testing set, and the whole data
set are 0.9996, 0.9809, and 0.9211, respectively. Figure 9c shows that the AUC areas of the
unclassified landslide training set, testing set, and the whole data set are 0.9997, 0.9822, and
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0.9207, respectively. It can be seen that the WOE-RF model has a high evaluation accuracy
for all three landslide datasets.

Table 7. Confusion matrix of rainfall, seismic, unclassified landslides’ training set, testing set, and the
whole data set.

Reality
Prediction 0 1

Rainfall landslide training set 0 306 47

1 0 259

Rainfall landslide testing set 0 100 33

1 1 68

Rainfall landslide whole set 0 468,447 39

1 94,661 368

Seismic landslide training set 0 2202 221

1 0 1981

Seismic landslide testing set 0 724 127

1 10 607

Seismic landslide whole set 0 466,625 486

1 93,954 2450

Unclassified landslide training set 0 2466 273

1 0 2192

Unclassified landslide testing set 0 813 143

1 8 678

Unclassified landslide whole set 0 467,927 559

1 92,302 2727

Table 8. Accuracy, recall of rainfall, seismic, unclassified landslides’ training set, testing set, and the
whole data set.

Accuracy Recall

Rainfall landslide training set 0.9232 0.8464

Rainfall landslide testing set 0.8317 0.6733

Rainfall landslide whole set 0.8319 0.9042

Seismic landslide training set 0.9498 0.8996

Seismic landslide testing set 0.9067 0.8270

Seismic landslide whole set 0.8324 0.8345

Unclassified landslide training set 0.9446 0.8892

Unclassified landslide testing set 0.9080 0.8258

Unclassified landslide whole set 0.8352 0.8299
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5. Discussion
5.1. Comparison of Rainfall and Seismic Landslide Susceptibility in the Upper Reaches of Minjiang
River Basin

The importance ranking of the factors for evaluating the susceptibility of rainfall
landslides in the upper reaches of Minjiang River Basin is as follows: DEM, land use,
distance to faults, lithology, profile curve, NDVI, aspect, slope, and curvature. The impor-
tance ranking of the factors for evaluating the susceptibility of seismic landslides in the
upper reaches of Minjiang River Basin is as follows: DEM, lithology, distance to faults,
slope, land use, NDVI, aspect, curvature, and profile curve. In terms of the ranking of
the importance of factors, DEM has the greatest influence on the development of rainfall
and seismic landslides, indicating that unstable slope movement develops at a specific
elevation location; in addition, land use and lithology are the second most important factors
affecting rainfall and seismic landslides, respectively; the distance to faults is the third most
important factor affecting rainfall and seismic landslides. Seismic landslides are commonly
found in places close to the faults, and the reason why faults have a greater influence on
rainfall landslides in this study may be that unstable activities at faults provide a potential
source of material for rainfall, and therefore shallow rainfall landslides are likely to occur
when rainfall occurs. However, the specific causes need to be analyzed in depth in the
context of the complex geology of the upper Minjiang River Basin. By comparing the two
susceptibility maps, it was found that the areas with high susceptibility levels are roughly
distributed along the rivers in terms of spatial distribution, and the southeast direction
of the line from Xuebaoding mountain to Lixian is the high landslide occurrence area for
both. The extremely high susceptibility areas of the two were extracted separately and their
distributions in DEM, land use, and lithology factors were analyzed. It was found that the
differences between the distributions of the two in terms of land use and lithology are small,
and seismic landslides are more likely to occur at a height of 1500–3000 m, while rainfall
landslides are more likely to occur at a height of 1000–2500 m. This may be related to the
triggering principles of the two, with most seismic landslides being bedrock landslides
and most rainfall landslides being shallow landslides; meanwhile, this is also consistent
with the conclusion that “rainfall landslides are more likely to occur at lower slopes, while
earthquake landslides are more likely to occur at steeper slopes” in the upper reaches
of Minjiang River Basin, obtained using a statistical method of landslide proportion by
Bai et al. [41]. Therefore, from the above results, it is clear that we cannot simply regard
different types of landslides as the same when conducting detailed studies.

5.2. Comparison of Two Mapping Methods for Landslide Susceptibility in the Upper Minjiang
River Basin

The two methods of obtaining landslide susceptibility in the upper reaches of the
Minjiang River Basin do not differ greatly in terms of the distribution of known landslides
on each susceptibility interval and the proportion of area occupied by each susceptibility
interval when directly performing machine learning on unclassified landslides, as well as
spatial stacking on the susceptibility of rainfall and seismic landslides. However, when the
spatial superposition of the two methods was carried out, it was found that extremely high
and extremely low susceptibility zones had 84.91% and 65.44% overlap, respectively, while
the other three susceptibility zones did not overlap by more than 50%, indicating that the
prediction results of the two methods are different. At the same time, statistical analysis
was done on the distribution of both corresponding landslide prediction grading areas
in terms of background factors. The differences in the distribution of predicted results in
terms of lithology, NDVI, slope, aspect, profile curve, and curvature are within 10%, but
the differences in the distribution of both low and medium landslide prediction grading
areas in terms of elevation are larger; the differences in the distribution of medium-graded
landslide prediction areas in terms of distance to faults are larger; the differences in the
distribution of low-graded landslide prediction areas in terms of land use are larger.
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The reasons for the differences are speculated as follows: for unclassified landslides
composed of rainfall and seismic landslides, the spatial relationship between the two types
of landslides and the background factors affecting the landslide development is considered
at the same time. Whether from the calculation of weight or the machine learning algorithm
of random forest, it is equivalent to taking the union of the results that are conducive to both
rainfall landslides and seismic landslides. For the landslide susceptibility map generated
by spatial stacking of rainfall and seismic landslide susceptibility maps, the initial consid-
eration was given to the demand for background factors for different types of landslides,
as the development of different types of landslides requires different requirements for
background factors. At the same time, the final landslide susceptibility level determined by
stacking is based on the maximum susceptibility interval of different types of landslides
before stacking. From this perspective, in fact, there have been differences since the initial
calculation of weights that express the spatial relationship between landslides and factors.
Considering the types of landslides, the spatial relationships between rainfall, seismic
landslides, and background factors were obtained, and the same background factor was
given different weights, respectively, when machine learning was conducted. The rela-
tionship between the two types of landslides and background factors was also considered
separately. When not considering the type of landslides, the weight of the obtained factors
took into account rainfall and seismic landslides at the same time, and the same factor only
had one weight that expresses the relationship between all landslides and factors, which
also affected the subsequent calculation of machine learning. When conducting machine
learning algorithms simultaneously, the situation where two types of landslides coexist
was also considered. Based on the above analysis, it can be determined that there may
be significant differences between the landslide susceptibility obtained using the spatial
stacking of rainfall and seismic landslide susceptibility maps and the susceptibility results
obtained directly using unclassified landslides.

It can be seen that not every scenario can be considered without the type of landslide.
For the assessment of landslide susceptibility, it is necessary to separate different types of
landslides when the needs for landslide background factors are not exactly the same for
both types of landslides. All in all, it is essential to judge whether the different types of
landslides need to be viewed separately for different problem scenarios and to solve the
detailed problems.

5.3. Limitations and Prospects

The factors affecting the occurrence of landslides can be divided into background
factors and triggering factors; this research is based on using the background factors
affecting the occurrence of landslides to evaluate the spatial susceptibility of rainfall and
seismic landslides in the upper reaches of the Minjiang River Basin. However, the role
of trigger factors cannot be ignored. Based on this research, rainfall factors should be
considered for inclusion in the study of rainfall landslides, and peak ground acceleration
factor should be considered for inclusion in the study of seismic landslides.

In addition, in the susceptibility mapping of landslides in the upper reaches of the
Minjiang River Basin, it was found that the landslide susceptibility maps obtained using
the spatial superposition of rainfall and seismic landslide susceptibility maps differed
significantly from those obtained directly from unclassified landslides, which on the one
hand illustrates the necessity of classifying landslides for specific problems. At the same
time, the respective weights of the two landslide susceptibility layers were not considered
when the spatial overlay was conducted, and the distribution of the two different types
of landslides in terms of each geological factor shows that they have different needs for
background factors. In addition, the changes in weights due to the frequency of landslide
occurrences of both can be considered in the spatial overlay of the two in the future.
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6. Conclusions

This research takes the upper reaches of the Minjiang River Basin as the study area and
evaluates the susceptibility of rainfall, seismic, and unclassified landslides based on WOE-
RF. Then, a spatial comparison of landslide susceptibility maps in the upper reaches of the
Minjiang River Basin, obtained by overlaying landslide susceptibility maps from rainfall
and earthquake landslides and directly from unclassified landslides, was conducted:

(1) In terms of model construction, the event impact factors entered into the machine
learning model in previous studies are often assigned weights by the expert scoring
method, AHP, and other biased subjective methods. In this research, we used a
purely data-driven weight of evidence method without human intervention to assign
corresponding weights to each factor to participate in the calculation of the model,
and the factor weights obtained from weight of evidence are the expression of the
spatial relationship between landslides and the factors influencing the occurrence of
the landslides, which can reduce the redundancy of the data input to the machine
learning model to a certain extent.

(2) In terms of spatial location distribution, rainfall and seismic landslides have the
following points in common: they are prone to occur along rivers; landslides are
more likely to occur in Maoxian, Lixian, Wenchuanxian, and Dujiangyancity, while
landslides are less likely to occur in Songpanxian; and landslides are more likely
to occur in the southeast of the line from Xuebaoding to Lixian. In terms of the
distribution of geological factors, seismic landslides are distributed at a slightly higher
elevation than rainfall landslides, whilst land use and lithological conditions in both
susceptible areas are similar.

(3) The differences between the landslide susceptibility maps obtained by superimposing
rainfall and seismic landslide susceptibility maps and the result obtained by directly
using unclassified landslides are large, which is mainly caused by the difference in
the principles of the two mapping methods and shows that it is important to see
whether it is necessary to differentiate the types of landslides for solving the problems
in different contexts.

(4) The accuracy of the rainfall, seismic, and unclassified landslide models calculated
from the confusion matrix are all above 80%, and the AUC area is greater than 0.9,
both of which indicate the high accuracy of the WOE-RF model.
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