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Abstract: Ship classification using the synthetic aperture radar (SAR) images has a significant role in
remote sensing applications. Aiming at the problems of excessive model parameters numbers and
high energy consumption in the traditional deep learning methods for the SAR ship classification,
this paper provides an energy-efficient SAR ship classification paradigm that combines spiking
neural networks (SNNs) with Siamese network architecture, for the first time in the field of SAR
ship classification, which is called the Siam-SpikingShipCLSNet. It combines the advantage of
SNNs in energy consumption and the advantage of the idea in performances that use the Siamese
neuron network to fuse the features from dual-polarized SAR images. Additionally, we migrated the
feature fusion strategy from CNN-based Siamese neural networks to the SNN domain and analyzed
the effects of various spiking feature fusion methods on the Siamese SNN. Finally, an end-to-end
error backpropagation optimization method based on the surrogate gradient has been adopted to
train this model. Experimental results tested on the OpenSARShip2.0 dataset have demonstrated
the correctness and effectiveness of the proposed SAR ship classification strategy, which has the
advantages of the higher accuracy, fewer parameters and lower energy consumption compared with
the mainstream deep learning method of the SAR ship classification.

Keywords: synthetic aperture radar (SAR); energy-efficient and high-performance; SAR ship
classification; Siamese spiking neural network (SNN); dual-polarized SAR ship images

1. Introduction

Nowadays, synthetic aperture radar (SAR) systems play an important role in the
different application of remote sensing, geosciences, reconnaissance, and surveillance,
which have gained the wider attention in the military and civilian fields [1–5]. Ship target
recognition and classification using SAR images has significant value in ocean remote
sensing applications, since it is able to assist national departments in managing marine
ships, as well as the monitoring of marine resource extraction [6,7]. However, because the
SAR imaging method mainly relies on the target scattering characteristics, electromagnetic
waveforms, and imaging algorithms, the ship targets in the SAR images usually do not
have the rich detailed information, and the differences between the different types of ship
targets are not significant [7]. Therefore, ship target recognition and classification in the
SAR images pose the great challenges. Figure 1 displays some examples of the ship targets
in the public SAR image dataset, i.e., the OpenSARShip2.0 dataset [8].
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Figure 1. Some examples of the SAR ship targets [8]. (a) Cargo with VV polarization; (b) tanker with
VV polarization; (c) tug with VV polarization; (d) cargo with VH polarization; (e) tanker with VH
polarization; (f) tug with VH polarization.

The traditional SAR ship classification method usually achieves the goal of classifying
the SAR ships by manually designing the features (such as the geometric structure features,
electromagnetic scattering features, transform domain features, local invariant features),
but the generalization ability of the traditional SAR ship classification method is usually
weak [9,10]. With the development of the deep learning (DL) technology, the artificial
neural network (ANN) is gradually replacing the traditional SAR target classification
method and becoming the mainstream choice for SAR ship classification [10]. However,
due to the lack of the significant feature differences between the SAR ship classes, severe
imbalance class distribution of the SAR ships, and a small number of the SAR ship images,
SAR ship classification based on the DL also faces the significant challenges. Thus, directly
applying the classical image classification networks for the SAR ship classification often
results in poor performance. Generally, the SAR image has different polarization modes
and data forms in the different domains, thus some researchers are gradually shifting their
perspective to fusing the image data from the different sources to improve the performance
of the SAR ship classification, such as fusing the SAR ship image data with the different
polarization modes [11]. As shown in [12–15], Siamese network architecture has been
used for the information fusion of the multi-polarized SAR ship images to improve the
network performance. Reference [12] uses an information fusion method of the element-by-
element multiplication, while references [13,14] propose the Bernoulli pooling and grouping
Bernoulli pooling methods, respectively, to fuse the information in the SAR images with
different polarization methods. In [15], the cross-attention mechanism is applied to fuse the
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multi-polarized information and enhance the network attention to the key features. In [16],
a squeeze-and-excitation Laplacian pyramid network with the dual-polarization feature
fusion (SE-LPN-DPFF) for the ship classification in SAR images has been proposed, which
reveals the state-of-the-art SAR ship classification performance. In addition, the SAR ship
classification method also can use the traditional feature extraction operators to enhance
the features of the SAR ships, and then integrates and utilizes the feature learning ability of
the neural networks to achieve the better performance. The HOG-ShipCLSNet model has
been proposed in [17], even though the neural networks have a strong feature extraction
capability, the traditional manually designed features should be utilized to improve the
classification accuracy. This model performs the global attention mechanism operations on
the features at different levels, and then feeds each level of the feature into the classifier,
averaging the results of each classifier. At the same time, the features extracted by the
HOG operator are subjected to the principal component analysis, and finally sent to the
final classifier to obtain the final classification result. Based on the same idea, the MSHOG
operator has been proposed in [18], which can extract the SAR ship features and integrate
them into neural networks.

On the other hand, with the rapid development of DL technology, the computing
power of the DL model is greatly improved, while it also results in great energy consump-
tion. Nowadays, a serious problem in the artificial intelligence (AI) field is that the training
process of DL models is expensive, which will become more and more serious when the
computing power of DL models increases. The increase in the energy consumption of
ANN computing costs is first attributed to the emergence of the increasingly complex ANN
model. In 2018, the natural language processing model BERT [19] released by Google had a
parameter count of 340 M. In 2021, the released Switch Transformer [20] had a parameter
count of 1.6 × 107 M. In 2023, the latest multimodal large model GPT-4 released by OpenAI
caused a huge global response. Although its parameter quantity has not been announced,
the industry insiders speculate that it should be equivalent to the parameter quantity of
GPT-3 (1.75 × 106 M) [21]. Huge ANN models typically require a significant amount of
computing power, and then the high computational costs bring about a sharp increase in
energy consumption, which makes it difficult for embedded application platforms with lim-
ited energy resources to apply such models. However, designing a network model typically
requires repeated adjustments and training, thereby doubling energy consumption.

Although the traditional ANN has made breakthroughs in multiple tasks, the en-
ergy consumption issue caused by the cost of the ANN computing makes it difficult to
deploy with some resource limited devices and applications. To address this issue, the
third-generation ANN called the spiking neural network (SNN) is proposed [22]. SNNs are
based on a brain-like computing framework, using spiking neurons as the basic computing
unit and transmitting the information through the sparse spiking sequences, which is
called a new-generation of green AI technology with lower energy consumption that can
run on neural chip devices. Inspired by the operating mechanism of biological neurons,
the main core idea of the SNN is to simulate the process of information encoding and
transmission between biological neurons using spiking sequences and spiking functions.
SNNs can more accurately simulate information expression and the processing process
of the human brain, being a brain-like computing model with high biological plasticity,
event-driven characteristics, and lower energy consumption [23]. Currently, SNN research
is mainly focused on the computer vision field using optical images as carriers. Inspired by
histogram clustering, Buhmann et al. [24] first proposed the SNN model based on integrate
and fire (IF) neurons, which encodes the image segmentation results with spiking emission
frequency. Based on the Time to First Spike encoding strategy, Cui et al. [25] have pro-
posed two encoding methods (linear encoding and nonlinear encoding), which convert the
grayscale values of image pixels into the discrete spiking sequences for image segmentation.
Kim et al. [26] first applied SNNs to the target detection field and proposed a detection
model based on the SNN, called as the Spiking-YOLO. By using techniques such as channel-
by-channel normalization and signed neurons with imbalanced thresholds, it provided a
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faster and more accurate message transmission between neurons, achieving better conver-
gence performance and lower energy consumption than the ANN model. Luo et al. [27] first
proposed the target tracker SiamSNN based on SNNs, which has good accuracy and can
achieve real-time tracking on the neural morphology chip TrueNorth [28]. Fang et al. [29]
proposed a residual network based on the spiking neurons to solve the image classifica-
tion problems by adding the SNN neural layers between the traditional residual units.
Bu et al. [30] proposed a high accuracy and low latency ANN-To-SNN conversion method,
and the converted spiking ResNet18 has achieved the recognition accuracy above 0.96 on
the CIFAR-10 (an image classification benchmark). The low energy consumption advantage
demonstrated by the SNN has the great application prospects for the SAR ship recognition
and classification tasks. At present, there are various low-power neural morphology chips
that support the deployment of SNNs, such as the TrueNorth [28], lynxiHP300, ROLLS [31],
etc., providing the strong support for promoting the SNN application.

Currently, the literature review indicates that there is almost no research on SNNs
based on the Siamese network paradigm in the SAR ship classification tasks. Aiming at the
problems of the excessive model parameter numbers and high energy consumption in the
traditional deep learning methods for the SAR ship classification, this paper provides an
energy-efficient SAR ship classification paradigm that combines the SNN with the Siamese
network architecture, for the first time in the field of the SAR ship classification, which
is called the Siam-SpikingShipCLSNet. It combines the advantages of SNN in energy
consumption and the advantages of the ideas in performance that use the Siamese neuron
network to fuse features from dual-polarized SAR images. Additionally, we migrated the
feature fusion strategy from the CNN-based Siamese neural networks to the SNN domain
and analyzed the effects of various spiking feature fusion methods on the Siamese SNNs.
Finally, an end-to-end error backpropagation optimization method based on the surrogate
gradient is adopted to train this model. The list of this paper has been organized as follows.
In Section 2, an energy-efficient and high-performance ship classification strategy has
been proposed. In Section 3, the experiment has been conducted on the OpenSARShip2.0
dataset, and then the experimental results are shown and analyzed. Finally, a conclusion is
presented in Section 4.

2. Energy-Efficient and High-Performance Ship Classification Strategy

The SNN can run on neural chips and have low energy consumption advantages,
making it suitable for deployment on embedded platforms with limited resources. Figure 2
shows the basic architecture of the proposed Siam-SpikingShipCLSNet model. The main
body of the proposed model includes a pair of the parameter-shared feature extraction
networks, which are used to extract the paired ship features from the dual-polarized SAR
images. The extracted ship features are fused in a certain way and then sent to subsequent
classification networks for ship classification.

Compared with Siamese networks based on second-generation neural networks such
as the convolution neural network (CNN), Siam-SpikingShipCLSNet has significant differ-
ences. Firstly, it is based on the third-generation neural network SNNs and uses discrete
spiking to transmit the information between neurons. When spiking is transmitted to the
neuron, it charges the neuron. If the electric potential exceeds the discharge voltage, the
neuron emits a spiking. If there is no spiking transmitted to the current neuron, this neuron
is in a resting state and does not work or consume energy. The proposed model is based
on frequency encoding, mainly focusing on the frequency of the neurons emitting the
spiking without considering the time structure between the spiking sequences. This neural
encoding method is a quantitative measure of the output of the neurons. Since it is possible
to correspond the spiking firing frequency of neurons within the simulation duration to the
continuous values used by the ANN, thus we can draw inspiration from the development
achievements of the ANN [32]. Secondly, the model input is a two-dimensional image com-
posed of the continuous values, which needs to be encoded to obtain a two-dimensional
spiking matrix that can represent the image information and be understood by the SNN.
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At the specified simulation time, the backbone network obtains a spiking feature map
composed of the discrete 1/0 spiking. Subsequently, the spiking feature map is sent to the
classification network, causing the spiking neurons in the output layer to emit the spiking,
which represent the network’s judgment of the current input image category. Meanwhile,
compared to the ANNs, the SNNs based on frequency encoding have been extended in
the temporal dimension. Usually, the simulation step is set to T, which means recursively
processing the T times’ inference of an input image. In this way, multiple output spiking
vectors with a length of T will be obtained at the output end of the classification network.
Finally, the classification result of the model can be determined by calculating the frequency
of each spiking neuron in the output layer during the simulation time T. The corresponding
category of the neuron with the highest spiking frequency is the model classification result.
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Figure 2. Schematic diagram of the proposed Siam-SpikingShipCLSNet model. The proposed model
includes a pair of the parameter-shared feature extraction networks, which are used to extract the
paired ship features from the dual-polarized SAR images. The extracted ship features are fused in a
certain way and sent to subsequent classification networks for ship classification.

2.1. Input Image Spiking Encoding

SNNs use the discrete spike to transmit the information, while the pixel values of the
input image are continuous, so it is necessary to encode them into spikes. This paper adopts
a stateless Poisson information encoding method to achieve this step. The encoder outputs
a two-dimensional 0/1 matrix, and an element value of one in the matrix indicates the
presence of a spike at that position. The probability of a spike occurring at a certain position
is same as the pixel value of the corresponding position in the normalized input image. The
larger the pixel value, the greater the likelihood of emitting a spike. The encoding method
of the Poisson encoder is as follows:

M(x, y) =
{

1 i f I(x, y) ≥ p
0 otherwise

, p ∼ U(0, 1) (1)

where M represents the two-dimensional spiking matrix output by the encoder, I represents
the input image, and U represents a uniform distribution. p is a random variable following
a 0–1 distribution, and its values are used as thresholds to binarize continuous pixel values.
During the simulation step T, a two-dimensional spiking sequence with a length of T is
obtained. There may be a loss of the image information in the process of converting the
continuous pixel value to the discrete two-dimensional map, but this information loss can
be greatly reduced after T pulses. Figure 3 gives an example of visualizing the spiking
results using the Poisson encoding. It is seen that although there are differences between
the two-dimensional spiking matrix and the original image, it fully preserves the main
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information of the original image. At the same time, there is also a discrete spiking point
caused by the presence of coherent spots in the background. In the actual process of the
automatic target recognition, the front-end target detector accurately locates the target and
then intercepts it, which can avoid these discrete spiking points.
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2.2. Spiking Neuron Model

An SNN is composed of the spiking neurons, and the selection of the spiking neurons
affects the overall performance of the SNN model. The typical spiking neuron model
includes the Hodgkin Huxley (H-H) model [33], IF model [34], leaky integrate and fire
(LIF) model [35], and so on. The H-H spiking neuron model has a strong biological
interpretability, but the model is too complex to construct. The IF model is too simplistic
and directly uses the capacitors to describe the working process of the neurons, without
describing the particle diffusion phenomenon that exists in the biological neurons. The
LIF model is an improvement on the IF spiking neuron model. The LIF model considers
another physiological factor: the cell membrane is not a perfect capacitor and the charge
slowly leaks through the cell membrane over time, allowing the membrane voltage to
return to its resting potential [35]. In this paper, the LIF spiking neuron model is adopted
to build a Siamese SNN for the SAR ship classification. The main actions of the spiking
neurons include the charging, discharging, and resting, so the corresponding model needs
to provide the corresponding descriptions. The differential equations of the LIF model is
given by:

τm
dV
dt

= Vrest −V + Rm I (2)

where τm = RmC is the time constant, C is the capacitor, and Rm is the input impedance.
V is the capacitor voltage, Vrest is the resting potential, and I is the current flowing through
the capacitor. The change in the voltage during the charging process can be described by
the following:

V(t) = Vrest + RI0

[
1− exp

(
− t

τm

)]
(3)

If the membrane voltage exceeds the threshold, the neuron emits spikes, and then the
membrane voltage drops to the reset potential Vrest.

In practice, the discrete difference equation is generally used to describe the charging,
discharging, and resetting actions of the LIF spiking neurons, which is as follows:

H[n] = f (V[n− 1], X[n]) = V[n− 1] +
1
τ
(−(V[n− 1]−Vreset) + X[n]) (4)

S[n] = θ(V[n]−Vthres) (5)

V[n] = H[n]× (1− S[n]) + Vreset × S[n] (6)
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Equation (4) represents the change in the neuronal potential during charging.
H[n] is the input spiking of the neuron, f is the state update function of the neuron
charging moment, V[n− 1] is the membrane voltage of the neuron, and X[n] is the spiking
sequence emitted by the neuron with a value of 0 or 1. S[n] is the spike firing state of
the neuron, θ is the Step function, Vthres is the threshold voltage of the spiking emission.
Equation (6) represents the hard-reset voltage after transmitting the spike.

2.3. Backbone Network Structure

The overall model of the proposed Siam-SpikingShipCLSNet is shown in Figure 2.
The backbone network is parameter shared and used to extract the feature from the input
SAR ship images, whose specific structure is shown in Figure 4. The network structure
is constructed by stacking the spiking convolutional network blocks, and the backbone
network consists of three spiking convolution blocks. A single spiking convolution block
consists of a convolutional layer, a batch normalization layer, an LIF neuron layer, and a
spiking pooling layer. The maximum spiking pooling is selected based on the research [29],
which suggests that the ability of the maximum pooling to process the information is
consistent with that of the SNNs, which is beneficial for fitting the temporal data. The
backbone network adopts a shallow design to ensures the lightweight network. In addition,
the SAR ship image does not have rich feature information, the performance improve-
ment brought by using the deep network is not significant, but the consumption of the
computing resources is greater. In addition, this paper adopts an alternative gradient
training method, where the gradient is approximate. If a deep network architecture is used,
the approximation error of the gradient will gradually accumulate and amplify with the
increase in the network depth, which will affect the convergence of the model. The data
pass through three spiking convolution blocks to obtain a spiking feature map with a down-
sampling rate of eight, which characterizes the feature information of the input image.
After the spiking feature fusion processing, it is sent to the target classification network for
ship classification.
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Figure 4. Backbone network structure of the proposed Siam-SpikingShipCLSNet, which consists of
three spiking convolution blocks. A single spiking convolution block consists of a convolutional layer,
a batch normalization layer, an LIF neuron layer, and a spiking pooling layer.

2.4. Spiking Feature Fusion

The key of the proposed Siamese SNN is the fusion of the spiking features extracted
from the backbone network. This paper proposes six fusion methods based on the data
fusion idea in the ANN, as shown in Figure 5.

It can be assumed that the spiking features of the dual-polarized ship images extracted
by the backbone network are f1 and f2, and the mapping relationship of the fully connected
layer is represented by Fcls. Therefore, under the fusion modes, the network output can be
represented by the various formulas in Table 1.
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Table 1. Spiking feature fusion methods.

Fusion Methods Operation

Method 1 Out = Fcls(Cat[ f1, f2])
Method 2 Out = Fcls(Max( f1, f2))
Method 3 Out = Fcls(Mul( f1, f2))
Method 4 Out = (Fcls( f1) + Fcls( f2))/2
Method 5 Out = (Fcls( f1) + Fcls( f2) + Fcls(Max( f1, f2))/3
Method 6 Out = (Fcls( f1) + Fcls( f2) + Fcls(Mul( f1, f2))/3

Cat represents concatenating dual-polarized spiking feature maps in the channel
dimension, then feeding them into the subsequent classifiers. Max indicates taking the
maximum element-wise on the corresponding channel of the dual-polarization spiking
feature map. In other words, as long as any prior neuron in either branch of the Siamese
network emits a pulse, that pulse should be retained. This processing aims to fully utilize
the useful features and enhance the firing rate of the spiking neurons. Mul represents
the multiplication operation on each channel of the dual-polarized spiking feature map,
which means that only the prior neurons in both main networks emit spiking and can be
transmitted to the post neurons. This processing aims to enhance common features in
the dual-polarized images. Compared to the first three methods, the latter three fusion
methods not only fuse the spiking features of the dual-polarized methods, but also send
the original spiking features into the classification network for fusion at the output layer.

2.5. Model Learning Methods

The SNNs cannot directly use the gradient descent backpropagation training methods
due to their nondifferentiable neural function. Thus, it is necessary to design the algorithms
for the error backpropagation of the spiking sequences. SNN learning and optimization
methods mainly include the learning rule based on the error backpropagation, learning
rule based on the spike-timing dependent plasticity (STDP), and the ANN-to-SNN learning
rule. Because the proposed Siam-SpikingShipCLSNet model belongs to a convolutional
SNN based on the frequency information encoding, an end-to-end error backpropagation
optimization algorithm based on the surrogate gradient is adopted.

2.5.1. Surrogate Gradient Training

The spiking signal emitted by the spiking neurons during the forward propagation is
used to transmit the information. The discharge function of the neurons is a Step function,
and the corresponding derivative function is an impulse function, so it cannot be used for
the directional propagation optimization algorithm based on the gradient descent [36]. For
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the proposed model based on the frequency information encoding, the neuron spiking
frequency in the output layer characterizes the model classification results. Thus, this
paper first calculates the error between it and its label, and then updates the network
parameters through the error backpropagation based on the surrogate gradient. The error
backpropagation algorithm based on the surrogate gradient refers to the use of the original
discharge function of the spiking pulse neurons in (5) in the forward inference of the model,
and the use of the approximate differentiable function to update the network parameter
in the backpropagation calculation of the gradients. In this paper, the model uses the
arctangent function as the surrogate function, which is as follows:

g(x) =
1
π

arctan
(π

2
αx
)
+

1
2

(7)

g′(x) =
α

2
(

1 +
(

π
2 αx

)2
) (8)

where α takes a value of 2 in this experiment, and the image of the surrogate function is
shown in Figure 6. It is indicated that it can have a shape similar to that of the Step function,
and its derivative function is also a sharp curve similar to the impact function.
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2.5.2. Loss Function

SNNs based on the frequency information encoding have a higher spiking frequencies
output through more excited neurons. Therefore, in the output spiking neuron layer, the
category represented by the neuron with the highest spiking frequency can be used as
the model classification result. This logic is consistent with the labels that use the one-hot
encoding, where the position element corresponding to the specified category has the
highest value, with a value of 1 and the rest being 0. Therefore, the neuron spiking emission
frequency in the output layer and the distance between the labels can be used to measure
the model prediction error. In this paper, the loss function uses the mean square error
function, which is as follows:

L(X, Y) =
1
C

C−1

∑
i=0

(xi, yi)
2 (9)

X =
N
T

(10)

where N is a vector that represents the number of spikes emitted by each neuron in the
output layer.X represents the network output vector, which is equal to the vector N divided
by the simulation step T, where C represents the number of the categories and Y represents
the label.
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3. Experimental Results and Analysis
3.1. Experimental Setup

For ship classification, the high or very high-resolution SAR images will provide
excellent results [37,38]. Nowadays, the low-medium resolution dataset is still used for the
ship classification in SAR images. In this paper, the OpenSARShip2.0 dataset released by
the Shanghai Jiao Tong University [8] is adopted as the experimental data, which include
34,528 SAR ship image slices, mainly obtained from the Sentinel-1 satellite SAR system. It
includes two interference wideband modes, i.e., the single look complex (SLC) and ground
range detected (GRD). Each ship SAR image slice is verified by a maritime traffic website
or automatic identification system (AIS) to ensure the accuracy of the label. The resolution
of the GRD mode is 20 × 22 m, while the resolution of the SLC mode is from 2.7 × 22 m
to 3.5 × 22 m. The imaging area of the SAR image slice includes many port regions such
as Shanghai and Shenzhen, and there is no interference such as the land background. The
same ship contains the slice pairs of the VV and VH polarization modes. There are more
than ten types of the ship categories in the entire dataset, but the distribution of the category
numbers is extremely imbalance. Usually, several of them are selected for the experiments
and analysis. In this paper, a relatively large number of Cargo (with chip number 21,241),
Tanker (with chip number 6343), Fishing (with chip number 454), and Other-type (with
chip number 5224) ships were selected for the ship classification in these experiments.

The number of the SAR images in the training set and test set is divided in a ratio
of 3:1, and the input SAR image size is adjusted to 64 × 64. The Adam optimizer is used
for the model training. For the neural network trained in this experiment, the batchsize
is set to 32, and the learning rate is set to 0.0001. In the above dataset, the experiment
uses a server equipped with the graphics card of the NVIDIA GeForce 3090 and central
processing unit (CPU) of the Intel (R) Xeon (R) E5-2678 v3 @ 2.50 GHz model. The operating
system is ubuntu 22.04 LTS, the software development uses the Pytorch 1.13 framework
and accelerates the model using the CUDA11.7.

3.2. Evaluating Indicator

In this paper, the common evaluation indicators in the image classification field are
used to evaluate the classification performance of models involved in this experiment,
mainly including the precision, recall rate, and F1 score [17,18,37]. The precision, recall
rate, and F1 score of the ship classification for the single category SAR images can be given
as follows:

Precisioni =
TP

TP + FP
(11)

Recalli =
TP

TP + FN
(12)

F1i = 2× Precisioni × Recalli
Precisioni + Recalli

(13)

where TP represents the number of the correctly classified targets in this category,
FP represents the number of the falsely classified targets in this category, and FN rep-
resents the number of the falsely negative targets in this category that are only classified as
the other categories. Due to the imbalance in the distribution of the number of ship targets
on the various types, for a fair evaluation, the proportion of the number of the ship images
is used as a weighting factor to calculate the weighting value as the overall evaluation
indicators. The specific formulas are as follows:

Precision =
C−1

∑
i=0

Ni
N

Precisioni (14)

Recall =
C−1

∑
i=0

Ni
N

Recalli (15)
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F1 =
C−1

∑
i=0

Ni
N

F1i (16)

where N represents the number of all SAR images, Ni represents the number of the SAR
images of the i-th category, and C represents the number of the categories. The weighted
recall rate is equal to the accuracy, which is the proportion of all correctly predicted samples
to the total number of the samples.

In addition, to evaluate the complexity of the models, the model parameter quantity
and number of the operations are used for analysis. For the ANN-based models, the floating-
point operations numbers (FLOPs) are used for evaluating the computation complexity,
while for the SNN-based models, the synaptic operation numbers (SOPs) are used for
evaluating the computation complexity [39], which is given by:

SOPs =
T

∑
t=1

(
L

∑
l=1

fout−l × sl(t)

)
(17)

where sl(t) is the number of the spiking emitted by the current spiking neuron layer, and
fout−l is the number of the connection between the current spiking neuron layer and the
subsequent layer. For an SNN, the computation is only generated when neurons emit
spikes. Therefore, based on the above Equation (17), the total computation count within
the simulation step size T can be calculated.

3.3. Experiment and Analysis
3.3.1. Ship Classification Performance

To verify the effectiveness of the proposed Siam-SpikingShipCLSNet model, the
experiment compared the models with multiple paradigms. The mainstream classification
network based on the convolutional neural network (CNN) selects the ResNet (including
18, 34, and 50 depths) [40], the densely connected convolutional network (DenseNet)
(including 121 and 161 sizes) [41], VGG16 [42], MobileNet-v2 [43], and AlexNet [44]. The
classification network based on the visual Transformer selects the ViT [45] and ResNet50ViT.
ResNet50ViT is the fusion of the CNN and ViT, which first uses the backbone network of
the ResNet50 to extract the image features, then sends the features to the ViT for the further
learning and finally gives the classification results. The network selection based on the
SNN architecture is Spiking-ResNet18 [46], which is the result of the spiking transformation
of the CNN-ResNet18. The comparative experimental results are summarized in Table 2.

Table 2. Classification performance of the different models.

Methods Models Precision Recall F1

Mainstream
classification

networks

ResNet18 0.6267 0.6590 0.6331
ResNet34 0.6212 0.6545 0.6312
ResNet50 0.6210 0.6597 0.6152

DenseNet121 0.6332 0.6630 0.6389
DenseNet161 0.6371 0.6706 0.6436

VGG16 0.6319 0.6670 0.6306
MobileNet-v2 0.5989 0.6438 0.5974

AlexNet 0.6332 0.6653 0.6258

Transformer
ViT 0.6078 0.6434 0.5826

ResNet50ViT 0.6213 0.6586 0.6261

SNN Spiking-ResNet18 (T = 16) 0.6189 0.6521 0.6272

Proposed method Siam-SpikingShipCLSNet 0.6395 0.6735 0.6365

Based on the experimental data, it is not difficult to find that the proposed Siam-
SpikingShipCLSNet performs the better than the most mainstream CNN classification
models, with the model precision and recall scores of 0.6395 and 0.6735, respectively,
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which is higher than all comparisons shown in Table 2. The F1 score is 0.6365, only lower
than the 0.6389 and 0.6436 obtained by the DenseNet121 and DenseNet161. Therefore,
it can be considered that the proposed Siam-SpikingShipCLSNet model can achieve the
performance level of the mainstream classification network models. Secondly, the Spiking-
ResNet18 model based on the SNN architecture has certain disadvantages compared with
the model based on the Siamese CNN architecture. One of the main reasons is that as a
third-generation ANN, it still has many immature aspects, and its network structure design,
training methods, neuron design, and other tasks are more difficult compared to the CNN.
Fortunately, its prospect of ultra-low energy consumption has attracted the attention of a
large number of applications.

3.3.2. Model Parameter Quantity

The model parameter quantity is also one of the important evaluation indicators for
evaluating the resource utilization demand of the model. Nowadays, many open-source
frameworks provide interfaces for computing this metric. When the performance difference
of the model is small, the strong advantages of the model with the small parameter quantity
will be demonstrated during the deployment. Although the performance of the CNN
is gradually improving in various tasks, the network size is also starting to rise, so it is
necessary to evaluate its parameter quantity.

Table 3 shows the parameter size of the experimental models, and the unit of the data
is M. From Table 3, it is found that the proposed Siam-SpikingShipCLSNet model has the
parameter quantity of only 2.19 M, which is lower compared with the other mainstream
image classification networks. In addition, its parameter quantity mainly comes from the
fully connected layer. If the method 2 of the data fusion is used, the model parameter
quantity will only be 1.15 M.

Table 3. Parameter quantity of the different models.

Methods Models Parameter Quantity

Mainstream
classification networks

ResNet18 11.80 M
ResNet34 21.29 M
ResNet50 23.52 M

DenseNet121 6.96 M
DenseNet161 26.48 M

VGG16 134.28 M
Mobillenet-v2 5.64 M

AlexNet 57.02 M

Transformer
ViT 12.76 M

ResNet50 ViT 9.95 M

SNN Spiking-ResNet18 (T = 16) 11.18 M

Proposed method Siam-SpikingShipCLSNet 2.19 M

3.3.3. Model Energy Consumption

This section discusses the computational complexity of various experimental models,
which is evaluated by the number of operations required for a single inference. For models
based on the second-generation ANN, the floating-point operations are used for evaluation,
whereas for models based on the SNN, the computational complexity is calculated by the
formula provided in reference [39], i.e., Equation (17). Moreover, the model energy con-
sumption depends on both the number of operations of the model itself and the hardware
devices deployed by the model. This paper assumes that the experimental model based on
the second-generation ANN runs on an advanced and efficient computing device (Intel
Stratix 10 TX FPGA) with an energy consumption of 12.5 pJ/FLOP, while the experimental
model based on the SNN runs on the neural morphology chip ROLLS [31] with an energy
consumption of 77 fJ/SOP. The computational complexity and energy consumption of
each experimental model are shown in Table 4. From Table 4, it is not difficult to find
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that the SNN-based model Spiking-ResNet18 and proposed Siam-SpikingShipCLSNet
model consume three orders of the magnitude less energy for the single inference than
other models based on the CNN and Transformer architectures. In addition, the proposed
Siam-SpikingShipCLSNet model achieves the lowest energy consumption in experimental
models, which is less than half of the energy consumption of the Spiking-ResNet18 model.
Due to the lower energy consumption advantage of the SNN, it has the great application
prospects in the platforms with limited energy.

Table 4. Computational complexity and energy consumption of the different models.

Methods Models FLOPs/SOPs Energy Consumption (J)

Mainstream
classification

networks

ResNet18 148.71 M 1.858 × 10−3

ResNet34 300.01 M 3.75 × 10−3

ResNet50 336.32 M 4.204 × 10−3

DenseNet121 235.24 M 2.941 × 10−3

DenseNet161 638.06 M 7.976 × 10−3

VGG16 1.38 G 1.725 × 10−2

MobileNet-v2 26.04 M 3.255 × 10−4

AlexNet 94.17 M 1.177 × 10−3

Transformer
ViT 3.24 G 4.05 × 10−2

ResNet50ViT 2.53 G 3.163 × 10−2

SNN Spiking-ResNet18 (T = 16) 119.16 M 9.175 × 10−6

Proposed method Siam-SpikingShipCLSNet 57.00 M 4.389 × 10−6

3.3.4. Fusion Method Analysis

This section analyzes the performance differences and reasons for the proposed Siam-
SpingShipCLSNet based on the different spiking feature fusion methods, and the experimen-
tal results are shown in Table 5. SOP/T represents the number of the synaptic operations
generated in a single forward inference, which can be used to evaluate the spiking firing rate
of the SNN neurons. According to the experimental results, it has been found that the experi-
mental group that does not use the Siamese network architecture to fuse the dual-polarized
SAR images had the lower precision, recall, and F1 scores than the other six groups that used
the Siamese SNN architecture. This demonstrates the superiority of the Siamese network
fusion architecture for ship classification using dual-polarized SAR images.

Table 5. Effect of the different fusion methods on the proposed Siam-spikingShipCLSNet model.

Fusion Methods Precision Recall F1 T SOP SOP/T

Without fusion 0.6166 0.6548 0.6136 12 15.2 M 1.27 M
Method 1 0.6395 0.6735 0.6365 8 57.0 M 7.13 M
Method 2 0.6324 0.6664 0.6293 20 116.4 M 5.82 M
Method 3 0.6272 0.6623 0.6182 20 91.9 M 4.60 M
Method 4 0.6305 0.6646 0.6246 16 71.6 M 4.48 M
Method 5 0.6339 0.6668 0.6265 16 101.0 M 6.31 M
Method 6 0.6310 0.6646 0.6289 16 102.0 M 6.38 M

In six experiments based on the Siamese SNN architecture, it is not difficult to find
that spiking feature fusion method 1 achieved the best performance, which are selected as
the final data fusion method in this paper. This is mainly because it entrusts the stitching of
the spiking features from dual-polarized SAR ship images to a fully connected layer that
can learn the subsequent parameters for the fusion, which increases the width and fusion
ability of the fully connected layer compared to other methods. Similarly, this increases
the number of the parameters in the network, but it achieves optimal performance at a
simulation step of eight, resulting in a lower operation number. Fusion method 3 has the
worst performance due to the operation of the element-by-element multiplication, which
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only preserves the key features that are common to both dual-polarized SAR ship images,
resulting in the information loss. In addition, its operation number is lower than that
of fusion method 2 (the simulation step is 20), because some spikes are suppressed by
the element-by-element multiplication processing, resulting in a decrease in the spiking
emission rate of the spiking neurons. On the other hand, fusion method 6 adds two original
features on fusion method 3, compensating for the information loss caused by the element-
by-element multiplication, and then the common spiking features are retained. In addition,
the element-by-element multiplication can serve as the attention mechanism to enhance
the attention to the common key features. Therefore, fusion method 6 performs better
than fusion method 3 and fusion method 4 (without the two spiking feature operation
processing). Fusion method 2 uses the maximum value of each element to fuse the spiking
features of two sources, retaining most of the features of the dual-polarized spiking, thus,
its performance is superior to fusion method 3 and the spiking emission rate is higher than
that of fusion method 3. Although the element-by-element maximum process is also used
in fusion method 5, due to its inclusion of two original spiking features, this process did not
effectively increase the information but added more noise. So, the performance of fusion
method 5 was not significantly improved compared to fusion method 2.

3.3.5. Simulation Step Analysis

This section discusses the relationship between the simulation step and the perfor-
mance of the proposed Siam-SpikingShipCLSNet model. In general, the SNN based on the
frequency information encoding need to set a certain simulation step to achieve a certain
performance. A higher simulation step will cause a decrease in the model running speed
and an increase in the model computational complexity, while a lower simulation step will
cause the significant performance degradation. Thus, the setting of the simulation step
needs to be determined through multiple experiments. Tables 6–11 show the impact of the
different simulation steps on the performance of the model under six data fusion methods.
For fusion method 1 in Table 6, although the F1 score is better when the simulation step is
set to 12 or 20 than when the simulation step is 8, there is no significant advantage in the
precision and recall, which are even lower, and the increase in the operands is greater. Thus,
a simulation step of 8 is selected for fusion method 1. For fusion method 2 in Table 7, as
the simulation step continues to increase, the precision, recall, F1 score, and computational
complexity all increase. Thus, the simulation step corresponding to the optimal perfor-
mance is selected. For fusion method 3 in Table 8, due to the information loss caused by the
element-by-element multiplication operation, increasing the simulation step can reduce the
degree of the information loss, thus achieving the optimal performance at a simulation step
of 20. So, for fusion method 3, the simulation step is also set to 20. For fusion method 4
in Table 9, although the F1 score reaches its maximum value when the simulation step
is 12, the accuracy and recall are low, so the simulation step is set to 16. For fusion
method 5 in Table 10, the optimal performance is achieved at a simulation step of 16.
Increasing the simulation step to 20 resulted in a decrease in the performance, which may
be because further increasing the simulation step when the simulation step is enough does
not provide more information but introduces more noise. For fusion method 6 in Table 11,
when the simulation step is set to 16, the F1 score is the highest, and compared to when the
step is set to 12, the increment is significant. The precision and recall are similar to when
the step is set to 12, so 16 is chosen as final simulation step.

Table 6. Model performance of the different simulation steps (Fusion method 1).

Simulation Steps Precision Recall F1 SOP

4 0.6339 0.6641 0.6158 19.4 M
8 0.6395 0.6735 0.6365 57.0 M

12 0.6409 0.6682 0.6373 97.6 M
16 0.6339 0.6704 0.6344 103.8 M
20 0.6339 0.6690 0.6380 252.9 M
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Table 7. Model performance of the different simulation steps (Fusion method 2).

Simulation Steps Precision Recall F1 SOP

4 0.6167 0.6565 0.6072 13.3 M
8 0.6204 0.6579 0.6231 39.2 M

12 0.6284 0.6641 0.6243 54.2 M
16 0.6238 0.6601 0.6231 63.3 M
20 0.6324 0.6664 0.6293 116.4 M

Table 8. Model performance of the different simulation steps (Fusion method 3).

Simulation Steps Precision Recall F1 SOP

4 0.6144 0.6512 0.5808 17.0 M
8 0.6138 0.6543 0.6005 47.9 M

12 0.6231 0.6583 0.6043 47.7 M
16 0.6243 0.6574 0.6106 77.6 M
20 0.6272 0.6623 0.6182 91.9 M

Table 9. Model performance of the different simulation steps (Fusion method 4).

Simulation Steps Precision Recall F1 SOP

4 0.6190 0.6561 0.6085 16.8 M
8 0.6399 0.6686 0.6216 39.1 M

12 0.6221 0.6579 0.6268 49.4 M
16 0.6305 0.6646 0.6246 71.6 M
20 0.6278 0.6641 0.6234 72.1 M

Table 10. Model performance of the different simulation steps (Fusion method 5).

Simulation Steps Precision Recall F1 SOP

4 0.6149 0.653 0.6166 16.5 M
8 0.6282 0.6615 0.6206 53.7 M

12 0.6319 0.6619 0.6227 80.4 M
16 0.6339 0.6668 0.6265 101.0 M
20 0.6337 0.6664 0.6201 129.4 M

Table 11. Model performance of the different simulation steps (Fusion method 6).

Simulation Steps Precision Recall F1 SOP

4 0.6262 0.6588 0.6071 20.6 M
8 0.6292 0.6632 0.6218 37.9 M

12 0.6318 0.6659 0.6232 47.4 M
16 0.6310 0.6646 0.6289 102.0 M
20 0.6357 0.6628 0.6246 88.7 M

Based on the above experimental data, the final data fusion method in this paper
adopts fusion method 1 and the simulation step is set to eight, because under these condi-
tions, its classification ability is optimal with the lowest number of the operations and the
shortest simulation step. The length of simulation steps can ensure the model speed, and a
low number of operations can ensure the low energy consumption of the model.
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4. Conclusions

Firstly, due to the lack of the obvious features and small inter-class differences in
the SAR ship images, SAR ship recognition has become a challenging task. Secondly, the
existing SAR ship image dataset has a limited data and imbalanced class distribution,
which is not conducive to learning of deep learning models. At last, SAR imaging has
different polarization modes, and the images under different polarization modes contain
different information about the same target, which should be comprehensively utilized to
improve the recognition ability of the network.

Traditional deep learning methods have the problem of an excessive model parameter
number and high energy consumption for the SAR ship classification, thus, this paper has
proposed an energy-efficient and high-performance ship classification strategy based on
the Siamese SNN. It combines the advantages of SNN in energy consumption and the
advantage of the idea in performances that use the Siamese neuron network to fuse the
features from dual-polarized SAR images. Additionally, we migrated the feature fusion
strategy from the CNN-based Siamese neural networks to the SNN domain and then
analyzed the effects of various spiking feature fusion methods on the Siamese SNN. Finally,
an end-to-end error backpropagation optimization method based on the surrogate gradient
has been adopted to train this model. The ship classification experiment has been conducted
on the OpenSARShip2.0 dataset, which shows that the proposed strategy achieves the
performance of the existing mainstream classification models with a smaller number of
parameters and much lower energy consumption than the mainstream classification models.
In the further work, more effective information (such as prior information such as SAR
imaging characteristics) and more effective fusion methods should be conducted, as well
as a comparison with other similar approaches [47,48].
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