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Abstract: Nitrogen content is one of the essential elements in citrus leaves (CL), and many stud-
ies have been conducted to determine the nutrient content in CL using hyperspectral technology.
To address the key problem that the conventional spectral data-denoising algorithms directly discard
high-frequency signals, resulting in missing effective signals, this study proposes a denoising pre-
processing algorithm, complete ensemble empirical mode decomposition with adaptive noise joint
sparse representation (CEEMDAN–SR), for CL hyperspectral data. For this purpose, 225 sets of fresh
CL were collected at the Institute of Fruit Tree Research of the Guangdong Academy of Agricultural
Sciences, to measure their elemental nitrogen content and the corresponding hyperspectral data. First,
the spectral data were preprocessed using CEEMDAN–SR, Stein’s unbiased risk estimate and the
linear expansion of thresholds (SURE–LET), sparse representation (SR), Savitzky–Golay (SG), and the
first derivative (FD). Second, feature extraction was carried out using principal component analysis
(PCA), uninformative variables elimination (UVE), and the competitive adaptive re-weighted sam-
pling (CARS) algorithm. Finally, partial least squares regression (PLSR), support vector regression
(SVR), random forest (RF), and Gaussian process regression (GPR) were used to construct a CL
nitrogen prediction model. The results showed that most of the prediction models preprocessed
using the CEEMDAN–SR algorithm had better accuracy and robustness. The prediction models
based on CEEMDAN–SR preprocessing, PCA feature extraction, and GPR modeling had an R2 of
0.944, NRMSE of 0.057, and RPD of 4.219. The study showed that the CEEMDAN–SR algorithm can
be effectively used to denoise CL hyperspectral data and reduce the loss of effective information.
The prediction model using the CEEMDAN–SR+PCA+GPR algorithm could accurately obtain the
nitrogen content of CL and provide a reference for the accurate fertilization of citrus trees.

Keywords: hyperspectral technology; citrus leaves; CEEMDAN–SR algorithm; regression models

1. Introduction

Nitrogen is an essential nutrient for citrus trees, playing a crucial role in the production
of vital compounds such as protein [1,2], chlorophyll, and enzymes, which substantially
influence the growth, yield, and quality of citrus fruits [3,4]. Hence, accurate and timely as-
sessment of nitrogen content in CL is crucial and can enable proper fertilization, to increase
yields and fruit quality. It can also contribute to the reduction in excessive nitrogen applica-
tion and the consequent pollution of surface water and groundwater [5,6].

Traditional methods of nitrogen analysis in plant leaves have used chemical techniques,
which are time-consuming and require long detection periods [7,8]. Hyperspectral imaging
is gaining popularity in agricultural engineering due to its integration of images and
information [9,10]. It is capable of detecting the internal structure and external attributes
of samples in a fast and nondestructive manner [11,12]. Costa et al. [13] developed a
method for determining nutrient concentrations in citrus tree leaves using unmanned
aerial vehicle (UAV) multispectral imagery and artificial intelligence techniques. Their
gradient-enhanced regression-tree-based estimation model proved to be suitable for small
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sample data sizes and highly accurate in their study. Osco et al. [14] developed a machine
learning framework for predicting nutrient content in CL, resulting in a R2 as high as 0.912.

However, hyperspectral data unavoidably contain noise, due to extraneous infor-
mation such as instrument dark currents, light scattering, and the baseline drift of the
instrument during hyperspectral image capture. This adversely affects the accuracy and
stability of model predictions [15,16]. Thus, many researchers have used filtering, wavelet,
EMD, and other methods to preprocess the spectral data. Sharan et al. [17] processed
Raman spectra using dual-density dual-tree complex wavelet transform with discrete
wavelet transform, dual-tree complex wavelet transform, and the Savitzkv–Golav smooth-
ing method. The results showed that the denoising method based on dual-density dual-tree
complex wavelet transform improved the quantitative and qualitative analysis of Raman
signals. Li et al. [18] used SG and FD to denoise spectral data in the preprocessing stage.
They further filtered out the characteristic wavelengths using five different algorithms
and created a prediction model based on Ls-SVM for predicting the chlorophyll content of
lemon leaves, resulting in a best model R2 value of 0.94 and a RMSEP value of 0.10. As a
result, denoising the spectral data of CL leads to more accurate model predictions.

Traditional filtering methods for processing hyperspectral data have problems such
as the difficulty in resolving the local information of hyperspectral data and the ease of
filtering out of the detailed part of the spectrum. The wavelet decomposition method
decomposes the signal by predetermining the basis function, the number of decomposition
layers, and the threshold selection method, which requires a lot of time for experimental
testing and is a troublesome process. The EMD algorithm is based on the scale of the data
itself, but there is a mode mixing problem. As a result, many researchers have focused
on improving the EMD algorithm.Tang et al. [19] proposed a preprocessed algorithm
with EEMD-db3 for noise reduction to process PsR spectral data. The method effectively
improves the signal-to-noise ratio and enhances the relationship between the spectral data
and heavy metal content. The algorithm also enhances the stability and accuracy of the
estimation model. In a similar vein, Zhao et al. [20], processed the Raman spectra of rice
plants using EMD, EEMD, and complementary ensemble empirical mode decomposition
(LCEEMD) methods, to establish a neural network prediction model. The LCEEMD method
not only solves the modal mixing problems of high-frequency signals and noise in EMD
but also effectively reduces residual noise in EEMD. Currently, EMD-like algorithms are
not widely used in the nondestructive detection of nutrient content in CL, and there are
few preprocessing algorithms based on EMD-like algorithms available.

Sparse representation based on compressed perception overcomes the limitations
of traditional sampling theory and processes information from the perspective of sparse
representation, which is widely used in the fields of image processing, speech recognition,
natural language processing, etc. [21], and has a high computational efficiency and practi-
cality. Some scholars have tried to denoise hyperspectral signals with sparse representation,
and they found that the sparse representation method is better for spectral signals with a
low signal-to-noise ratio and weaker for spectral signals with a high signal-to-noise ratio.
Fang et al. [22] proposed a method for recovering the peak information of high-noise
Raman signals based on joint sparse representation. This method uses the sparsity of the
Raman spectrum to recover the signals and preserve useful peak information. The peak
information is then reconstructed using an orthogonal matching pursuit algorithm. The
joint sparse representation method can effectively analyze Raman spectra, especially those
with a high noise level. Experimental results showed that the method outperforms other
methods at low signal-to-noise ratios. Guo et al. [23] proposed a 1-dD denoising method
for water color hyperspectral data based on sparse representation. The method was found
to be effective, but the sparse representation also destroyed some of the useful information
at higher signal-to-noise ratios.

This study proposes an adaptive denoising preprocessing algorithm for hyperspectral
data from CL using the CEEMDAN–SR algorithm. The proposed method effectively
reduces noise, retains effective information, and improves the signal-to-noise ratio of the
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spectral signal. Initially, the CEEMDAN–SR, SURE–LET, SR, SG, and FD algorithms were
employed to denoise the hyperspectral data of the CL. Then, the PCA, UVE, and CARS
algorithms were used for feature selection. Finally, PLSR, SVR, RF, and GPR were used to
construct a model for predicting nitrogen content in CL.

The main contributions of this paper are as follows:

1. A CEEMDAN–SR algorithm is proposed that can denoise the raw hyperspectral
data of CL in the preprocessing stage. The algorithm improves the signal-to-noise
ratio of spectral data by removing high-frequency noise, while retaining most of
the effective information. The CEEMDAN–SR, SURE–LET, and SR algorithms are
experimentally demonstrated for use as denoising algorithms for CL hyperspectral
data in the preprocessing stage;

2. Based on the characteristics of CL hyperspectral data, a quantitative analysis was
carried out to establish a model for predicting the nitrogen content of CL. The
CEEMDAN–SR+PCA+GPR prediction model has a strong fitting effect and accu-
racy, with low error, and can be used for rapid nondestructive detection of nitrogen
content in CL.

2. Materials and Methods
2.1. Study Area

The CL were collected on 30 September 2022, from the Institute of Fruit Tree Research
of the Guangdong Academy of Agricultural Sciences, as indicated in Figure 1. Samples
were taken from three different citrus seedlings, namely, Gongkang, Satsuma, and Wogan.
A total of 75 sets of samples were collected from each species, resulting in 225 sets of
samples. Each tree was divided into three parts: top, middle, and bottom. Healthy and
fresh leaves were collected from the 3rd or 4th layer in four directions, from southeast to
northwest, and from top to bottom. The collected leaves were thoroughly washed with
water to remove any dust and dirt, dried with a clean cotton cloth, placed in fresh bags,
numbered, and transported to the laboratory immediately for further processing.

Figure 1. Location of the study site.

2.2. Hyperspectral Data Acquisition and Nitrogen Content Determination

The study employed a GaiaField-F-V10 portable feature hyper-spectrometer as the
acquisition instrument for hyperspectral reflectance data. This hyper-spectrometer is
composed of three components, namely, an imaging lens, an imaging spectrometer, and a
surface array detector. These components are illustrated in Figure 2.



Remote Sens. 2023, 15, 5013 4 of 21

Figure 2. Schematic diagram of the hyper-spectrometer structure.

The hyper-spectrometer has a spectral range of 400–1000 nm, a spectral resolution of
3.8 nm, and 256 spectral channels. To ensure that the data obtained were accurate, three
separate photographs were taken of each set of samples using the hyper-spectrometer,
which was positioned in a dark box and illuminated by a halogen lamp. In this dark
box, the white reference image was obtained by scanning a standard white ceramic plate,
the black reference image was obtained by scanning the lens cover over the lens cap, and
then the original hyperspectral image was calibrated according to Formula (1). Figure 3
shows a flowchart for extracting the reflectance curve by sequentially reading and mask
segmenting 256 channels of CL hyperspectral images using OpenCV.

I0 =
I − ID

IW − ID
(1)

where I0 is the calibrated image, I is the raw image, IW is the white reference image, and
ID is the dark reference image.

Figure 3. Flow chart of spectral reflectance extraction from CL: (a) hyperspectral image of CL;
(b) threshold segmentation process; (c) reflectance extraction diagram.

The fresh CL were dried and ground using the Naive calorimetry method to determine
their total nitrogen content. Abnormal data were removed from the measured nitrogen
content of CL using the box plot method, to restore objectivity for a better analysis. This was
necessary because the CL chemistry measurement method is prone to errors caused by
testers, operations, and other factors. Table 1 shows the statistical data of the nitrogen
content of the CL after the removal of abnormal data.
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Table 1. Statistical table of CL nitrogen content data after excluding abnormal data.

Count Mean/% Standard
Deviation/% Min/% Max/%

N 215 2.499 0.596 0.966 3.920

2.3. Spectra Pretreatment
2.3.1. Traditional Methods

SG is a polynomial smoothing algorithm based on the principle of least squares,
proposed by Savitzkg and Golag, which is widely used in spectral preprocessing [24].
The FD transform is likewise a common method of spectral preprocessing that highlights
the rate of increase or decrease in spectral reflectance [25].

2.3.2. SURE–LET

The SURE–LET algorithm, proposed by SteinLuisier et al. [26], employs unbiased
risk estimation (SURE) and linear expansion of thresholds (LET) to determine the optimal
threshold in wavelet-based denoising problems. SURE–LET solves for the optimal weights
of the denoising results of different shrinkage basis functions using a system of linear
equations, which can be used for denoising a signal, image, video, etc. [27,28].

2.3.3. CEEMDAN

The complete ensemble empirical mode decomposition with adaptive noise (CEEM-
DAN) algorithm, introduced by Torres et al. in 2011, addresses the limitations of EMD [29].
EMD is vulnerable to modal mixing, as highlighted in prior research [30,31]. Unlike the
EEMD and CEEMD algorithms, CEEMDAN effectively isolates residual noise and sup-
presses any added white noise signals. The CEEMDAN algorithm adds Gaussian white
noise to the intrinsic mode function (IMF) components post-EMD decomposition and
then computes an overall average calculation following the first-order IMF, to generate
the final first-order IMF. This process is repeated for the residual component until the
residual signal is transformed into a monotonic function and cannot be decomposed further.
Hence, the noise transfer from high to low frequencies is effectively addressed. Let Ei
denote the ith eigenmode component obtained post-EMD decomposition, and let the ith
eigenmode component obtained via CEEMDAN decomposition be IMF1(t). Let vj be the
Gaussian white noise signal conforming to the standard normal distribution, ε be the stan-
dard deviation of the noise, and z(t) be the original signal. The CEEMDAN decomposition
process involves the following steps:

1. A new signal z(t) + (−1)qεvj is obtained by adding positive and negative paired
Gaussian white noise to the original signal z(t), where q = 1 or 2. The EMD decom-
position of the new signal yields the first-order IMF component IMF1, as shown in
Formula (2):

E
(

z(t) + (−1)qεvj
)
= IMFj

1(t) + rj (2)

2. The N IMF components generated are summed and averaged, as shown in Formula (3):

IMF1(t) =
1
N

N

∑
j=1

IMFj
1(t) (3)

3. T residuals are calculated after removing the first IMF component, as shown in Formula (4):

r1(t) = z(t)− IMF1(t) (4)
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4. A new signal is obtained by adding positive and negative pairwise Gaussian self-noise
to r1(t), and this new signal is used as a carrier for EMD decomposition, to obtain
the 1st IMF component Dj

1, from which the 2nd IMF component can be obtained, as
shown in Formula (5):

IMF2(t) =
1
N

N

∑
j=1

Dj
1(t) (5)

5. The residuals are calculated with the second IMF component removed, as shown in
Formula (6):

R2(t) = r1(t)− IMF2(t) (6)

6. The above steps are repeated until the residual signal obtained is a monotonic function
and cannot be further decomposed. At this point, the number of IMF components
obtained is K, and the original signal z(t) is then decomposed into K IMF and one
residual, as shown in Formula (7).

z(t) =
K

∑
k=1

IMFK(t) + rK(t) (7)

2.3.4. SR

Sparse representation (SR) is a method of representing a signal as a linear combination
of a set of basis vectors, where very few basis vectors are involved in the linear combination,
and thus this allows for compression and denoising of the signal [32,33]. The sparse
redundant representation model based on an overcomplete dictionary assumes that any
signal x can be represented by as sparse a vector α as possible under a dictionary D
consisting of atoms, as shown in Formula (8):

x = Dα (8)

Therefore, the method of reconstructing the original signal x mainly involves the
dictionary D and the sparse vector α. In order to achieve a sparse representation of the
signal, the optimal sparsity must be solved to approximate the original signal, assuming
that D is known, which can be expressed in the above model as Formula (9):

α = arg min ‖α‖0 s.t. x = Dα (9)

where ‖α‖0 denotes the ł0 paradigm, which is used to constrain the number of individual
non-zero terms in the sparse vector.

From the above analysis, it can be seen that the construction of a sparse representation
model based on an overcomplete dictionary is mainly achieved by designing a better
overcomplete dictionary D and obtaining a better sparse vector α. In this paper, we adopt
the SR method to select the DCT discrete cosine transform as a fixed orthogonal dictionary
using the orthogonal matching pursuit (OMP) algorithm as a way to solve the sparse
vectors. The OMP algorithm is a greedy algorithm used to solve a system of sparse linear
equations [34,35]. This algorithm gradually constructs an overcomplete dictionary matrix
by searching for the variable that best explains the remaining unexplained observations at
each selection step.
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2.3.5. CEEMDAN–SR

Although the CEEMDAN algorithm can decompose the signal adaptively according
to its own characteristics, if it is not differentiated and the entire component is denoised,
the removal of noise will also take away some of the useful signals.

A novel denoising algorithm called complete ensemble empirical mode decomposition
with adaptive noise joint sparse representation (CEEMDAN–SR) is proposed in this study.
The CEEMDAN algorithm is introduced to adaptively decompose the original spectral
signals to obtain n IMFs, which are filtered by combining the correlation coefficient and the
adaptive thresholding method based on the variance contribution ratio. Subsequently, the
SR algorithm is used to denoise the eigenmode functions that contain more noise and less
valid information, and finally CEEMDAN reconstruction is performed. The algorithm can
effectively accomplish the task of removing noise from noisy spectral signals and retain
key information. The steps for implementing the CEEMDAN–SR algorithm are as follows:

1. Input the original spectral signal X. CEEMDAN decomposition of X is performed to
obtain a set of eigenmode functions S1 containing n IMFS and a residual ε;

2. Solve for the correlation coefficient r with the input signal X for each IMF in the set
S1, as shown in Formula (10):

r = ∑m
i=1(IMFt(i)− ¯IMFt)(X(i)− X̄)√

∑m
i=1(IMFt(i)− ¯IMFt)2

√
∑m

i=1(X(i)− X̄)2
(10)

where IMFt represents the t-th element in S1, ¯IMFt represents the mean value of the
IMFt, X̄ represents the mean value of the original spectral signal X, and m represents
the number of bands of the spectrum, where in this paper m = 256;

3. Referring to the EMD improvement algorithm proposed by Lin et al. [36], this paper se-
lects 0.1 as the correlation coefficient threshold. For IMFs with a correlation coefficient
less than 0.1, they are regarded as pseudo-IMF components and are not involved in
signal reconstruction. The IMFs with correlation coefficients less than 0.1 in S1 are
discarded, to obtain the set S2;

4. For the elements in S2, solve for their adaptive threshold based on their variance
contribution, as shown in Formulas (11) and (12): Kt =

1
n ∑n

t=1(IMFt)
2 −

[
1
n ∑n

t=1 IMFt

]2

Ct =
Kt

∑n
t=1 Ki

× 100%
(11)

threshold =
1
n

n

∑
t=1

Ct − 0.5×

√√√√ 1
n

n

∑
t=1

(
Ct −

1
n

n

∑
t=1

Ct

)2

(12)

where n represents the number of elements in S2, IMFt represents the t-th element in
S2, Kt is the variance of IMFt, and Ct is the contribution of the variance of the IMFt.

5. The elements of S2 whose threshold are less than 0.3 are denoised using the SR
algorithm to obtain set S3;

6. The CEEMDAN reconstruction of S3 and the residual ε is performed to obtain the
reconstructed signal Y;

7. Output the denoised spectral signal Y.

Figure 4a shows a schematic diagram of the decomposition of the original spectral
profile using the CEEMDAN algorithm. It can be seen that the original spectral profile is
decomposed into four IMFs: IMF1, IMF2, IMF3, and IMF4, and one residual. Combining
the correlation coefficient and the adaptive thresholding method based on the variance
contribution ratio, it is judged that IMF3 needs to be denoised. The denoising process of
IMF3 using the sparse representation is shown in Figure 4b.
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Figure 4. CEEMDAN -SR algorithm denoising process diagram: (a) CEEMDAN algorithm decompo-
sition process; (b) IMF3 sparse representation denoising process.

2.4. Feature Extraction Methods

The PCA, UVE, and CARS algorithms were selected as the feature extraction algo-
rithms for the CL hyperspectral data [37–39], and the results of the three algorithms for
the feature extraction of the original spectral curves processed by the CEEMDAN–SR algo-
rithm are shown in Figure 5a. Figure 5a shows a schematic diagram of the PCA algorithm
processing, where a total of 16 principal components were extracted, the explained variance
of the first principal component was as high as 0.751, and the first 16 principal components
basically contained 99.9% of the information of the original spectrum. Figure 5b shows a
schematic diagram of the UVE algorithm used to eliminate the uninformative bands and
retain the effective bands, and the vertical red line position indicates the effective bands
retained. Figure 5c shows the result of the Monte Carlo sampling number of the 50 Cars
algorithm on the spectral data downscaling, where the red dot position is the minimum
value of RMSECV.
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Figure 5. Schematic diagram of the three algorithms for dimensionality reduction: (a) schematic
diagram of the PCA algorithm for dimensionality reduction; (b) effective bands screened by the UVE
algorithm; (c) selection results of CARS for the noise reduction method used in this paper.

2.5. Model Building and Evaluation Methods

Four regression algorithms were selected to construct the CL nitrogen content predic-
tion model.The algorithms used were partial least squares regression in a linear model,
support vector machine regression in a non-linear model, random forest regression in an in-
tegrated regression model, and Gaussian process regression in a probabilistic model based
on Bayesian regression. Table 2 provides a brief description of each regression algorithm.

In order to objectively assess the modeling accuracy, we partitioned the dataset using
the SPXY algorithm. We selected 4/5 of the samples for modeling and 1/5 for validation.
The SPXY algorithm is an improved method based on the KS algorithm. It partitioned
the dataset by calculating the Euclidean distance in both the x and y-vector directions
for different samples. This approach combines the distances in the x and y directions
through regularization, resulting in a more comprehensive evaluation and partitioning of
the dataset.

The coefficient of determination R2, normalized root mean squared error (NRMSE),
and residual predictive deviation (RPD) were chosen as the evaluation indicators for the
model. Their expressions are shown in Formulas (13)–(15):
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R2 =
∑m

i=1
(
ŷi − ŷi

)
(yi − ȳ)√

∑m
i=1
(
ŷi − ŷi

)2
√

∑m
i=1(yi − ȳ)2

(13)

NRMSE =

√
∑m

i=1(yi − ŷi)
2

m× (ymin − ymin)2 (14)

RPD =

√√√√ ∑m
i=1(yi − ȳ)2

∑m
i=1(ŷi − yi)

2 (15)

where yi and ŷi are the true and predicted values of CL sample i, m represents the number
of predicted samples, ȳ is the mean of the true values, and ŷi is the mean of the predicted
values. ymax and ymin represent the maximum and minimum values of the true value.
A higher R2 value indicates a better degree of fitting of the model, and a smaller NRMSE
value indicates a higher accuracy of the prediction model. A model with RPD values lower
than 1.5 is deemed inadequate, while those with RPD above 2.0 are considered to have
good robustness.

Table 2. A brief introduction to the modeling algorithms used in this study.

Methods Description Reference

Partial least squares regression (PLSR)

PLSR is a linear model that aims to find latent variables that
capture the maximum covariance between the predictor variables

and the response variable, allowing for efficient modeling of
complex relationships and handling of multicollinearity.

[40]

Support vector regression (SVR)

SVR is a supervised learning algorithm that utilizes support
vector machines to perform regression tasks by finding an

optimal hyperplane that maximizes the margin, while
minimizing the error between the predicted and actual values.

[41]

Random forest (RF)
RF is an ensemble learning method that combines multiple
decision trees to predict the response variable by averaging

the predictions of individual trees.
[42]

Gaussian processes regression (GPR)

GPR is a probabilistic regression model that uses a collection
of data points to estimate an underlying function by

assuming a Gaussian distribution over possible functions,
enabling flexible predictions and uncertainty quantification.

[43]

3. Results
3.1. Comparison of the Denoising Effect of Different Preprocessing Methods

A random strip of spectral reflectance in the wavelength range of 400–1000 nm was
selected for each of the three CL varieties. Spectral reflectance data for the three citrus
varieties are presented in Figure 6. The spectral reflectance trends of the three citrus
varieties exhibited a consistent pattern, with a reflectance peak at approximately 549 nm
and an absorption trough at around 678 nm, followed by a sharp increase in reflectance
in the subsequent bands, and a maximum value at 760 nm. Eventually, there was a slight
decrease in reflectance towards the higher wavelength end. The reflectance peaks of the
three citrus varieties were obscured by noise in most bands, especially in the green band at
approximately 549 nm. This noise-covered signal contain errors and potentially reduce the
accuracy of the regression predictions.
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Figure 6. Original spectral curves of the three citrus varieties.

We preprocessed a randomly chosen set of spectral reflectances of CL using four
different methods, namely CEEMDAN–SR, SURE–LET, SR, and CEEMDAN. The results of
the preprocessing are illustrated in Figure 7.

According to Figure 7, the spectral curves of all four images following denoising were
relatively smooth, suggesting that all four methods effectively removed burrs and rejected
noise. Comparing the waveforms prior to and post noise reduction (Figure 7a), it can
be observed that the pure signal subjected to the CEEMDAN–SR denoising method was
closest to the original spectral curve. The preserved peaks, positions of peaks and troughs,
and the overall resemblance to the original spectrum indicate the efficacy of the method in
eliminating noise information, while retaining the relevant data. Figures 7b,c show that the
SURE–LET and SR methods effectively denoised most of the spectral characteristics, but
did not resolve spectral details well, resulting in some deviations from the original spectral
curves in several bands. For instance, the spectral curve processed by the SURE–LET
method experienced a shift in peak position, and the value of the reflection peaks at
500–600 nm and did not match the original spectral curve at 600–700 nm. Likewise, the SR
method did not perform better, as it demonstrated inadequate treatment near the trough
at 600–660 nm, leading to a shift in peak position and value. Figure 7d shows that the
CEEMDAN method provided unsatisfactory results. The spectral curve processed using
the CEEMDAN algorithm significantly deviated from the original spectral curves across
the entire wavelength range, with the replicated peak and trough positions and values not
recovering from the noise. This occurred due to the CEEMDAN algorithm’s removal of
IMFs with low correlation, which removed the noise but also discarded useful information,
leading to unsatisfactory results.

Figure 8 displays the average waveform similarities between the denoised curves
and the original spectral curves obtained from the four denoising algorithms. The values
were computed from 100 randomly selected spectral curves. Formula (16) defines the
NCC (Normalized Correlation Coefficient) expression.
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Figure 7. Comparison of spectral curves before and after denoising using the four denoising algorithms:
(a) comparison of spectral curves before and after denoising using CEEMDAN–SR; (b) comparison of
spectral curves before and after denoising using SURE–LET; (c) comparison of spectral curves before
and after denoising using SR; (d) comparison of spectral curves before and after denoising using
CEEMDAN.

Figure 8. Comparison of the average waveform similarity after denoising using the four algorithms
for 100 sets of spectral curves.

NCC(x, y) = ∑n
i=1(xi − x̄)(yi − ȳ)√

∑n
i=1(xi − x̄)2

√
∑n

i=1(yi − ȳ)2
(16)
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where x and y are the original spectral curve and denoised spectral curve, n is the number
of samples in each curve, and x̄ and ȳ are the means of the original spectral curve and
denoised spectral curve. The larger the NCC, the better the denoising effect.

The CEEMDAN–SR algorithm had a waveform similarity coefficient of 0.9981, which
was significantly higher than that of all other algorithms, which had coefficients lower
than 0.99. Hence, utilization of the CEEMDAN–SR algorithm for noise reduction led to a
considerable improvement in the decreasing the distortion of the characteristic peaks of the
spectral curve and in restoring the spectral absorption characteristics of the CL.

3.2. Construction of Prediction Models for CL Nitrogen Content

We used CEEMDAN–SR, SURE–LET, SG, FD, and SR as preprocessing methods; PCA,
UVE, and CARS to select feature bands; and PLSR, SVR, RF, and GPR from the commonly
used hyperspectral prediction models for CL nitrogen prediction modeling.

The results of the model evaluation metrics are shown in Figure 9. The first row shows
the values of the individual combined model decision coefficients R2, the second row shows
the values of NRMSE, and the third row shows the values of RPD.

Figure 9. Graphs of model evaluation indicators results.

According to Figure 9, it was found that the CEEMDAN–SR method was the most
effective denoising algorithm in modeling the nitrogen content of CL compared to the
other four methods. The predictions for all combinations of feature selection and modeling
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methods performed better than the other four algorithms, except for the combination of
CARS+RF, which had an unsatisfactory overall performance. The R2 values were all greater
than 0.8, the NRMSE values were all less than 0.1, and the RPD values were all greater
than 2.0, indicating a good fit for effective modeling. When excluding the combination
of the CARS+RF and UVE+RF algorithms and comparing the remaining combinations,
the CEEMDAN–SR method was found to model the highest R2 and RPD values among
the five denoising algorithms and the smallest NRMSE among all five. In conclusion,
the CEEMDAN–SR method can be considered an effective method to establish a prediction
model for CL nitrogen content, with both stability and accuracy.

All combinations, except CEEMDAN–SR, that were preprocessed using the SR method
exhibited satisfactory performance. The seven combinations, namely SR+PCA+PLSR,
SR+PCA+SVR, SR+PCA+GPR, SR+UVE+PLSR, SR+UVE+GPR, SR+CARS+PLSR,
and SR+CARS+SVR, had an R2 value exceeding 0.8. In addition, they had a smaller value
of NRMSE and a larger value of RPD. Preprocessing the data with the SURE–LET algo-
rithm, improved the performance of the combinations SURE–LET+PCA+SVR, SURE–LET
+PCA+GPR, and SURE–LET+UVE+GPR. These combinations exhibited an R2 value ex-
ceeding 0.8, a smaller NRMSE value, and a larger RPD value, fitting the data better.

Traditional preprocessing algorithms were compared using SG and FD methods.
The SG algorithm was more efficient and provided a good fit for data, while the FD method
did not perform well for preprocessing combinations. The SG algorithm offered three
combinations: SG+PCA+GPR, SG+UVE+RF, and SG+UVE+GPR, all with R2 values greater
than 0.8, NRMSE less than 0.1, and RPD greater than 2. As for the FD algorithm, most of
the combinations had R2 values between 0.6 and 0.7, and only two, FD+PCA+SVR and
FD+CARS+RF, had R2 values below 0.6. Using the FD method as the pretreatment method
resulted in RPD values less than 2 and higher NRMSE values compared to the other four
pretreatment methods, leading to an unsatisfactory fit, a weak explanatory power of the
model, and poor prediction results.

The most effective combination of the five denoising algorithms was selected for
model fit analysis and residual analysis, to indicate the fit of the predictive model and the
accuracy of the predicted values, as shown in Figure 10.

Figure 10a,b show the CEEMDAN–SR+PCA+GPG combination with an R2 of 0.944,
NRMSE of 0.057, and RPD of 4.219, which was the best fit for CL nitrogen content and pre-
dicted with a much higher accuracy than the best combination of the other four denoising
algorithms. This suggests that the CEEMDAN–SR method can better remove invalid noise
and retain valid information compared to the other noise reduction methods. The model
built using the CEEMDAN–SR preprocessing method was better fitted to the regression,
and the predicted data deviated less from the true values.

Figure 10c–h present three modeling combinations for the SURE–LET, SR, and SG
denoising algorithms as SURE–LET+PCA+GPR, SR+PCA+GPR, and SG+UVE+GPR, re-
spectively, which performed well in predicting the CL nitrogen content, with small errors
between the predicted and actual values. The results suggest that the SURE–LET, SR,
and SG methods are reliable pretreatment methods for predicting nitrogen content in CL.

Among the preprocessing models considered, the FD preprocessed model presented
the worst performance, as seen in Figure 10i,j. The best-performing combination of
FD+UVE+GPR resulted in an R2 of 0.725, NRMSE of 0.121, and RPD of 1.906, indicating a
poor fit with the data, with a substantial deviation between the predicted and actual values.
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Figure 10. Five types of denoising algorithms best modeling combinations fitting analysis and resid-
ual analysis plots: (a) fitting analysis of CEEMDAN–SR+PCA+GPR; (b) residual analysis plot
of CEEMDAN–SR+PCA+GPR; (c) fitting analysis of SURE–LET+PCA+GPR; (d) residual analy-
sis plot of SURE–LET+PCA+GPR; (e) fitting analysis of SR+PCA+GPR; (f) residual analysis plot of
SR+PCA+GPR; (g) fitting analysis of SG+UVE+GPR; (h) residual analysis plot of SG+UVE+GPR;
(i) fitting analysis of FD+UVE+GPR; (j) residual analysis plot of FD+UVE+GPR.

The average memory space required and the average time spent for the prediction of
a single CL spectral curve by the best modeling combinations of the above five classes of
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preprocessing algorithms are given in Table 3. It can be seen that they were similar in terms
of the memory space required for execution, which was about 180 Mib, but there was a
large difference in terms of runtime. Among them, the CEEMDAN–SR+PCA+GPR model
predicted a longer time of 2.046 s, while the other four types of model were all around 1.2 s.

Table 3. Memory space required and time spent for the five types of denoising algorithms best
combined models.

Models Average Memory Space
Required/Mib Average Time Spent/s

CEEMDAN–SR+PCA+GPR 180.023 2.046
SURE–LET+PCA+GPR 176.484 1.238

SR+PCA+GPR 179.539 1.207
SG+UVE+GPR 176.847 1.256
FD+UVE+GPR 176.882 1.247

4. Discussion
4.1. Analysis of the Denoising Ability of the Preprocessing Algorithms

The disadvantage of the SR algorithm in processing spectral data lies in the fact that
denoising signals with a high signal-to-noise ratio will take away part of the relevant
information. In this study, the CEEMDAN algorithm, combined with the correlation
coefficient and the adaptive thresholding method based on the variance contribution ratio,
could decompose the spectral data and then filter out the IMFs containing more noise and
less useful information; that is, those with lower signal-to-noise ratios, to be processed by
the SR algorithm. This protected against the loss of relevant information and improved
the signal-to-noise ratio of the spectral data. As shown in Section 3.1, CEEMDAN–SR
effectively eliminated noise, while preserving peak values and positions in the reflection
peaks. Wang et al. [44] stated that the NCC shows the difference between the denoised
and original spectra. The lower the difference, the more useful information is retained and
the better the denoising effect. Compared to the SURE–LET, SR, and CEEMDAN methods,
the CEEMDAN–SR algorithm produced the highest waveform similarity between the
preprocessed and original spectral profiles.

The results demonstrated that hyperspectral data preprocessed using the CEEMDAN–SR
algorithm provided better modeling than traditional denoising algorithms. Of the twelve
feature selection and modeling combinations tested, the combination of CEEMDAN–SR,
PCA, and GPR produced the best model fit and the smallest prediction error. This combi-
nation yielded an R2 of 0.944, NRMSE of 0.057, and RPD of 4.219, with high robustness.
The results indicated that the CEEMDAN–SR algorithm is both applicable and stable in
the denoising stage of CL hyperspectral data, and that it can be utilized as a suitable
denoising algorithm for this type of data. Specifically, 10 out of the 12 feature selection and
modeling combinations achieved an R2 greater than 0.8, RPD greater than 2, and smaller
NRMSE, demonstrating the superior performance of the CEEMDAN–SR algorithm in
comparison to the other algorithms. Both EMD-like algorithms and wavelet decomposition
are capable of decomposing a noisy signal into multiple components and denoising the
components that contain the most noise. Unlike the EMD algorithm, CEEMDAN can
decompose spectral signal modes into a series of IMF components with frequencies rang-
ing from high to low. This eliminates the mode mixing problem and provides superior
modal spectrum separation when compared to EEMD, avoids spurious IMF components,
and further improves the mode mixing effect. It is expected that future research will priori-
tize the CEEMDAN algorithm and its combinations with other algorithms for spectral data
processing applications.

The SURE–LET and SR algorithms are widely used in image denoising but not as
much in hyperspectral data denoising. From the experimental results Section 3.2 it can be
seen that the SURE–LET algorithm had two combinations of R2 greater than 0.8, and the SR
algorithm had seven combinations of R2 greater than 0.8, with larger values for RPD and
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smaller values for NRMSE. However, SURE–LET has the disadvantage that it is difficult
to determine the number of layers of the wavelet decomposition and the wavelet basis
function, and although SURE–LET performs adaptive thresholding, some useful high-
frequency information is filtered out while the high-frequency part is filtered. Therefore,
SURE–LET loses useful information in the spectral signal, while suppressing spectral noise,
resulting in large changes in spectral peaks and peak positions [45–47]. The SR algorithm
is based on the principle of representing the signal with as few atoms as possible in a given
super-complete dictionary, which means that the denoised spectrum must have some loss
of information compared to the spectrum before denoising. Although the SR algorithm
removes some of the high-frequency noise, the process of removing the noise takes away
some of the valid information, making the denoised signal less similar to the original signal
waveform [21,48,49].

In hyperspectral data preprocessing, both the Savitzky–Golay (SG) algorithm and the
first derivative (FD) algorithm have traditionally been used. However, the SG algorithm
has proven to be more effective than the FD algorithm, which tends to amplify noise,
while also amplifying features. This is because the FD algorithm calculates the derivative
of the spectral data by subtracting neighboring bands, resulting in a loss of information
about the original spectral shape [50].

4.2. Performance of Prediction Models

The number of retained feature vectors ranged from 10 to almost 100. We applied RF,
SVR, and GPR algorithms, which required parameter adjustments, to find ideal parameters.
To exclude the negative impacts of poor parameter combinations on the experimental
results, we utilized Bayesian hyperparameter optimization, learning curves, and grid
search cross-validation [51].

According to Figure 10, the CEEMDAN–SR+PCA+GPR model based on the
CEEMDAN–SR algorithm performed the best, having an R2 of 0.944, NRMSE of 0.057,
and RPD of 4.219. The SURE–LET+PCA+GPR model, which had the best prediction
among the other four types of preprocessing algorithms, had an R2 of 0.874, NRMSE
of 0.082, and RPD of 2.815. The CEEMDAN–SR+PCA+GPR model was better than
the SURE–LET+PCA+GPR model for all three indicators, which indicated that the
CEEMDAN–SR+PCA+GPR model had a good fitting effect, with high accuracy and stabil-
ity, and the prediction of CL nitrogen content was much better than with the other models.

The experimental modeling results showed that most combinations of feature selec-
tion methods and modeling methods could predict CL nitrogen content well, which was
consistent with the results of previous studies [14,52]. The top-performing model for each
denoising algorithm was the RBF-kernel-based Gaussian process regression (GPR) model.
In contrast to linear regression models, Gaussian regression models effectively capture
non-linear relationships and enhance the predictive performance. The GPR model also
offers a natural and efficient way to regulate regression models, which effectively reduces
the risk of overfitting [43]. Additionally, Gaussian processes are known to be sensitive
to noisy data, but this phenomenon was observed less with the GPR model in this study,
due to the excellent denoising performed on the spectral data. Thus, the GPR model
proved to be a suitable candidate for the regression task of predicting the hyperspectral CL
nitrogen content.

At the same time, we found that the model worked better when the variable selection
algorithm matched the regression prediction algorithm, such as with CARS+PLSR. This
is because the CARS algorithm used in this paper used the regression coefficients from
the PLSR algorithm for filtering, retaining the lowest subset of RMSECV, and the vari-
ables filtered by the CARS algorithm were the ones best modeled by the PLSR algorithm.
Conversely, the CARS+RF algorithm was poor overall, possibly due to the overfitting of
multiple learners in the integrated learning algorithm. On the one hand, the variables
screened by the CARS algorithm may be better suited to the linear model. On the other
hand, this could be attributed to the random forest (RF) algorithm, an integral part of
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integrated learning, which is appropriate for processing large-scale datasets. RF comprises
multiple decision trees independently generated via random feature selection and sam-
ple resampling techniques in the tree generation process [53,54]. This may have resulted
in some decision trees being over-fitted, while some did not learn this information [55].
In summary, the performance of the models was influenced by the choice of variable selec-
tion and regression algorithms, and matching the appropriate methods to the characteristics
of the spectral data is important for achieving optimal results.

4.3. Limitations and Perspectives

As shown in Table 3, the CEEMDAN–SR+PCA+GPR model proposed in this study
required about 180.023 Mib of space to run, with an average elapsed time of 2.046 s,
and can be deployed on high-computing power mainframes as well as small development
boards with lower performance configurations. The CEEMDAN–SR algorithm proposed in
this study has a more time-consuming preprocessing stage for hyperspectral prediction
modeling. This is due to the adoption of the CEEMDAN algorithm, whereas EMD-type
algorithms have a higher time complexity and generally longer processing time than,
for example, traditional preprocessing algorithms such as SG and FD. This processing time
is acceptable for most application scenarios. However, in application scenarios where a
large number of hyperspectral data samples need to be processed, the CEEMDAN–SR
algorithm may not be able to guarantee the timeliness of the processing.

In a follow-up study, we hope to (1) use the denoised hyperspectral data from the
CEEMDAN–SR algorithm for regression modeling analysis of other physicochemical prop-
erties of CL, as well as modeling analysis of denoised hyperspectral data of other crops,
to validate the generalization capability of the CEEMDAN–SR algorithm; (2) explore learn-
ing dictionaries more suitable for processing CL hyperspectral data, using adaptive learning
dictionaries such as the MOD algorithm, K-SVD algorithm, and Online algorithm as dictio-
naries for SR; (3) investigate the effectiveness and speed of a high-precision lightweight
neural network model [56] that is easy to deploy for the prediction of CL nitrogen content.

5. Conclusions

The CEEMDAN–SR algorithm can overcome the drawbacks of the SR algorithm in
dealing with spectral data with a high signal-to-noise ratio, while inheriting the advantage
of adaptive signal decomposition from the CEEMDAN algorithm. It was verified that
the denoised CL spectral curves obtained by the proposed CEEMDAN–SR algorithm
had a high similarity with the original spectral curves. The CEEMDAN–SR algorithm
retained most of the useful information in the original spectral curves, while effectively
removing noise and improving the signal-to-noise ratio of the original spectral curves.
The CL nitrogen content prediction model constructed by combining the CEEMDAN–SR
algorithm, PCA, and GPR had a high degree of fitness, high accuracy, and superior stability,
with an R2 value of 0.944, NRMSE value of 0.057, and RPD value of 4.219. Furthermore,
we observed that the SURE–LET algorithm and the SR algorithm could also generate more
precise models under specific combinations, making them potential reference methods for
the preprocessing stage of the CL nitrogen content prediction model.

The study selected several preprocessing methods, including the CEEMDAN–SR algo-
rithm, SURE–LET algorithm, SR algorithm, SG algorithm, and FD algorithm. It also used
PCA, UVE, and CARS for feature selection, and PLSR, SVR, RF, and GRP algorithms for
modeling, to establish hyperspectral CL nitrogen content prediction models. The modeling
effect using the CEEMDAN–SR algorithm, with the same combination of feature selection
and modeling algorithms, was generally better than the other four denoising algorithms.
Meanwhile, in future, we will deploy the model in an outdoor facility to build a nonde-
structive detection system for CL with a small time delay.
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