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Abstract: With the development of deep learning, image recognition based on deep learning is now
widely used in remote sensing. As we know, the effectiveness of deep learning models significantly
benefits from the size and quality of the dataset. However, remote sensing data are often distributed
in different parts. They cannot be shared directly for privacy and security reasons, and this has
motivated some scholars to apply federated learning (FL) to remote sensing. However, research
has found that federated learning is usually vulnerable to white-box membership inference attacks
(MIAs), which aim to infer whether a piece of data was participating in model training. In remote
sensing, the MIA can lead to the disclosure of sensitive information about the model trainers, such as
their location and type, as well as time information about the remote sensing equipment. To solve this
issue, we consider embedding local differential privacy (LDP) into FL and propose LDP-Fed. LDP-
Fed performs local differential privacy perturbation after properly pruning the uploaded parameters,
preventing the central server from obtaining the original local models from the participants. To
achieve a trade-off between privacy and model performance, LDP-Fed adds different noise levels
to the parameters for various layers of the local models. This paper conducted comprehensive
experiments to evaluate the framework’s effectiveness on two remote sensing image datasets and
two machine learning benchmark datasets. The results demonstrate that remote sensing image
classification models are susceptible to MIAs, and our framework can successfully defend against
white-box MIA while achieving an excellent global model.

Keywords: remote sensing image classification; local differential privacy; deep learning; federated
learning; membership inference attack

1. Introduction

Remote sensing is a technology that uses sensors (e.g., satellites, airplanes) to detect
physical features in a non-contact, long-distance manner [1,2]. In recent years, with the
increasing deployment of remote sensing satellites, the magnitude of remote sensing data
has also grown dramatically. To analyze and utilize these remote sensing image data,
more scholars apply state-of-the-art deep learning techniques for remote sensing image
data analysis, such as scene classification [3,4] and object detection [5]. As we know, deep
learning models significantly benefit from the size and quality of the training dataset.
However, in practice, on the one hand, remote sensing data need to be collected from
different companies [6]. On the other hand, remote sensing data cannot directly be shared
because they are usually sensitive and contain trade secrets, which may leak information
about sensitive infrastructure or military facilities [7]. This is one of the major problems
affecting the practical application of deep learning algorithms in remote sensing. To solve
this problem, federated learning has been researched and applied to remote sensing [8–11].

Federated learning allows participants to collaboratively train an efficient global model
by sharing the parameters of a local model instead of sensitive data. However, in recent
years, scholars have found that federated learning is vulnerable to various inference at-
tacks launched against model parameters, such as adversarial attacks [12,13], backdoor
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attacks [14], and membership inference attacks [15]. In this paper, we focus on the mem-
bership inference attack, the goal of which is to infer whether a specific data point is
participating in the model’s training process. Suppose an attacker successfully launches a
membership inference attack against a participant, the attacker can infer the location, time,
and equipment type of the company’s remote sensing equipment from these membership
data. This will be a serious secret disclosure for a remote sensing company.

Recently, scholars have proposed some approaches to defend against MIAs, which
can be summarized as confidence score masking [16–18] (hiding the target model’s true
confidence scores), regularization [16,18–21] (reducing the overfitting of the target model),
knowledge distillation [22,23] (transferring the private large model’s knowledge to the
small one through an unlabeled public dataset), and differential privacy [15,24,25] (adding
noise to parameters during the model training). For defending against white-box MIAs in
FL, researchers have mainly focused on regularization and differential privacy [15,26–29].
However, the majority of them struggle to balance the privacy preservation and model
utility for the deep neural network with high dimensional parameters. Some scholars
attempt to encrypt the model parameters with homomorphic encryption [11], which can
guarantee the model’s effectiveness while taking into account the privacy and security of
the model. However, for complex remote sensing images and classification models, it leads
to huge computational and communication costs.

To solve the abovementioned problems, we propose local differential privacy federated
learning (LDP-Fed) in this paper. It is a private FL system that allows participants to train
DNN models jointly under the protection of LDP. The main inspiration for our LDP-Fed is
that adversaries launch membership inference attacks by collecting a set of local or global
model parameters in FL. Based on this point, it is different from the central differential
privacy, which adds noise during local model training [24]. We perform a piecewise
mechanism (PM) on the local model parameters before they are delivered to the central
server so that participants satisfy local privacy guarantees. As far as we know, there
have been some works [28,29] that applied LDP mechanisms to FL to protect local model
parameters. They added the same level of LDP noise to the parameters of each dimension
separately. Hence, to improve the model performance, they must either increase the overall
privacy budget or the number of federal learning participants, which may reduce the
framework usability or raise the risk of privacy disclosure. To show the effectiveness of
LDP-Fed, we evaluated LDP-Fed on various datasets. The experimental results demonstrate
that LDP-Fed could defend against white-box MIAs while having a minor impact on the
utility of complex DNN models. The contributions are summarized as follows:

• We propose and implement LDP-Fed to defend against white-box MIAs in the feder-
ated learning system on remote sensing, especially for global attacks launched from
the central server. It allows participants to collaboratively train DNN models with
formal LDP guarantees.

• To achieve optimal privacy-utility trade-offs, we optimize the noise addition method
according to the characteristics of white-box MIAs and apply the piecewise mechanism
(PM) that is more suitable for the parameters of the DNN models in LDP-Fed. It
gives our framework more utility than others while resisting white-box membership
inference attacks.

• We extensively evaluate LDP-Fed on various datasets to show the advanced trade-offs
of the local participants’ privacy and model utility. For the remote sensing image
dataset NWPU-RESISC45 with VGG, it reduced the adversary advantage Adv of
global attacks from 46.2% to 10.6% while decreasing the model accuracy by 5.0%.

The rest of our paper is organized as follows: Section 2 presents some related works
and background techniques related to the subject of this paper, then an overview of the
LDP-Fed framework and details of the LDP-Fed framework are presented in Section 3.
Sections 4 and 5 present the experimental setup and experimental results with analysis and
comparison. Section 6 concludes this paper.



Remote Sens. 2023, 15, 5050 3 of 21

2. Related Works and Background Techniques
2.1. Related Works

The development of deep learning algorithms, especially image recognition algorithms,
has led to their application in remote sensing, such as scene recognition and object detection.
With the increase in remote sensing equipment, the distribution of remote sensing data
has become decentralized, with multiple entities (remote sensing companies) holding
a small volume of data. To enhance the model’s effectiveness while guaranteeing the
security of remote sensing data, scholars have widely used federated learning in remote
sensing [30–32]. However, it still suffers from some security issues, such as adversarial
attacks, backdoor attacks, and especially membership inference attacks. These attacks
target the model’s parameters and pose serious security problems for federated learning.
There are some typical works on traditional FL applications for these attacks but less
research on remote sensing. Therefore, we propose the LDP-Fed framework for MIA in
FL on remote sensing. We will describe related work in three aspects: the application of
machine learning in remote sensing, membership inference attacks, and defense against
membership inference attacks.

2.1.1. Machine Learning in Remote Sensing

The research on remote sensing image data classification using state-of-the-art ma-
chine learning models has been studied by scholars for many years [33,34]. Geiß et al. [35]
followed the idea of learning invariant decisions function to address the problem of the
efficient classification of remote sensing images under sparse data. They proposed a virtual
support vector machine based on self-learning (VSVM-SL). In the same period, Wang et
al. [36] used the efficient random forest (RF) algorithm to classify remote sensing image
data, and the results showed that RF can achieve a superior and more stable classification
performance than SVM on the land-cover dataset. With the development of deep learning
algorithms, convolutional neural networks (CNN) have emerged as the most promising
technique for remote sensing image classification. Zhang et al. [37] proposed the model
architecture named CNN-CapsNet to improve the performance of the scene classification
model for remote sensing images. Their model utilizes the convolutional layer of a pre-
trained convolutional model for feature extraction from the image and then uses CapsNet
to classify the intermediate features. In contrast, Li et al. [38] used a convolutional neural
network for remote sensing image multi-target scene classification tasks. They proposed
MLRSSC-CNN-GNN. The main idea is to generate high-level representation features with
the CNN model and combine them with the graph attention network model to fully exploit
the scene graph’s spatial-topological relationship. Tang et al. [39] proposed a new CNN
model attentional consistent network (ACNet), which can improve the model classification
performance by emphasizing the local features of an image. Chen et al. [40] proposed
CNSPN, a method that better solves the problem of few-shot remote sensing image clas-
sification by combining the semantic information of image class names. Along with the
successful applications of deep neural networks in remote sensing image recognition, some
scholars have focused on the security concerns posed by the models, such as backdoor
attacks [11,14] and adversarial attacks [12,13].

2.1.2. Membership Inference Attack

We categorize membership inference attacks into white-box and black-box MIAs
according to the attacker’s information obtained from the target model.

Black-box membership inference attack. Shokri et al. [16] first presented the study
of MIAs on the classification model. They trained an inference attack model based on
the difference in model prediction between trained and untrained data. With the black
box setting, they need to train a series of shadow models to simulate the target model,
significantly impacting the attack model. Additionally, it is shown in [16] that overfitting
was highly correlated with MIAs, and the techniques that can mitigate over-fittings, such
as L2 regularization and dropout, could weaken the effect of an MIA. Yeom et al. [41]
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proposed another inference attack model based on quantitatively analyzing the difference
in the model’s loss between the training and the testing dataset to simplify the MIA.
Salem et al. [21] attempted to decrease the shadow model’s number in [16] and proposed a
lighter-weight MIA strategy. These schemes rely on black-box features of the target model,
such as model prediction, to launch the attack.

White-box membership inference attack. Unlike the previous works, Nasr et al. [27]
proposed a comprehensive white-box MIA framework. They assumed that attackers held
some knowledge about the training dataset. To obtain the training dataset for the attack
model, they use forward and backward propagation to obtain all the model outputs at
the data points (e.g., gradients of the data, neuron outputs, and model losses). A one-
hot value is added, representing whether the data point participates in the target model
training. Their attacks achieve a better performance than the black-box setting. Nasr et
al. [27] pointed out that the MIA effect is improved in the FL scenario due to the frequent
communication enabling the attacker to acquire more helpful knowledge.

2.1.3. Defense Mechanism against Membership Inference Attack

As MIAs have demonstrated efficiency on various DNN models, researchers have pro-
posed many protection solutions to defend against MIAs. Here, we summarize the existing
schemes into four categories, i.e., confidence score masking, regularization, knowledge
distillation, and differential privacy. We introduce them separately. In Table 1, we compare
various aspects of the existing schemes with those of LDP-Fed.

Table 1. Comparison summary.

Function/Method [16] [20] [22] [24] LDP-Fed

Data Type Arbitrary Image Arbitrary Arbitrary Arbitrary

Federated
Learning 5 ! ! ! !

Defend against
white-box MIA 5 5 ! ! !

Defend against
black-box MIA ! ! ! ! !

Defense Mechanism Confidence
Masking

Mixup
Regularization

Knowledge
Distillation DP-SGD LDP

Model Performance High High High Low High

Efficiency of
Training High Low Low High High

Confidence score masking. The motivation for confidence score masking is that
defenders could hide some prediction information from the attacked model to mitigate
black-box MIAs. Shokri et al. [16] proposed sharing the top-k confidence scores with
the attacker instead of providing the complete prediction vector. Jia et al. [17] proposed
a defense method called MemGuard using the adversarial machine learning technique.
However, follow-up works [23,42] proved that neither could completely defend against
membership inference attacks.

Regularization. The overfitting problem of machine learning is an important cause of
membership inference attacks [16,43,44], and regularization can effectively mitigate overfit-
ting. Therefore, many scholars have analyzed the effectiveness of various regularization
methods to defend against MIA (e.g., L2-norm regularization, dropout, early stopping,
and label smoothing [45]). Apart from that, regularization methods are specifically used
to defend against MIAs. Nasr et al. [19] proposed adversarial regularization. Li et al. [20]
proposed Mixup+MMD (Maximum Mean Discrepancy) to mitigate MIAs. Kaya et al. [45]
applied data augmentation to machine learning and compared it with classical regular-
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ization methods to demonstrate that data augmentation can effectively defend against
MIA experimentally.

Knowledge distillation. Knowledge distillation is often applied as an efficient model
compression and acceleration technique in machine learning model deployment. It trains a
small “student model” that is transferable by extracting the knowledge from an extensive
deep neural network “teacher mode” with high generalization ability since the output
vector of the teacher model may contain much potential information about itself [46].
Based on knowledge distillation, Shejwalkar et al. [22] proposed the DMP (Distillation for
Membership Privacy) method to defend against MIAs. Unlike the conventional model
training process, DMP first trains an unprotected teacher model on their private dataset
and then uses the teacher model to classify an unlabeled public dataset as their soft labels.
Finally, training the student model with a portion of the soft-labeled dataset. Because DMP
requires additional public datasets, Zheng et al. [47] proposed complementary knowledge
distillation (CKD) and pseudo complementary knowledge distillation (PCKD) that allows
the process of knowledge distillation without the need for additional public datasets.

Differential privacy. Differential privacy [48] is an excellent privacy protection frame-
work that strictly quantifies privacy by the privacy budget ε and provides different mecha-
nisms to suit all data types. Since Abadi et al. [24] proposed DP-SGD (differential privacy
stochastic gradient descent) for DL, DP has been widely employed in DL. The main idea
of DP-SGD is to clip the gradients to obtain a bounded local sensitivity and add Gaussian
noise to it. Abadi et al. [24] calculated the privacy cost by applying “moments accountant”
to reduce the maximum privacy upper bound. DNN models trained with DP-SGD can
effectively defend against MIAs but suffer a significant loss of model utility.

2.2. Background Techniques
2.2.1. Federated Learning

FL was proposed in the form of collaborative learning by Google in 2017 [49]. The
importance of FL is that it enables participants to train high-quality machine learning
models without sharing the original dataset directly, which may pose privacy concerns.
First, N participants with the same private dataset structure agree on training a typical
machine learning model with the same architecture. At each iteration, local participants
receive the weights from the central server, perform local training with their private dataset,
and finally submit their gradients or local model weights to the server. After that, the
central server gathers and averages the gradients or model weights from clients. Afterward,
the global model’s parameters are distributed to the participants again, and the next
iteration starts. This process will iterate until the global model converges or completes a
predetermined number of iterations.

2.2.2. Local Differential Privacy

As a variant of DP, local differential privacy [50] aims to enhance the privacy protection
of local participants. It allows each participant to perturb sensitive data before being
uploaded to the central server. Consequently, the aggregator has no access to the original
dataset from the participants. It provides better privacy protection for the participants. The
definition of ε-LDP is given below:

Definition 1 (ε-Local Differential Privacy). A randomized algorithmM satisfies ε-LDP, if and
only if for any two input values v and v′ in the domain ofM, and any possible output Y ofM,
we have:

Pr[M(v) ∈ Y] ≤ eε · Pr[M(v′) ∈ Y], (1)

where ε is the privacy budget, which controls the privacy guarantee of mechanismM, a
smaller ε means stronger privacy protection, and Pr[·] denotes probability.

In addition, similar to DP, LDP also holds two widely-used properties [51]: post-
processing and sequential composition. The former property states that it is always privacy-
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guaranteed to perform arbitrary computations on the output of a differentially private
mechanism. The latter property offers the ability to bound the total privacy cost of releasing
multiple results of differentially private mechanisms on the same input data.

Theorem 1 (Posting-Processing). LetM(x) be a ε-LDP mechanism, where x is the input ofM,
then for any (deterministic or randomized) function G, G(M(x)) satisfies ε-LDP.

Theorem 2 (Sequential Composition). Given n mechanisms {M1(x),M2(x), ...,Mn(x)} sat-
isfy εi-LDP, respectively, where x is the same input to all of the mechanisms, then for a new
mechanism A(x) = (M1(x),M2(x), ...,Mn(x)) satisfies ∑n

i=1 εi-LDP.

2.2.3. Piecewise Mechanism

Piecewise mechanism (PM) [50] is a random algorithm that privately analyzes user
data’s mean value and frequency estimate. Meanwhile, it also ensures that the user side
satisfies the ε-LDP. An aggregator will calculate the mean value over all n users in this
setting. However, instead of raw data t, users send the data t∗ perturbed by PM, and PM
guarantees that t is an unbiased estimate of t∗.

Theorem 3. Let S = 1
n ∑n

i=1 t∗i and S̄ = 1
n ∑n

i=1 ti, with at least 1− β probability,

∣∣S− S̄
∣∣ = O(

√
log(1/β)

ε
√

n
). (2)

Different from the Laplace mechanism [52] and Duchi et al.’s method [53] for one-
dimensional data, PM will adjust the probability destiny function according to the input
value, which leads to a lower worst-case variance 4eε/2

3(eε/2−1)2 compared to Duchi et al.’s
(eε+1)2

(eε−1)2 and Laplace mechanism’s 8
ε2 . It is easy to prove that the PM has a lower variance

than Duchi et al.’s method when ε > 1.29. Additionally, the worst-case variance of the
Laplace mechanism and PM will decrease dramatically as ε increases. However, PM’s
worst-case variance is still lower than that of the Laplace mechanism, as illustrated in
Figure 1.
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Figure 1. Different LDP mechanisms’ worst-case noise variances for one-dimensional numeric data
versus privacy budget ε.

2.2.4. Membership Inference Attack in Federated Learning

As for the MIA, the primary goal of the attack is to detect whether a data point (x, y)
belongs to the training dataset of the target model f (x, ω). We separate this type of attack
into white-box and black-box MIAs depending on the attacker’s information about the
attacked model [27]. For the white-box setting, an attacker can obtain all information (i.e.,
model parameters, model architecture, loss function) about the target model and use these
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features to train its attack model. However, an attack can only access the model through
queries for the black-box attack. This paper focuses on the white-box MIA due to the
FL setting.

Unfortunately, federated learning is easily attacked by MIAs. As shown in Figure 2,
the adversary may be one of the participants or the CS. In this paper, we set a curious
parameter server that can receive the gradients or parameters from each participant and
perform a passive white-box MIA on all the local participants, respectively. The local side
attacker can only observe a fraction of updated global models, so it achieves a lower attack
accuracy than the global attacker. Meanwhile, MIA accuracy declines as the number of
participants decreases [27].

Global Model

Participants(remote 
sensing companies)

Local Model

Perturbed Local 
Model

Local Model

Central Server
（CS）

Perturbed Local 
Model

Share 
Parameters

LDP 
Perturb

LDP 
Perturb

Remote 
Sensing Data

Remote 
Sensing Data

Figure 2. Overview of the LDP-Fed .

3. Methodology
3.1. Overview of LDP-Fed

The rapid development of machine learning techniques has motivated the broad
application of deep learning-based image recognition in remote sensing. To improve
the model’s effectiveness while ensuring the security of remote sensing data, federated
learning has also been widely used in remote sensing. However, frequent transmission of
local model parameters in federated learning can lead to membership inference attacks
on participants’ remote sensing data, which are launched against the parameters of a
model. Suppose an attacker launches membership attacks on a remote sensing company
participating in federated learning. In that case, it can infer the location, type, and time
information about the company’s satellites through the membership information, resulting
in a severe security risk to their satellites. Therefore, this paper proposes LDP-Fed, which
aims to train an excellent global model while guaranteeing the security of participants’
sensitive data.

3.1.1. Main Motivation of LDP-Fed

The target model’s generalization gap (i.e., loss gap) between the model on the train-
ing dataset and the test dataset is the fundamental reason for the membership inference
attack [22,54,55], which is due to the continuous fitting of the training dataset by the deep
learning model during the training process. However, in the FL scenario, attackers can
obtain more information about the model, enhancing the MIA’s effectiveness. Hence, the
methods generally used in the black-box MIA scenario for a defender cannot apply to FL.
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Local differential privacy is the best option to solve this problem. Participants use local
differential privacy algorithms to perturb the parameters of the local model during interac-
tion to reduce the privacy risk. However, the direct use of LDP brings a huge model utility
loss, so we designed LDP-Fed for MIA attacks. We chose more appropriate LDP algorithms
and allocated a reasonable privacy budget to achieve a better trade-off between member
privacy and model utility, and we improved the practicality of the LDP-Fed framework.

3.1.2. Framework of LDP-Fed

As shown in Figure 2, our LDP-Fed mainly contains two parts: (1) Central Server (CS)
and (2) Participants. We apply the local differential privacy to FL to protect the parameters
of local models and prevent attackers from obtaining information about the local models’
training dataset through parameters.

(1) CS is responsible for communicating with local participants to collect and aggregate
local models’ parameters. After aggregating the local models into a global model, CS
releases the model information to the chosen participants to perform local training and
start the next iteration.

(2) Participants are remote sensing companies involved in federated learning. These
companies collect remote sensing image data via private satellites and intend to train a
more efficient global model collaboratively. At the beginning of FL, participants initialize
their local model based on the parameters distributed by the CS (i.e., global model pa-
rameters). Then, the participants start to perform local training using their private remote
sensing dataset. Then, participants perturb their local model’s parameters through the LDP
algorithm, upload the perturbation parameters to CS, and wait for the next iteration.

Different from the traditional FL framework, which transfers local models’ parameters
directly, we perturb the parameters by PM that make the FL process satisfy local differential
privacy and can defend against white-box MIAs effectively.

3.1.3. Adversary Model

This paper assumes that the CS and participants are honest but curious. Even though
they strictly perform local model training, they remain interested in obtaining the private
training dataset of other remote sensing companies to infer the private information of their
satellites. Under this assumption, we present the passive adversary A, which has auxiliary
data points; a part of that is sampled from the training dataset of the victims. The remaining
parts have the same distribution as the training dataset but have not been involved in the
model training and launch a white-box MIA to infer whether a data point appears in the
training dataset of participants. A has the following capabilities:

(1) A can compromise CS to spy on the participants’ local training process, collect all
the local models from any participants, and launch the passive white-box MIA.

(2) A can compromise one remote sensing company, different from the CS situation. It
can only observe a series of global models and launch a white-box MIA.

3.1.4. Privacy Requirement

In LDP-Fed, we attempt to protect the private data in each participant’s private
remote sensing data from disclosure. In this paper, we mainly focus on the MIA, which
is a highly prevalent and efficient attack in federated learning. Therefore, we require
our LDP-Fed framework to be defensible against passive white-box MIA launched from
the CS and the participant sides during the process of FL training. It means that the
adversary fails to distinguish whether a specific data point belongs to the training dataset
of a local participant.

3.2. Details of LDP-Fed

Here, we first describe the steps of LDP-Fed illustrated in Algorithm 1, and we presente
key details of LDP-Fed as shown in Figure 3.
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Figure 3. Private federated learning with LDP-Fed.

3.2.1. Federated Learning with LDP

In federated learning, we consider K participants with the same remote sensing data
structure who want to train a remote sensing scene classification model collaboratively.
During the training process of FL, each participant performs the local model training by
its private remote sensing image dataset and shares the local model’s weights with the CS.
However, to defend against membership inference attacks, we apply PM to FL and propose
LDP-Fed. As shown in Algorithm 1, we present our LDP-Fed training process from the
perspective of the central server and the local participants separately.

Cloud update. The central server side is similar to the traditional FL framework. First,
it generates the target model with the initial parameters θ0 and sends it to each client with
a privacy budget ε. Then, the server waits for responses from the clients selected by the
k-clients selection module. At every iteration in FL, the k-clients selection module will
select k(k ≤ n) clients with probability q = k/n, where n is the total number of the local
clients. Upon getting responses, the central server aggregates and averages all the updated
parameters from the local clients and sends the results back to the clients. After that, the
central server moves on to the next iteration.

Clients Update. For the clients, they are participants in federated learning, and each
client is a remote sensing company with a private image dataset. At each communication
round r, the selected clients will update their local models using weights θr sent from the
central server. Next, they will use their private remote sensing dataset to perform the
local training by the SGD (stochastic gradients descent) [56] in parallel. Then, the clients
will send the updated local models’ weights θ′r back to the central server and wait for the
next iteration. However, they integrate the PM into this process for client-level security
concerns. Before the clients send the updated models’ weights back to the central server,
each parameter will be clipped and then perturbed θ′r by PM with the privacy budget ε as
shown in Algorithm 2. They allocate privacy budgets based on the model’s different layers,
unlike the previous methods [28,29] of allocating privacy budgets equally. The privacy
budget allocation is described in Section 3.2.4.
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Algorithm 1: LDP-Fed.
Input: K is the total client number. T is the communication rounds number. B is

the mini-batch size of the local model. E is the epoch size of the local model.
η is the learning rate of the client’s training process. ε is the privacy budget
of LDP.

Sever executes:
Initialize: ω0 and send ε to clients. ; // initialize model weights and send
the privacy budget ε to clients

for each communication round t = 1, 2... do
kt ← random set of kt clients ; // cloud side randomly select kt clients
from K clients with uniformly q = kt/K

for each client k ∈ kt in parallel do
ωk

t+1 ← ClientUpdate(k, ωt);
end
W ← {ωk

t+1}k∈kt ; // Gather kt clients’ local updated model’s
weights

for each id ∈W do
ωt+1[id] = 1

kt
∑kt

i=1 Wi
id ; // average the weights of local models and

update the central model
end

end
SendWeightsToClients(ωt+1) ; // send updated weights back and update all
of the local models

Client executes:
function ClientUpdate(k,ωt):
ωk ← ωt;
for each local Epoch i = 1, 2, 3...E do

for batch b ∈ B do
ωk = ωk − η5 L(ωk, b) ; // mini batch gradient descent and
clients local model update

end
end
for each ω in ωk do

ω = ω/max(1, |ω|);
end
ω∗k = PM_Perturbation(ωk, ε);
return ω∗k ;

Algorithm 2: PM_Perturbation.
Input: model weights ω ∈ [−1, 1], privacy budget ε
Output: perturbed model weights ω∗k ∈ [−C, C]

1 Sample x uniformly at random from [0, 1];

2 if x < eε/2

eε/2+1
then

3 Sample ω∗ uniformly at random from [l(ω), r(ω)];
4 else
5 Sample ω∗ uniformly at random from [−C, l(ω)) ∪ (r(ω), C];
6 end

This process between the central server and local clients will continue until the target
model converges or reaches maximum communication rounds (iterations).
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3.2.2. Parameter Norm Clipping

Considering the LDP-Fed system’s overall privacy budget and communication costs,
we transfer the local model’s weights, which the local private dataset has trained for three
epochs. Therefore, the input value of Algorithm 2 is likely not in the range of [−1,1]
compared with the FL system, which transfers the model gradients. To satisfy the local
differential privacy of Algorithm 1, we have to bound the perturbed local model weights
ωr into [−1,1]. Thus, in Algorithm 1, we have to clip each parameter θ in ωr before they are
perturbed by Algorithm 2, i.e., for a parameter θ replaced by θ/max(1, |θ|). The clipping
ensures that if |θ| ≤ 1, then the parameter θ is preserved, whereas if |θ| > 1 gets scaled
down to be 1 or −1.

3.2.3. Parameter Perturbation

After norm clipping, we subject the parameters to perturbation based on the PM.
Specifically, Given a weight ωi of local model ωi ∈ [−1, 1] from local client ni, PM outputs
a perturbed value ω∗i ∈ [−C, C], where

C =
eε/2 + 1
eε/2 − 1

and the PM’s probability density function (pdf) is a piecewise constant function as follows:

pd f (ω∗i = x|ωi)

{
p, x ∈ [l(ωi), r(ωi)],
p
eε , x ∈ [−C, l(ωi)) ∪ (r(ωi), C].

(3)

where

p =
eε − eε/2

2eε/2 + 2
,

l(ωi) =
C + 1

2
∗ωi −

C− 1
2

,

r(ωi) = l(ωi) + C− 1.

In Algorithm 2, we show the pseudo-code of PM. We apply PM in our LDP-Fed
because, compared with previous mechanisms (the Laplace mechanism and Duchi et
al.’s method), PM performs better when dealing with neural network parameters, which
have high precision (5–10 digits after decimal points). Given numeric data t to the LDP
mechanism, the algorithm returns perturbed data t∗, and t∗ is the unbiased estimator of the
original data t. However, different LDP mechanisms have variances for t∗. The variances
of PM, Duchi’s solution, and the Laplace mechanism are t2

eε/2−1
+ eε/2+3

3(eε/2−1)2 , ( eε+1
eε−1 )

2 − t2, 8
ε2 ,

respectively. PM has a smaller variance when dealing with smaller values, while Duchi
et al. ’s has a larger variance.

3.2.4. Privacy Budget Allocation of LDP-Fed

The privacy budget allocation is vital for applying PM to the FL system. PM is a design
for the single numerical attribute collection, so we have to use PM for each parameter of
the target model. As shown in Algorithm 1, we assume the FL system has a total of E
iterations, n clients, and an overall privacy budget ε. At each iteration, randomly select
k clients for target model updating. Based on the composition property of LDP [57], to
guarantee ε-LDP, Truex et al. [28] and Sun et al. [29] split the privacy budget ε into E
small pieces and hold ε = ∑E−1

i=0 εi. At each iteration i < E, the small piece of the privacy
budget εi will be allocated equally to every dimension of the model parameters, just as
εp = εi

|θ| , where the |θ| represents the total numbers of the model parameter uploaded
to the central server. However, this type of privacy budget allocation assumes that the
parameters are identically sensitive to LDP noise. This may lead to a less accurate DNN
model or be ineffective in defending against white-box MIAs in FL. Our experiments found
that the DNN model’s former layers are more noise-sensitive. As the layers increase, the



Remote Sens. 2023, 15, 5050 12 of 21

robustness of the parameters increases. This is due to the former layers extracting features
from the training dataset and generalizing better than the later layers. Thus, a slight change
could be reflected in the DNN model’s accuracy. Another important point is that, in [27],
their experiments showed that among the layers of the target model, the latter leak more
information about the training dataset than the former layers, especially for the last layer.

As shown in Theorem 3, the asymptotically optimal error bound of PM is O(

√
log(1/β)

ε
√

n ). To
increase the target model utility, it has to increase the privacy budget ε for each parameter
when we fix clients’ number k, which may result in privacy leakage from the later layers’
parameters when k is small.

Combining the twofold, we suggest that the defender allocates more privacy budget
to the former layers of their model when using LDP to defend against white-box MIAs in
FL. Specifically, given a total privacy budget ε in our LDP-Fed, we allocate it equally to
each iteration. In each iteration, we allocate the privacy budget for all parameters in the
last layer as εL. Moreover, for the parameters of layer l, we allocate the privacy budget
εL + (L− l) ∗ s. In our experiments, we set s = 1 uniformly.

4. Experimental Setup

In this section, we briefly introduce the experimental setup. It contains the dataset
information, the target model’s architecture and hyperparameters in FL, the white-box
inference attack model setup, and the metrics for model performance.

4.1. Datasets

To evaluate our experiments, we used four datasets: two famous remote sensing image
datasets, EuroSAT and NWPU-RESISC45, and two standard image recognition benchmark
datasets, Fashion-MNIST and CIFAR10.

EuroSAT was proposed by Helber et al. [58], which is a satellite image dataset based
on Sentinel-2. EuroSAT provides 27,000 non-overlapping 64× 64 color pixels images and is
classified into ten categories, as shown in Figure 4. Researchers often use it as a benchmark
dataset for land use and land cover issues in remote sensing image recognition.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 4. EuroSAT dataset sample image presentations in ten categories. (a) AnnualCrop. (b) Forest.
(c) Highway. (d) Industrial. (e) HerbaceousVegetation. (f) Pasture. (g) PermanentCrop. (h) Residen-
tial. (i) River. (j) SeaLake.

NWPU-RESISC45 [59] was created by Northwestern Polytechnical University (NWPU)
as a benchmark dataset for remote sensing image scene classification. It consists of 31,500 re-
mote sensing images that cover 45 scene categories, with 700 images in each category. Due to
its large-scale scene categories and data quantity, it is widely used in remote sensing image
classification tasks. In Figure 5, we present part of the scene images of NWPU-RESISC45.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 5. Presentation of a portion of the NWPU-RESISC45 sample, it contains 45 categories of remote
sensing scene images. (a) Airport. (b) Airplane. (c) Basketball. (d) Beach. (e) Bridge. (f) Church.
(g) Cloud. (h) Desert. (i) Island. (j) Lake.

Fashion-MNIST [60] contains 60,000 training images and 10,000 testing images con-
taining 28× 28 pixels gray-level (0 to 255). A classification task is trained to recognize the
ten clothing labels of the input images (e.g., t-shirt, trousers, and dress).

CIFAR10 [61] is a popular benchmark dataset used to evaluate image recognition
algorithms. The dataset consists of 32 × 32 color pixels and contains 50,000 training and
10,000 validation images drawn from 10 classes.

4.2. Target Model Setting

We investigated LDP-Fed on the datasets mentioned previously. For EuroSAT, we used
a three convolutional layers and a two fully connected layers convolutional neural network
(CNN). As for Fashion-MNIST, we used a six-layer (1024,512,256,128) fully connected
neural network (FCN), which had been used by Nasr et al. [27] for a target model to be
attacked. The features and label size of the dataset determine the size of the input and
output layers. For the CIFAR10 and NWPU-RESISC45, we used the Alexnet [62] and VGG
[63] models, respectively. We trained our model with the Adam [64] optimizer with a 0.001
learning rate.

We used two federated learning settings to verify the robustness of the LDP-Fed
and the effectiveness against the white-box MIA. Specifically, we chose the parameters
averaging the aggregation method in FL. At every iteration in FL, each selected participant
sends the updated local model’s parameter to the central server after training three epochs.
We uniformly used the same dataset size for all the participants. For the former, we used
four datasets, and the sizes are shown in Table 2. We averaged all the data points for all
of the participants, which do not overlap between various participants. We continued the
experiment’s setup in [27] for the latter. We set four participants in FL, and the sizes of the
datasets are shown in Table 3.

Table 2. The size of the dataset used to train and test the LDP-Fed classification models and the
architecture of the models.

Dataset Architecture Training
Size

Testing
Size

EuroSAT Convolutional Neural Network 15,000 12,000
NWPU-RESISC45 Convolutional Neural Network(VGG) 20,000 10,000
Fashion-MNIST Fully Connected Network 60,000 10,000

CIFAR10 Convolutional Neural Network(Alexnet) 50,000 10,000
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Table 3. Datasets sizes of the target and attack models in FL experiments.

Datesets
Client’s Datasets Size Attack Model Datasets Size

Training Testing
Training

Member

Training

Non-Member

Testing

Member

Testing

Non-Member

EuroSAT 5000 5000 2500 2500 2500 2500

NWPU-RESISC45 10,000 10,000 5000 5000 5000 5000

Fashion-MNIST 5000 10,000 2500 2500 2500 2500

CIFAR10 15,000 10,000 10,000 5000 5000 5000

4.3. Threat Model Setting

We implemented the MIA with TensorFlow and Keras. The architecture of our threat
model is the same as Nasr et al.’s [27] supervised learning part. When a global attacker
launches a white-box MIA against a participant, the attacker first actively collects the local
models uploaded by the participant. Then, it obtains all the helpful information, just like
the model’s output, hidden layers’ output, and the gradients of the loss to the parameters
by forward and backward passes as the input features of the attack model. Finally, a binary
classification attack model is trained by supervised learning. However, the target model
is changed to the global model when the attacker is a local participant. An attacker can
launch an MIA at any epoch during the FL training process. In this paper, we uniformly set
it to 120, which may lead to a better attack performance [27].

4.4. Metrics

To quality the model’s utility in FL, we used its top-1 accuracy on the testing dataset,
Acc. We tested our attack model’s accuracy on a dataset consisting of half members and
half non-members. However, on the dataset, a random guessing strategy has an accuracy
of 50%. Thus, to quantify the performance of the attack model, we followed [20,41,45] to
use the adversary advantage metric Adv, defined as its accuracy over a balanced 1/2 as a
percentage, i.e., Adv = (Acc− 50%) ∗ 2.

5. Experimental Results and Discussion

Here, we present our experimental results for the LDP-Fed defense effectiveness to the
white-box MIA in remote sensing, followed by results for analyzing the effect of parameters
in LDP-Fed on its performance.

5.1. Defende against White-Box MIA

Unconstrained attack. We presented the performance of the membership inference
attack without deployment defense in Table 4. All four datasets suffered from white-box
MIAs to varying degrees, especially for the more complex remote sensing image datasets
EuroSAT and NWPU-RESISC45. It indicates that remote sensing image classification
models are more vulnerable to membership inference attacks. Further, we can conclude
that a global attacker is more effective than a local attacker (e.g., 46.4% vs. 25.8% attack Adv
on EuroSAT and 44.6% vs. 26.3% on CIFAR10). This is because the model updated by the
local clients contains more information about the clients’ training data than the averaged
model in an iteration of the FL.

LDP against white-box MIAs in FL. We first have to provide good utility for the FL
model when n = 4. Thus, we chose different ε values for the four datasets based on the
results of the previous experiment. As shown in Table 4, we set ε = 3.0 for EuroSAT, ε = 2.0
for CIFAR10, ε = 5.0 for NWPU-RESISC45, and ε = 3.0 for Fashion-MNIST. They achieved
Acc = 82.5%, Acc = 59.6%, Acc = 77.9%, and Acc = 83.6%, respectively. Our LDP-
Fed can significantly reduce the white-box MIA’s effectiveness while maintaining a high
testing accuracy on global models. Under this LDP setting, a passive global attacker Adv is
decreased dramatically for all four datasets. For EuroSAT, CIFAR10, and NWPU-RESISC45,
LDP reduced attack Adv by more than 70% over the baseline attack Adv, and for Fashion-
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MNIST, by almost 82%. In Table 4, we also presented the results of the LDP defending
against a local passive attacker. We observed that LDP reduces the risk slightly compared to
a global attacker: on EuroSAT, CIFAR10, Fashion-MNIST, and NWPU-RESISC45, it reduced
the attack Adv by nearly 30%. Fortunately, the efficiency of local attackers decreases quickly
and naturally as the number of participants increases, because averaging in the FL scenario
may decrease the effects of each party [27].

Table 4. Performance of applying LDP in FL against white-box MIA on EuroSAT, CIFAR10, NWPU-
RESISC45, and Fashion-MNIST.

Defense Dateset Privacy Budget ε Acc. Global Att.Adv Local Att.Adv

EuroSAT - 89.2% 46.4% 25.8%

No Defense CIFAR10 - 62.1% 44.6% 26.3%
NWPU-RESISC45 - 83.5% 46.2% 28.4%
Fashion-MNIST - 86.5% 24.5% 12.5%

EuroSAT 3.0 82.5% 13.8% 17.6%
Defense CIFAR10 2.0 59.6% 12.2% 18.4%

with LDP NWPU-RESISC45 5.0 77.9% 10.6% 18.6%
Fashion-MNIST 2.0 83.6% 4.6% 8.2%

Why does LDP-Fed work? In Figure 6, we recorded the performance of the local and
global models on four datasets during LDP-Fed’s training process. Specifically, we recorded the
updated local models’ training and testing accuracy, the testing accuracy of the local models after
LDP perturbation, and the testing accuracy of the aggregated global models at 30, 60, 90, 120,
and 150 epochs, respectively. The experimental results showed that the local and global models
converge after 30 epochs, and the perturbation effect of LDP on the local models is evident. It
seriously reduced the testing accuracy of the local models by around 40–50 percentage points
for all datasets, while the aggregated global model still performs well after aggregation. LDP
perturbation caused dramatic changes in the local models’ parameters, leading to significant
inaccuracies in a global attacker’s training dataset. That is why the LDP-Fed is so effective in
defending against attacks launched from the global side. The global model received by the
client still maintained a good performance, resulting in LDP-Fed being less effective than the
global attacker in defending against the local attackers.
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Figure 6. Compare the effect of LDP to the local and global models’ accuracy on four different datasets.
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5.2. Hyperarameter of LDP-Fed Analysis

As shown in Figure 7, to evaluate the relationship between the client’s number n
and the global model testing accuracy in FL, we fixed the privacy budget ε. We changed
the client’s number n in four different datasets. We observed that the LDP-Fed models
perform better with the increase of n, even as close as the undefended models. However,
after n = 10, they almost hold the same performance distance between LDP-Fed and
undefended models no matter the change of n. This is because, as shown in Theorem 3, the
error between the mean of the original data and the perturbed data by PM is constrained
by the privacy budget ε and the number of participants n. The error decreases rapidly as
the number of participants increases. In practice, the number of clients n still should be ten
or more to get an acceptable model performance in our LDP-Fed.

Another important hyperparameter to the LDP-Fed is the privacy budget ε. As shown
in Figure 8, we analyzed the effect of ε on model performance. Specifically, we set n to
20 in FL and presented the accuracy results with ε from 1 to 7 for all four datasets. It
showed that the accuracy would increase as ε increases. We observed four different ε as
an inflection point on EuroSAT (ε = 3.0), Fashion-MNIST (ε = 2.0), CIFAR10 (ε = 3.0),
and NWPU-RESISC45 (ε = 5.0). The model’s accuracy dropped rapidly when ε was
less than the point. On the contrary, the accuracy increased slowly and was close to the
undefended model’s performance. Furthermore, more complex datasets or DNN models
require more privacy costs. This is because of the more sophisticated neural network and
more model weights.

5 10 20 50 100200300400500
Number of clients n

80

82

84

86

88

90

Ac
cu

ra
cy

(%
) LDP-Fed

No_Defense

(a) EuroSAT

5 10 20 50 100200300400500
Number of clients n

70

75

80

85

90

Ac
cu

ra
cy

(%
) LDP-Fed

No_Defense

(b) NWPU-RESISC45

5 10 20 50 100200300400500
Number of clients n

80

82

84

86

88

90

Ac
cu

ra
cy

(%
) LDP-Fed

No_Defense

(c) Fashion-MNIST

5 10 20 50 100200300400500
Number of clients n

58

59

60

61

62

63

64

Ac
cu

ra
cy

(%
) LDP-Fed

No_Defense

(d) CIFAR10

Figure 7. Impact of client number n on the training accuracy in four different datasets.
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Figure 8. Impact of privacy budget ε on training accuracy in four different datasets.

In addition, we evaluated the model convergence rate, which determines the commu-
nication costs between clients and the central server in LDP-Fed. As shown in Figure 9,
for Fashion-MNIST, the models converged within ten communication rounds. For the
rest of the dataset, limited by model complexity and sensitivity, they need more than
15 communication rounds to achieve a better performance. Our LDP-Fed is convenient for
training an excellent model within an acceptable communication cost.
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Figure 9. Analyze the relationship between the model accuracy and communication rounds.

5.3. Performance Comparison

Comparison with DP-SGD. As a gold standard, DP provides theoretical privacy
guarantees. Abadi et al. [24] proposed DP-SGD to protect against privacy leakage in
machine learning. Essentially, DP-SGD clipped and added Gaussian noise to the gradients
computed on the private dataset during model training to limit the influence of a single
sample on the target model. In this paper, we followed the method of Naseri et al. [15],
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which applied the DP-SGD to the local models training process of the FL. We compared
LDP-Fed and DP-SGD using the empirically observed trade-offs between membership
privacy and global model accuracy.

We used CIFAR10 with Alexnet and chose two different privacy budgets for the DP-
SGD, ε = 2.0 (same with LDP-Fed privacy budget setting), ε = 8.6 (suggested by [15]),
and δ = 10−5 in both cases. We presented the experimental results in Table 5. As shown in
Table 5, our LDP-Fed and DP-SGD did mitigate the white-box MIA for a global attacker.
However, LDP-Fed could achieve a better defensive performance while obtaining a target
model with higher testing accuracy. When we set the privacy budget of DP-SGD to 2.0,
both global and local attackers were almost ineffective. However, this accompanied a loss
of more than 31% of model accuracy. As we anticipated, DP-SGD performed better against
the local attackers. Unlike DP-SGD, which adds noise during local model training, LDP-
Fed-aggregated perturbed parameters were unbiased estimates of the original parameters,
meaning the global LDP-Fed models have much less noise compared with DP-SGD.

Table 5. Compare the performance of different defense mechanisms against a white-box MIA in FL
using Alexnet on CIFAR10.

Defense Method Privacy Budget ε Model Acc. Global Att.Adv Local Att.Adv

No Defense - 62.1% 44.6% 26.3%

LDP-Fed 2.0 59.6% 12.2% 18.4%

DP-SGD
2.0 42.3% 5.8% 4.2%

8.6 54.6% 13.6% 12.8%

Comparison with other LDP-FL. In Figure 8, we set n = 20 for all the datasets. Our
LDP-Fed achieved 73.4% accuracy with ε = 3.0, 77.9% accuracy with ε = 5.0, 83.8% ac-
curacy with ε = 2.0, and 59.3% accuracy with ε = 2.0 on EuroSAT, NWPU-RESISC45,
Fashion-MNIST, and CIFAR10, respectively. To our knowledge, the results are very com-
petitive with previous works. Geyer et al. [65] first applied DP under Gaussian Mecha-
nism to federated learning to preserve clients’ level privacy. While they only achieved
78%,92%, and 96% accuracy with (ε, m, n) = (8, 11, 100), (8, 54, 1000), (8, 12, 10, 000) on
MNIST with differential privacy, where (ε, m, n) represented the privacy budget, commu-
nication rounds, and clients number, respectively. LDP was first exploited for federated
learning by Bhowmick et al. [66]. However, due to the high variance of their LDP algorithm,
to improve the convolutional neural network model’s accuracy to 10 percent of the original
value, they required a relatively large privacy budget and communication rounds, i.e., CI-
FAR10 (ε = 1000, CR = 200). Truex et al. [28] utilized condensed local differential privacy
(CLDP) to FL and up to Acc = 86.93% for Fashion-MNIST. Unlike the DP privacy budget ε,
α-CLDP’s privacy budget is controlled by the parameter α. However, α-CLDP achieved the
accuracy by requiring a high privacy budget ε = α · 2c · p (e.g., α = 1, c = 1, p = 10), which
may cause a weak LDP guarantee. Meanwhile, they did not apply α-CLDP to a more com-
plex DNN model or dataset. Sun et al. [29] proposed an advanced LDP-Fed recently, which
obtained high accuracy while protecting the privacy of the model, i.e., Fashion-MNIST
(ε = 4, Acc = 86.26%, n = 200), CIFAR10 (ε = 10, Acc = 61.46%, n = 500). However,
they need more than 100 clients in FL because they added the same noise to all parameters.
Thus, the number of clients must be constantly increased to reduce the noise’s impact on
model performance. In our LDP-Fed, we designed a special noise addition method against
MIAs. We can efficiently train excellent complex DNN models with fewer clients than in
previous works.

6. Conclusions

As the most promising solution for remote sensing institutions to maximize the po-
tential of data-driven models, FL has been widely used in remote sensing, such as in
FL-based image scene classification. However, FL is vulnerable to white-box MIAs, which
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may lead to the serious disclosure of the participants’ secret satellite sensitive information
when we apply FL in remote sensing. To solve the problem, we presented LDP-Fed, a
federated learning framework with LDP to defend against white-box MIAs in FL. Unlike
conventional federated learning, our system does not require a trusted aggregation server
due to local participants perturbing their model parameters with LDP to provide privacy
protection. To efficiently train a complex DNN model with LDP guaranteed, we have
allocated a reasonable privacy budget according to the network layers. We conducted
comprehensive experiments on four datasets, including two benchmark datasets for remote
sensing scene classification. Our experimental results demonstrate that remote sensing
image classification models are susceptible to MIAs. Furthermore, our framework can
defend against membership inference attacks while guaranteeing the utility of the models.

Author Contributions: Conceptualization, Z.Z. and X.M.; methodology, Z.Z.; software, Z.Z.; val-
idation, Z.Z.; formal analysis, Z.Z.; investigation, Z.Z.; writing—original draft preparation, Z.Z.;
writing—review and editing, X.M.; supervision, J.M.; All authors have read and agreed to the
published version of the manuscript.

Funding: This work was supported in part by Key R&D Program of Shandong Province, China
(Grant No. 2023CXPT05); Shenzhen Science and Technology Program (CJGJZD20220517142005013);
the National Key Research and Development Program of China under Grant 2021YFB3101100; the
National Natural Science Foundation of China under Grant U21A20464, 62220106004, 62072352, and
62261160651; the Key Research and Development Program of Shaanxi under Grant 2023-ZDLGY-52,
and Grant 2022GY-029; the Fundamental Research Funds for the Central Universities under Grant
ZYTS23167.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Yuan, Q.; Shen, H.; Li, T.; Li, Z.; Li, S.; Jiang, Y.; Xu, H.; Tan, W.; Yang, Q.; Wang, J.; et al. Deep learning in environmental remote

sensing: Achievements and challenges. Remote Sens. Environ. 2020, 241, 111716. [CrossRef]
2. Thapa, A.; Horanont, T.; Neupane, B.; Aryal, J. Deep Learning for Remote Sensing Image Scene Classification: A Review and

Meta-Analysis. Remote. Sens. 2023, 15, 4804. [CrossRef]
3. Gadamsetty, S.; Ch, R.; Ch, A.; Iwendi, C.; Gadekallu, T.R. Hash-based deep learning approach for remote sensing satellite

imagery detection. Water 2022, 14, 707. [CrossRef]
4. Ma, D.; Wu, R.; Xiao, D.; Sui, B. Cloud Removal from Satellite Images Using a Deep Learning Model with the Cloud-Matting

Method. Remote Sens. 2023, 15, 904. [CrossRef]
5. Devi, N.B.; Kavida, A.C.; Murugan, R. Feature extraction and object detection using fast-convolutional neural network for remote

sensing satellite image. J. Indian Soc. Remote Sens. 2022, 50, 961–973. [CrossRef]
6. Tam, P.; Math, S.; Nam, C.; Kim, S. Adaptive resource optimized edge federated learning in real-time image sensing classifications.

IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 10929–10940. [CrossRef]
7. Li, K.; Wan, G.; Cheng, G.; Meng, L.; Han, J. Object detection in optical remote sensing images: A survey and a new benchmark.

ISPRS J. Photogramm. Remote Sens. 2020, 159, 296–307. [CrossRef]
8. Ruiz-de Azua, J.A.; Garzaniti, N.; Golkar, A.; Calveras, A.; Camps, A. Towards federated satellite systems and internet of satellites:

The federation deployment control protocol. Remote Sens. 2021, 13, 982. [CrossRef]
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