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Abstract: With the continuous improvement in the volume and spatial resolution of remote sensing
images, the self-supervised contrastive learning paradigm driven by a large amount of unlabeled
data is expected to be a promising solution for large-scale land cover classification with limited
labeled data. However, due to the richness and scale diversity of ground objects contained in remote
sensing images, self-supervised contrastive learning encounters two challenges when performing
large-scale land cover classification: (1) Self-supervised contrastive learning models treat random
spatial–spectral transformations of different images as negative samples, even though they may
contain the same ground objects, which leads to serious class confusion in land cover classification.
(2) The existing self-supervised contrastive learning models simply use the single-scale features
extracted by the feature extractor for land cover classification, which limits the ability of the model
to capture different scales of ground objects in remote sensing images. In this study, we propose
a contrastive learning network with Geography Feature space joint negative sample Correction
(GFCNet) for land cover classification. To address class confusion, we propose a Geography Feature
space joint negative sample Correction Strategy (GFCS), which integrates the geography space and
feature space relationships of different images to construct negative samples, reducing the risk of
negative samples containing the same ground object. In order to improve the ability of the model to
capture the features of different scale ground objects, we adopt a Multi-scale Feature joint Fine-tuning
Strategy (MFFS) to integrate different scale features obtained by the self-supervised contrastive
learning network for land cover classification tasks. We evaluate the proposed GFCNet on three
public land cover classification datasets and achieve the best results compared to seven baselines
of self-supervised contrastive learning methods. Specifically, on the LoveDA Rural dataset, the
proposed GFCNet improves 3.87% in Kappa and 1.54% in mIoU compared with the best baseline.

Keywords: land cover classification; contrastive learning; self-supervised learning; remote sensing
image understanding

1. Introduction

As an important research topic in the field of Earth observation (EO), large-scale land
cover classification plays an important role in many studies and applications, such as urban
expansion monitoring, resource and environmental protection, socioeconomic assessment,
etc. [1–3]. Traditional remote sensing image land cover classification methods such as
Support Vector Machine (SVM) and Random Forest (RF) rely on manual feature extraction
and rule formulation, which promotes the development of land cover classification [4–6].

In contrast, data-driven deep learning techniques that have emerged since then have
performed well in land cover classification and further improved accuracy [3,7,8]. Most of
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these algorithms are based on the supervised learning paradigm, which constructs super-
vised signals (usually a loss function calculated using labeled data and model predictions)
through high-quality labeled data [9–14].

In recent years, with the continuous improvement in the volume and spatial resolution
of remote sensing images covering the world [15], compared with supervised learning
models that use high-cost labeled data as supervised signals, self-supervised contrastive
learning models driven by a large number of unlabeled data are expected to become an
effective solution for large-scale land cover classification with limited labeled data [16–20].

Compatible with the spatiotemporal invariance of remote sensing images, the self-
supervised contrastive learning model constructs positive and negative samples (usually
remote sensing image patches used for deep learning training) based on the basic under-
standing that the semantic information of the same image does not change with spectral
and geometric distortions [21–26], and has achieved competitive results in remote sensing
image scene classification [22,23,27], semantic segmentation [25,28,29], and object detec-
tion [30,31].

However, due to the richness and scale diversity of ground objects contained in remote
sensing images, the self-supervised contrastive learning model encounters two challenges
in land cover classification [25,27–29,32]. The first challenge is the ground object class
confusion. The self-supervised contrastive learning model adopts a heuristic positive
and negative sample construction strategy due to the lack of available label data [21,33].
The random spatial–spectral transformations of the same image are regarded as positive
samples, and the random spatial–spectral transformations of different images are regarded
as negative samples [21,34–36] (positive samples are pulled closer while the negative
samples are pushed farther away). As a result, when the model deals with remote sensing
images containing rich and complex ground objects, it inevitably leads to the existence of
images containing the same objects in the negative sample pairs [25,37]. A natural way
to address this challenge is to introduce clustering methods to reduce the risk of negative
samples containing the same ground object [38–40], but due to the intra-class variability and
inter-class similarity of ground objects in remote sensing images [41], clustering methods
may introduce additional class confusion when constructing positive and negative samples.
In addition, some self-supervised contrastive learning methods consider using the self-
correction ability of the model to eliminate the influence of negative samples containing
the same ground objects on the model [25,33,37]. These methods effectively alleviate the
class confusion, but they only use the feature space relationship of the image, and do not
use the geospatial relationship of the image, although the geospatial relationship is easy to
obtain for remote sensing images. The second challenge is that the existing self-supervised
contrastive learning models simply use the single-scale features extracted by the feature
extractor for land cover classification tasks [16–19], which limits the ability of the model
to capture different scales of ground objects. To address this challenge, the existing self-
supervised contrastive learning models consider adding local contrastive modules [28]
or dense contrastive modules [29,42] in the pretraining stage of feature extraction. These
methods effectively improve the performance of self-supervised contrastive learning for
land cover classification tasks, but inevitably lead to higher computational overhead.

In this study, we propose a contrastive learning Network with Geography Feature
space joint negative sample correction (GFCNet) for land cover classification. To address
the serious ground object class confusion, we develop a Geography Feature space joint
negative sample Correction Strategy (GFCS). Different from simply treating the data aug-
mentation of different images as negative samples, we comprehensively consider the visual
feature relationship and geospatial relationship of remote sensing images in the process of
constructing negative samples. Specifically, we merge the geospatial distance and feature
space distance of the image to obtain the geography feature space joint distance, and based
on this, we screen the negative samples that contain the same ground object and correct
these samples as positive samples to reduce the ground object class confusion. In order to
improve the ability of the model to capture features of different scales of ground objects,
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we adopt a Multi-scale Feature joint Fine-tuning Strategy (MFFS) to integrate the features
at different scales obtained by the self-supervised contrastive learning model for land
cover classification.

We compare the performance of GFCNet with seven self-supervised contrastive learn-
ing baseline methods on three public land cover classification datasets. The experimental
results indicated that on the Five-Billion-Pixel dataset, the proposed GFCNet improves
the Overall Accuracy (OA) by 0.56%, Kappa by 0.61%, and the mean Intersection-over-
Union (mIoU) by 0.43% compared with the best baseline. On the LoveDA Urban dataset,
the proposed GFCNet improves the OA by 1.14%, Kappa by 1.63%, and the mIoU by 1.39%
compared with the best baseline. On the LoveDA Rural dataset, the proposed GFCNet
improves the OA by 2.57%, Kappa by 3.84%, and the mIoU by 1.54% compared with the
best baseline.

The main contributions of this paper are summarized as follows:

(1) We proposed a Geography Feature space joint negative sample Correction Strategy
(GFCS), which comprehensively considers the geography space relationship and
feature space relationship of the image to construct negative samples, effectively
alleviating the class confusion of the self-supervised contrastive learning model for
land cover classification.

(2) We utilized the Multi-scale Feature joint Fine-tuning Strategy (MFFS) to integrate the
features of different scales obtained by the self-supervised contrastive learning model,
which enhances the ability of the model to capture objects of different scales.

(3) Experimental results on three public land cover classification datasets indicated that
the proposed GFCNet achieves the best results in all three metrics, OA, Kappa,
and mIoU, compared to the baseline of seven self-supervised contrastive learning
methods. In addition, GFCNet achieves a maximum improvement of 5.7% in Kappa
and a maximum improvement of 4.85% in mIoU compared to the self-supervised
contrastive learning methods with the original positive negative sample construc-
tion strategy.

2. Materials and Methods
2.1. Related Work
2.1.1. Negative Sample Construction Strategy for Self-Supervised Contrastive Learning

The selection of negative samples plays an important role in self-supervised con-
trastive learning [43–46]. The original self-supervised contrastive learning methods treat
the data augmentation (random geometric and spectral transformations of image patches)
of different images as negative samples [21,34,35,47], but for remote sensing images that
contain rich ground objects, this approach inevitably leads to ground object class confusion
as the negative samples may also contain the same ground object [25,33,37]. To address the
ground object class confusion, existing methods can be divided into three types.

The first type of method considers the introduction of unsupervised clustering to assist
the construction of negative samples, such as DeepCluster [40], PCL [38], and SwAV [39].
These methods improve the construction quality of negative samples to a certain extent,
but due to the richness and complexity of ground objects in remote sensing images, the error
of the clustering method leads to additional class confusion in the model [25,37].

The second type of method considers not constructing negative samples to avoid the
negative impact of negative samples containing the same ground object on the model, such
as Barlow Twins [48] and BYOL [49]. However, this also means that the image invariance
learned by the model is only derived from positive samples obtained by data augmentation,
and the ability of the model to capture features of the ground object is more limited by the
data augmentation methods [21,50–52].

The third type of method considers the correction of negative samples by the self-
determination ability of the model, such as FALSE [25], FNC [33], and IFND [37], which do
not introduce additional class confusion, but the construction quality of negative samples
is limited by the self-determination ability of the model.
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The above methods alleviate the class confusion to some extent, but they only consider
the relationship between images in the feature space and ignore the relationship between
images in the geography space. The geospatial relationship of the image is easy to obtain
for remote sensing images, and this relationship can be easily used to infer the relationship
between two neighboring image patches, such as up-sampling [53] and local interpolation
of images.

2.1.2. Self-Supervised Contrastive Learning for Land Cover Classification

Early land cover classification relied on field surveys and visual interpretation of
aerial or satellite images [54]. With the rapid development of satellite remote sensing
technology and digital image processing technology, land cover classification has entered a
new stage [7,55]. The introduction of machine learning methods, such as Support Vector
Machine (SVM) and Random Forest (RF), has further promoted the development of remote
sensing image land cover classification [4–6].

Later, the rise of deep learning technology has had a profound impact on land cover
classification [56–58]. Models based on Convolutional Neural Network (CNN) [59–61] and
Transformer [62,63] have performed well in land cover classification and further improved
the accuracy. Most of these algorithms are based on the supervised learning paradigm and
need to provide a large amount of high-quality labeled data [17,64].

In recent years, self-supervised contrastive learning has been widely used as a pow-
erful image representation extraction method for land cover classification with limited
labeled data [16–19]. Different from supervised learning, the land cover classification model
of self-supervised contrastive learning is divided into two stages [16,28]. The first stage
aims to use a large amount of unlabeled image data to train the image feature extractor
through the pretext task (tasks that do not use labeled data to train models before land cover
classification tasks, such as contrastive learning tasks). Therefore, the design of the pretext
task in the first stage is the key to capture image features by the self-supervised contrastive
learning model [21,36]. In order to make the model have the ability to capture local features
of images, IndexNet [29] and VADeR [32] consider adding a dense contrastive module,
which makes the pretext task more suitable for the downstream land cover classification
task, but it also inevitably introduces additional computational overhead.

The second stage aims to use the image features obtained by the feature extractor
to perform a land cover classification task. In this stage, a small amount of labeled data
is needed to fine-tune the feature decoder and finally obtain the land cover classification
results [18,19]. In order to adequately train the feature decoder, GLCNet [28] uses the
feature maps obtained by the feature decoder in the pretraining stage to perform local
contrastive, which improves the performance of the model for land cover classification.

However, the current self-supervised contrastive learning model simply uses the
single-scale features of the image obtained by the feature extractor for the land cover
classification task, which limits the ability of the model to capture different scales of
ground objects.

2.2. Method
2.2.1. Overview

The contrastive learning Network with Geography Feature Space Joint Negative
Sample Correction (GFCNet) for Land Cover Classification consists of two main parts:
(1) geography feature space joint negative sample correction contrastive pretraining and
(2) multi-scale feature joint land cover classification fine-tuning. The overall framework of
GFCNet is shown in Figure 1.
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Figure 1. The overall framework of GFCNet, where the “lock” symbol in the lower right corner of
the model indicates freezing network parameters and the “fire” symbol indicates updating network
parameters. The first stage is the geography feature space joint negative sample correction contrastive
pretraining: we synthesize the geospatial and feature space relationships of the image to construct
the negative samples and update the feature extractor network parameters. The second stage is
the multi-scale feature joint land cover classification fine-tuning: we freeze the feature extractor
parameters obtained in the first stage, integrate the different scales of features obtained by the feature
extractor, and update only the parameters of the single-layer convolutional that obtain multi-scale
features and the land cover classification decoder.

The first part is corresponding to the unsupervised pretraining stage (the stage of train-
ing the image feature extractor using a large amount of unlabeled data) of self-supervised
contrastive learning. In this stage, we adopt the proposed Geography Feature space joint
negative sample Correction Strategy (GFCS), which integrates the geography space dis-
tance and feature space distance of remote sensing images, to improve the negative sample
construction in the pretraining stage of self-supervised contrastive learning and alleviate
the class confusion caused by images containing the same ground object in the negative
sample pairs.

The second part is corresponding to the fine-tuning stage (the stage of training the
whole model using a small amount of labeled data to obtain land cover classification results)
of self-supervised contrastive learning. In this stage, we adopt a Multi-scale Feature Fine-
tuning Strategy (MFFS) to integrate the different scale features obtained in the pretraining
stage for downstream land cover classification tasks, and improve the ability of the model
to capture different scales of ground objects.

2.2.2. Geography Feature Space Joint Negative Sample Correction Contrastive Pretraining

The geography feature space joint negative sample correction contrastive pretraining
aims to comprehensively use the geography space and feature space relationship of images
to construct negative samples, minimize the risk of negative sample images containing
the same ground objects, and alleviate the class confusion of self-supervised contrastive
learning (the visual analysis of negative sample correction is described in Section 3.4.4).
Figure 2 illustrates the difference between SimCLR, FALSE, and GFCNet for constructing
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positive and negative samples. It mainly consists of three parts: (1) geography feature
space joint distance calculation, (2) negative sample determination and reconstruction, and
(3) feature extraction and contrastive loss calculation.

Figure 2. Diagram of the comparison between SimCLR, FALSE, and GFCNet for constructing
positive and negative samples. (a) denotes the original positive and negative sample construction
method adopted by SimCLR, in which all images different from the anchor sample are considered
as negative samples; (b) denotes the False Negative Self-Determination (FNSD) adopted by FALSE,
which corrects the false negative samples closer to the anchor sample in the feature space to positive
samples; (c) denotes the proposed Geography Feature space joint negative sample Correction Strategy
(GFCS) adopted by GFCNet, which indicates that the false negative samples closer to the anchor
sample in geographic feature joint space are corrected as positive samples.

(1) Geography Feature Space Joint Distance Computation

We use the Euclidean distance of the image spatial index as the geography space
distance of the image, the cosine similarity of the features as the feature space distance of the
image, and use the normalized inverse geography space distance as the weight to integrate
with the feature space distance to obtain the geography feature space joint distance.

Specifically, when calculating the geography space distance of images, we first es-
tablish a two-dimensional spatial index (x, y) for each image based on the geospatial
information. The two-dimensional spatial index records the relative spatial position of
each image in the whole dataset. For example, for images Ia and Ib, if their corresponding
two-dimensional spatial indexes are (xa, ya) and (xb, yb), respectively, the difference of
their two-dimensional spatial indexes (xa − xb, ya − yb) records the number of images
|xa − xb| that are separated by the horizontal axis and the number of images |ya − yb| that
are separated by the vertical axis. Then, we compute the Euclidean distance between the
two-dimensional spatial index of the two images as the geography space distance. The geog-
raphy space distance Dg of images Ia and Ib can be computed with the following equation:

Dg(Ia, Ib) =

√
(xa − xb)

2 + (ya − yb)
2. (1)

When calculating the feature space distance of images, we first project the image to
the feature space through the feature extractor. Then, we calculate the cosine similarity of
the image features as the feature space distance of the image. Specifically, for images Ia
and Ib, if their corresponding features are fa and fb, then the feature space distance D f of
images Ia and Ib can be computed with the following equation:

D f (Ia, Ib) =
fa · fb
‖ fa‖‖ fb‖

. (2)

Finally, on the basis of obtaining the image geography space distance and feature space
distance, we integrate the normalized inverse geography space distance as a weight with
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the feature space distance to obtain the geography feature space joint distance. Specifically,
for images Ia and Ib, if their geography space distance is Dg(Ia, Ib) and their feature space
distance is D f (Ia, Ib), the geography feature space distance Dg f (Ia, Ib) can be computed by
the following equation:

Dg f (Ia, Ib) = w(Ia, Ib) · D f (Ia, Ib), (3)

w(Ia, Ib) =

{
1 Dg(Ia, Ib) = 0

1/Dg(Ia ,Ib)

Σn
i=11/Dg(Ia ,Ii)

Dg(Ia, Ib) 6= 0
, (4)

where n represents the number of images of a batch of the input model.

(2) Negative Sample Correction

Since there are no labeled data during the self-supervised pretraining process, we
use the positive sample pair with the highest similarity in the feature space as the cali-
bration benchmark based on the obtained geography feature space joint distance. For the
self-supervised contrastive learning model, the positive sample pairs are the different aug-
mentations of the same image, and the highest similarity in the feature space implies that
the model captures the invariant features of these pairs to the maximum extent [25,33,65].

Specifically, we regard the negative sample with the smallest difference in the geography-
feature space joint distance from the calibration benchmark as the positive sample, removing
negative samples that contained the same ground object as the anchor sample to mitigate
class confusion.

(3) Feature Extraction and Contrastive Loss Calculation

Finally, we input the corrected negative and positive samples into the feature extractor
to obtain the features and calculate the contrastive loss (the loss function for self-supervised
contrastive learning and also the minimization objective function for updating the parame-
ters of the contrast learning model) to update the model parameters. In this part, we adopt
InfoNCE [66] as the contrastive loss, which is defined as follows:

L = −log
exp(sim( fi, f j)/τ)

ΣN
k=1,k 6=iexp(sim( fi, fk)/τ)

, (5)

where fi and f j denote the positive sample features, sim() denotes the calculation of the
similarity between the two image features, and τ denotes the temperature hyperparameter.

2.2.3. Multi-Scale Feature Joint Land Cover Classification Fine-Tuning

Multi-scale feature joint land cover classification fine-tuning aims to integrate the
features of different scales of images obtained by the self-supervised contrastive learning
model, enhance the ability of the model to capture ground objects of different scales,
and further improve the performance of downstream land cover classification tasks.

Specifically, in the fine-tuning stage of self-supervised contrastive learning, we utilize
the single-layer convolutional network to obtain different scale features of the three middle
layers of the feature extractor, and align these features with the dimensions of the features in
the last layer of the feature extractor. Then, we input the obtained features of different scales
into the single-layer convolutional network for integration, and the obtained multi-scale
features are fed into the land cover decoder to obtain the land cover classification results of
the image. The detailed structure of the MFFS is shown in Figure 3.
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Figure 3. Schematic of the detailed structure of Mutil-scale Feature joint Land cover classification
Fine-tuning Strategy (MFFS), where the “lock” symbol in the lower right corner of the model indicates
freezing network parameters and the “fire” symbol indicates updating network parameters. Different
from only using the single-scale features obtained from the last layer of the feature extractor for fine-
tuning, we first integrate the different scale features obtained from the feature extractor by using the
added single-layer convolutional and then use the obtained multi-scale joint features for fine-tuning.

3. Experiments
3.1. Dataset Description

We evaluate the performance of the proposed GFCNet on three land cover classification
datasets: Five Billion Pixel [11], LoveDA Urban, and LoveDA Rural [67].

The Five-Billion-Pixel dataset is derived from the Gaofen-2 satellite, and the spatial
resolution is 4 m, which adds more ground object categories to the GID dataset [10] and
covers an area of more than 50,000 km2 in China. The LoveDA Urban and LoveDA Rural
datasets have a spatial resolution of 0.3 m and cover urban and rural areas in three regions of
Nanjing, Changzhou, and Wuhan, China [67]. The dividing of the training and test data sets
is consistent with the original dataset. Table 1 shows more details of the Five-Billion-Pixel,
LoveDA Urban, and LoveDA Rural datasets.

Table 1. The detail informations of Five Billion Pixel, LovaDA Urban, and LoveDA Rural.

Dataset Five-Billion-Pixel LoveDA Urban LoveDA Rural

Year 2023 2021 2021
Resolution 4 m 0.3 m 0.3 m

Area >50,000 km2 245.75 km2 289.41 km2

Class Number 24 7 7
Crop Size 512 × 512 256 × 256 256 × 256

Amount of Data for SSL Pretraining
(with no label) 25,200 18,496 21,856

Amount of Data for Fine-tuning
(1% of the pretraining data) 252 184 218

Amount of Data for Testing 6300 10,832 15,872

3.2. Baselines and Metric

In order to evaluate the performance of the proposed GFCNet, we use seven self-
supervised contrastive learning methods with different positive and negative sample
construction strategies as baselines:

SimCLR [21] and MoCo v2 [36] use a heuristic positive and negative sample con-
struction method, which treats the different augmentations of the same image as positive
samples, and treats the augmentations of different images as negative samples.
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Barlow Twins [48] and BYOL [49] only treat different augmentations of the same image
as positive samples and do not construct negative samples during contrastive learning.

PCL [38] introduces a clustering method when constructing positive and negative samples.
FALSE [25] considers reducing negative samples that contain the same ground object

with the discriminative ability of the model.
DenseCL [42] adds a dense contrastive module to improve the ability of the model to

capture objects of different scales.
In addition, we refer to the relevant land cover classification methods [9–11] to adopt

Overall Accuracy (OA), Kappa and mean Intersection-over-Union (mIoU) to quantita-
tively evaluate the performance of the self-supervised contrastive learning model on the
downstream land cover classification task, where OA is the overall accuracy of the model
prediction, which can be calculated with the following equation:

OA =
TP
N

, (6)

where TP denotes the number of true positives, which is the number of pixels correctly
predicted by the model, and N denotes the total number of pixels in the test dataset.

Kappa can be calculated by the following equation:

Kappa =
OA− pe

1− pe
, (7)

pe =
Σn

i=1gi · pi

N · N , (8)

where gi denotes the number of pixels in class i of ground truth, and pi denotes the number
of pixels in class i obtained by the model.

Mean Intersection-over-Union (mIoU) can be calculated by the following equation:

mIoU = ΣN
i=1 IoUi, (9)

IoUi =
TP

TP + FN + FP
, (10)

where TP denotes the number of true positives, FN denotes the number of false negatives,
and FP denotes the number of false positives.

3.3. Implementation Details

All experiments are performed on NVIDIA RTX A6000, the software environment of
Python 3.7 with PyTorch as the deep learning framework.

In the self-supervised contrastive pretraining stage, for all self-supervised contrastive
learning methods, we uniformly train 200 epochs, and the batch size is set to 256. For the
self-supervised contrastive learning methods that use InfoNCE as the contrastive loss,
the temperature hyperparameter of infoNCE is set to 0.5, and the settings of the other
baseline methods are adopted as the default given in the original paper.

In the land cover classification fine-tuning stage, for all the self-supervised contrastive
learning methods, we freeze the weights of the feature extractors, train the land cover
classification decoder for 150 epochs, and set the batch size to 16.

3.4. Experiment Results
3.4.1. Performance Analysis

The quantitative results of the performance analysis are shown in Table 2. The ex-
perimental results show that compared with seven self-supervised contrastive learning
methods with different positive and negative sample construction methods, our proposed
GFCNet achieves the best results on three land cover classification datasets of Five Bil-
lion Pixel, LoveDA Urabn, and LoveDA Rural. In addition, on the LoveDA Rural dataset,
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the proposed GFCNet improves Kappa by 5.7% and mIoU by 4.85% compared with SimCLR
which uses the classical positive and negative sample construction strategy, and improves
Kappa by 3.87% and mIoU by 1.54% compared with the best baseline DenseCL.

Table 2. Quantitative comparison results with seven self-supervised contrastive learning baseline
methods on Five Billion Pixel, LoveDA Urban, and LoveDA Rural. Bold numbers represent the
highest value under the metric, and underlined numbers represent the second-highest value under
the metric.

Method
Five Billion Pixel LoveDA Urban LoveDA Rural

OA Kappa mIoU OA Kappa mIoU OA Kappa mIoU

SimCLR 64.31 55.80 21.34 40.92 27.51 32.10 61.32 45.65 37.83
MoCo v2 53.03 40.89 14.13 40.30 27.32 32.72 60.66 45.25 38.54

Barlow Twins 58.66 48.01 17.90 41.19 29.36 32.96 57.10 41.61 37.01
BYOL 64.10 55.47 21.17 32.67 15.71 24.14 59.86 42.70 37.42
PCL 57.98 47.58 17.29 40.05 27.12 33.08 62.98 47.26 40.24

FALSE 64.88 56.69 21.41 41.22 27.85 32.67 62.41 46.43 40.96
DenseCL 51.35 39.03 13.43 36.62 23.34 30.21 63.04 47.48 41.14

GFCNet(Ours) 65.44 57.30 21.84 42.36 29.48 34.06 65.61 51.35 42.68

Figure 4 shows the land cover classification visualization results of the proposed
GFCNet and seven baseline methods on three datasets. The experimental result shows that
the proposed GFCNet effectively reduces class confusion compared to seven baseline meth-
ods, and the ground object mixing in the classification results is significantly eliminated.
In addition, we note that the proposed GFCNet can more effectively capture small-scale
ground objects in remote sensing images, such as tiny oases existing within a large body of
water, and small-scale buildings in the image.

Figure 4. Visualization Results of the Proposed GFCNet and seven baseline methods for land cover
classification on three datasets of Five Billion Pixel, LoveDA Urban and LoveDA Rural.

3.4.2. Ablation Study

To evaluate the impact of the Geography Feature space joint negative sample Correc-
tion Strategy (GFCS) and the Multi-scale Feature join Fine-tuning Strategy (MFFS) on the
model performance, we conducted an ablation study on the proposed GFCNet. In Table 3,
SimCLR represents a self-supervised contrastive learning method using the original posi-
tive and negative sample construction strategy, SimCLR + FNSD represents the SimCLR
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with False Negative sample Self-Determination (FNSD) strategy [25], the FNSD is a nega-
tive sample correction strategy that utilizes the self-determination ability of the model and
the feature space relationship of an image, and SimCLR + GFCS represents the SimCLR
with Geography Feature space joint negative sample Correction Strategy (GFCS).

Table 3. The experimental results of ablation study on Five Billion Pixel, LoveDA Urban, and LoveDA
Rural datasets.

Method FNSD GFCS MFFS
Five-Billion-Pixel LoveDA Urban LoveDA Rural

OA Kappa OA Kappa OA Kappa

SimCLR 64.31 55.80 40.92 27.51 61.32 45.65
SimCLR + FNSD X 64.88 56.69 41.22 27.85 62.41 46.43
SimCLR + GFCS X 65.20 57.08 41.91 29.65 65.27 51.02
GFCNet X X 65.44 57.30 42.36 29.48 65.61 51.35

The experimental results in Table 3 show that the proposed GFCS effectively improves
the performance of the self-supervised contrastive learning model on the land cover clas-
sification task compared to FNSD without MFFS, and that the performance of the model
is further improved with the MMFS. This indicates that the geospatial relationship infor-
mation of the image can provide additional information for the model to eliminate the
class confusion caused by the negative samples containing the same ground objects in the
self-supervised contrastive learning model.

In addition, to further verify the performance of the Multi-scale Feature join Fine-
tuning Strategy (MFFS), we combine LoveDA Urban and LoveDA Rural datasets to increase
the difficulty of multi-scale feature extraction, and compare with separate LoveDA Urban
and LoveDA Rural datasets to verify the ability of the proposed method to capture multi-
scale objects. The experimental results are shown in Table 4.

Table 4. Comparative performance experimental of Multi-scale Feature join Fine-tuning Strategy
(MFFS) on LoveDA Urban, LoveDA Rural, and LoveDA (Urban + Rural) datasets.

Method Original Fine-Tuning MFFS
LoveDA Urban LoveDA Rural LoveDA

(Urban + Rural)

OA Kappa OA Kappa OA Kappa

GFCNet X 41.91 29.65 65.27 51.02 56.16 41.81
X 42.36 29.48 65.61 51.35 57.16 43.95

The experimental results illustrate that compared with the original fine-tuning method,
the proposed Multi-scale Feature join Fine-tuning Strategy (MFFS) obtains performance
improvement of land cover classification tasks on both LoveDA Urban, LoveDA Ru-
ral, and LoveDA (Urban + Rural) which combines LoveDA Urban and LoveDA Rural
dataset. Moreover, the performance improvement of the proposed MFFS on the LoveDA
(Urban + Rural) dataset is higher than that on the LoveDA Urban and LoveDA Rural
datasets, which indicates that MFFS effectively improves the ability of the model to capture
multi-scale ground objects.

3.4.3. Domain Adaptation Analysis

One of the goals of self-supervised contrastive pretraining is to obtain a powerful
image feature extractor that can be fine-tuned for out-of-domain data [20,23]. For land cover
classification tasks, the powerful image feature extractor can help reduce the dependence
on high-quality labeled data. In this part, we conducted two experiments for domain
adaptation analysis of the proposed GFCNet. The first domain adaptation analysis uses
LoveDA Urban and LoveDA Rural datasets, and the second domain adaptation analysis
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uses the Five-Billion-Pixel dataset and the LoveDA (Urban + Rural) dataset which combines
LoveDA Urban and LoveDA Rural datasets.

Specifically, we conducted two sets of experiments on the LoveDA Urban and LoveDA
Rural datasets. The first set of experiments used a pretraining dataset that is consistent
with the fine-tuning dataset, and utilized the test data corresponding to the fine-tuning
dataset to evaluate the performance of the models. The second set of experiments used
a pretraining dataset that is inconsistent with the fine-tuned dataset, and again utilized
the test data corresponding to the fine-tuned dataset to evaluate the performance of the
model. In addition, we also compared GFCNet with SimCLR, which uses the original
positive and negative sample construction strategy, and FALSE, a contrastive learning
model that removes false negative samples. The experimental results are shown in Table 5.
We also conducted the above two sets of experiments on LoveDA (Urban + Rural) and
Five-Billion-Pixel datasets, and the experimental results are shown in Table 6.

Table 5. The experimental results of domain adaptation analysis on LoveDA Urban and LoveDA
Rural datasets.

Fine-Tuning and Validation Dataset Pretraining Dataset
SimCLR FALSE GFCNet

OA Kappa OA Kappa OA Kappa

LoveDA Urban LoveDA Urban 40.92 27.51 41.22 27.85 42.36 29.48
LoveDA Rural 40.26 27.41 41.20 27.64 42.09 29.56

LoveDA Rural
LoveDA Rural 61.32 45.65 62.41 46.43 65.61 51.35
LoveDA Urban 58.33 41.40 60.92 45.29 61.00 45.34

Table 6. The experimental results of domain adaptation analysis on Five-Billion-Pixel and LoveDA
(Urban + Rural) datasets.

Fine-Tuning and Validation Dataset Pretraining Dataset
SimCLR FALSE GFCNet

OA Kappa OA Kappa OA Kappa

LoveDA (Urban + Rural) LoveDA (Urban + Rural) 55.47 41.21 55.65 41.63 57.16 43.95
Five-Billion-Pixel 54.70 40.28 55.36 41.36 56.52 43.48

Five Billion Pixel
Five Billion Pixel 64.31 55.80 64.88 56.69 65.44 57.30

LoveDA (Urban + Rural) 64.19 55.77 64.71 56.32 65.40 57.37

The experimental results indicate that SimCLR, FALSE, and GFCNet show perfor-
mance degradation in the land cover classification task when the pretraining dataset and
the fine-tuning dataset are inconsistent compared with the pretraining dataset and the
fine-tuning dataset are consistent.

For the first domain adaptation analysis experiment, when the test data are obtained
from the LoveDA Urban dataset, the land cover classification performance of GFCNet
pretrained with the LoveDA Rural dataset still exceeds SimCLR and FALSE pretrained with
the LoveDA Urban dataset, which indicates that GFCNet has a certain domain adaptation
ability. When the test data are obtained the LoveDA Rural dataset, the performance of
SimCLR, FALSE, and GFCNet pretrained with the LoveDA Urban dataset all show a
significant performance decline, but the land cover classification performance of GFCNet is
still higher than SimCLR and FALSE under the same conditions.

For the second domain adaptation analysis experiment, when the test data are ob-
tained from LoveDA (Urban + Rural), the performance of GFCNet pretrained with the
Five-Billion-Pixel datasets also exceeds SimCLR and FALSE pretrained with the LoveDA
(Urban + Rural) dataset, which again shows that GFCNet has a certain domain adaptation
ability. In addition, when the test data are Five Billion Pixel, the performance degradation of
GFCNet pretrained with the LoveDA (Urban + Rural) dataset is lower than that of SimCLR
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and FALSE. SimCLR is decreased by 0.12% on OA, and FALSE is decreased by 0.17% on
OA. In contrast, GFCNet is only decreased by 0.04% on OA.

From the perspective of model construction, due to the comprehensive consideration
of the geography space and feature space relationships of images, GFCNet using Geogra-
phy Feature space joint negative sample Correction Strategy (GFCS) captures higher-quality
image features than SimCLR and FALSE in the self-supervised contrastive learning pretrain-
ing stage, which comes from the higher-quality positive and negative samples constructed
by GFCS. In addition, the Multi-scale Feature join Fine-tuning Strategy (MFFS) adopted
in the fine-tuning stage of GFCNet also enhances the ability of the model to capture the
features of ground objects at different scales to a certain extent. These two factors together
make GFCNet have better domain adaptation ability than SimCLR and FALSE.

3.4.4. Visualization of Negative Sample Correction

In order to explore the impact of the Geography Feature space joint negative sample
Correction Strategy (GFCS) on negative sample correction, we visualize and analyze the neg-
ative samples screened by GFCS and compared with the False Negative Self-Determination
(FNSD) strategy.

Specifically, after the pretraining of the model, we pick an image as an anchor sample
and input this image together with other images in the dataset into the model to obtain the
image features. For FNSD, we calculate the feature similarity between the anchor sample
and other images, and then sort them to obtain the five images with the highest similarity
as the false negative sample obtained from FNSD. For the proposed GFCS, we calculate
the geography feature space joint distance between the anchor sample and other images,
and then sort them to obtain the five images with the highest geography feature space joint
distance as the false negative sample obtained from GFCS. The experimental results are
shown in Figure 5.

The experimental results show that compared to FNSD, GFCS prefers to select images
that are closer to the anchor sample in both geospatial and visual features as negative
samples that contain the same ground object with the anchor sample. Especially when
there are large continuous ground objects in the image, the geospatial relationship of the
image can effectively assist the self-supervised contrastive learning model to screen the
negative samples and mitigate class confusion.
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Figure 5. Visualization results of negative sample correction, where the anchor sample and false
negative samples in (1) are from the Five-Billion-Pixel dataset, the anchor sample and false negative
samples in (2) are from the LoveDA Urban dataset, and the anchor samples and false negative
samples in (3) are from the LoveDA Rural dataset.

4. Discussion

In this study, we propose a Geography Feature space joint negative sample Correction
Strategy (GFCS) and a Multi-scale Feature joint Fine-tuning Strategy (MFFS) of a self-
supervised learning model for land cover classification. The GFCS effectively mitigates
class confusion, and the MFFS improves the ability of the models to capture ground objects
at different scales.

We observe that the proposed GFCNet has a higher performance improvement com-
pared to the baseline method in processing remote sensing images that contains a large
range of homogeneous ground objects. Among the three land cover classification datasets
used in our experiments, the LoveDA Rural dataset sampled from rural areas; it contains a
large number of large-scale farmland and forests, which means that image patches taken
from the neighboring areas have a higher probability of containing the same ground ob-
ject, whereas the proposed GFCNet introduces geospatial relationships of images, which
provides effective information for the model to obtain negative samples that are geospa-
tially neighboring and contain the same ground object as the anchor sample. Further
ablation studies reaffirm this; under the condition of removing the MFFS, the proposed
GFCS achieves greater gains on the LoveDA Rural dataset compared to FNSD, which only
considers the feature space relationship of images.
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In addition, we also notice that the performance improvement of the model tends to be
marginal with the inclusion of MFFS, which is due to the fact that the contrastive method
used is still instance-level contrastive. The instance-level contrastive limits the ability of the
model to capture features of different scales [68].

Although the proposed GFCS cannot completely screen out all negative samples
that contain the same ground object as the anchor samples, it can effectively mitigate the
ground object class confusion and make the model have strong domain adaptation ability.
For example, the model pretrained by the proposed GFCNet on the LoveDA Rural dataset
can be used for feature extraction of the LoveDA Urban dataset after fine-tuning, and the
overall accuracy of the model decreases by only 0.27%.

5. Conclusions

In this paper, we propose a contrastive learning network with Geography Feature
space joint negative sample Correction (GFCNet) for land cover classification. To address
the serious ground object class confusion, we develop a Geography Feature space joint
negative sample Correction Strategy (GFCS), which effectively mitigates the risk of negative
samples containing the same ground object as the anchor sample. In order to improve the
ability of the model to capture different scales of ground objects, we adopt a Multi-scale
Feature joint Fine-tuning Strategy (MFFS) to integrate different scale features obtained
by the self-supervised contrastive learning model for land cover classification tasks. We
validate the effectiveness of the proposed GFCNet on three public land cover classification
datasets. The performance of the GFCNet surpassed seven self-supervised contrastive
learning baseline methods.

Although this approach is effective for screening negative samples that contain the
same ground object as the anchor sample and are geospatially closer to the anchor sample,
it also means that it is difficult for the model to screen negative samples that are geospatially
farther away from the anchor sample but contain the same ground object. Therefore, ways
to make the model have a longer range negative sample correction ability in geography
space and to better integrate the geospatial information of remote sensing images and the
feature extraction ability of the model are worthy of research in the future.
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