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Abstract: Photosynthesis is a key process in plant physiology. Understanding its mechanisms
is crucial for optimizing crop yields and for environmental monitoring across a diverse range of
plants. In this study, we employed reflectance, transmittance, and absorbance hyperspectral sensors
and utilized multivariate statistical techniques to improve the predictive models for chlorophyll a
fluorescence (ChlF) parameters in Hibiscus and Geranium model plants. Our objective was to identify
spectral bands within hyperspectral data that correlate with ChlF indicators using high-resolution
data spanning the electromagnetic spectrum from ultraviolet to shortwave infrared (UV–VIS–NIR–
SWIR). Utilizing the hyperspectral vegetation indices (HVIs) tool to align importance projection
for wavelength preselection and select the most responsive wavelength by variable importance
projection (VIP), we optimized partial least squares regression (PLSR) models to enhance predictive
accuracy. Our findings revealed a strong relationship between hyperspectral sensor data and ChlF
parameters. Employing principal component analysis, kappa coefficients (k), and accuracy (Acc)
evaluations, we achieved values exceeding 86% of the predicted ChlF parameters for both Hibiscus
and Geranium plants. Regression models for parameters such as Ψ(EO), φ(PO), φ(EO), φ(DO), δRo,
ρRo, Kn, Kp, SFI(abs), PI(abs), and D.F. demonstrated model accuracies close to 0.84 for R2 and
approximately 1.96 for RPD. The spectral regions linked with these parameters included blue, green,
red, infrared, SWIR1, and SWIR2, emphasizing their relevance for noninvasive evaluations. This
research demonstrates the ability of hyperspectral sensors to noninvasively predict chlorophyll a
fluorescence (ChlF) parameters, which are essential for assessing photosynthetic efficiency in plants.
Notably, hyperspectral absorbance data were more accurate in predicting JIP-test-based chlorophyll a
kinetic parameters. In conclusion, this study underscores the potential of hyperspectral sensors for
deepening our understanding of plant photosynthesis and monitoring plant health.

Keywords: JIP-test; leaf optical properties; new methodologies; new sensors/platform applications;
multivariate analyses; partial least squares regression; remote sensing; sensors

1. Introduction

Light plays a fundamental role in plant physiological processes, most notably in pho-
tosynthesis [1]. The way plants perceive and utilize light triggers a cascade of biochemical
and physiological responses [2]. Chlorophyll a fluorescence (ChlF) is a primary indicator
of photosynthetic efficiency, shedding light on the electron transport rate, photochemical
quenching, and nonphotochemical quenching within photosystem II (PSII) [3]. Tradition-
ally, pulse-amplitude-modulation (PAM) fluorometry, which employs the saturation pulse
method, has been the go-to technique for ChlF quantification [4]. Parameters such as Fv/Fm
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and Fv’/Fm’ are instrumental in evaluating the health and efficiency of the photosynthetic
machinery [5].

However, the demand for expansive, noninvasive, and real-time methodologies to
assess the photosynthetic apparatus has increased, leading to the application of hyperspec-
tral remote sensing [6]. Hyperspectral sensors, which record reflectance data spanning the
visible to shortwave infrared spectra, provide in-depth insights into plant biochemical and
biophysical properties [7]. Each hyperspectral band is associated with distinct molecular
interactions, including vibrational bands and stretching, which are indicative of specific
compounds such as pigments (flavonoids, anthocyanins, chlorophylls, xanthophyll, and
carotenes) and structures such as lignin, cellulose, and hemicellulose, as well as water bands.
These associations provide insight into the physiological and morphological characteristics
of a range of plants. In addition, the hyperspectral band corresponds to specific molecular
interactions and sheds light on various physiological and morphological attributes of plants.
Additionally, these bands are proposed to correlate with the photosynthetic components of
leaves, such as proteins, carbohydrates, structural lipids, and energy organelles, such as
mitochondria and chloroplasts [8–10].

Hyperspectral analysis, which involves interpreting data from these sensors, captures
information across numerous contiguous electromagnetic spectrum bands, setting it apart
from multispectral sensors [11–13]. The detailed nature of hyperspectral sensors allows
for the identification of minor spectral variations, facilitating material differentiation and
the detection of specific properties. This analysis has been invaluable in sectors such as
agriculture, plant monitoring, environmental monitoring, and assessing photosynthetic
parameters [14–16].

The JIP-test, a standard in ChlF analysis, extracts parameters from ChlF emission
kinetics and delineates energy transitions from PSII to PSI [13,17,18]. Integration of high-
resolution hyperspectral data can enhance JIP-test predictions and expand its applicability.
However, this integration necessitates rigorous calibration, validation, and the application
of appropriate statistical methods. In this sense, the JIP-test offers insights into chlorophyll a
fluorescence transients, shedding light on plant photosynthetic efficiency and health [19,20].
From this test, several key parameters emerge. For example, Ψ(EO) measures how effec-
tively a trapped exciton can move an electron beyond QA in the electron transport chain.
Ψ(RO) gauges the transfer efficiency of an electron from the intersystem carriers to the
PSI end electron acceptors. φ(PO) represents the primary photochemistry’s maximum
quantum yield, while φ(EO) and φ(RO) provide quantum yields for electron transport from
QA to the PSI end electron acceptors and their reduction, respectively. φ(DO) indicates the
quantum yield of nonphotochemical energy dissipation due to donor-side limitations. δRo
relates to the movement efficiency of an electron from reduced intersystem carriers to the
PSI end electron acceptors. ρRo shows how efficiently a reduced PSI end electron acceptor
is oxidized. Kn and Kp are nonphotochemical and photochemical quenching coefficients,
respectively. SFI(abs) denotes specific flux per absorption, PI(abs) is a performance index
based on absorption, and D.F. stands for driving force. Together, these parameters provide a
comprehensive understanding of photosynthesis, helping to assess the health and efficiency
of the photosynthetic apparatus [21–24].

Multivariate analyses such as partial least squares (PLS) and principal component
analysis (PCA) have been employed for hyperspectral data interpretation [13,25]. These
methods facilitate dimensionality reduction, revealing patterns and aiding in predictive
model formulation. Within this framework, the selection of the wavelength is critical to
maximizing information-based interaction, contributing to optimized component efficiency.
The hyperspectral vegetation indices (HVI) tool is instrumental in this process because
it identifies more relevant spectral bands. Utilizing HVI for wavelength preselection
optimizes PLS model efficacy, ensuring enhanced prediction accuracy [13,15,26,27].

Therefore, this research aims to exploit the capabilities of hyperspectral sensors in
capturing data essential for predicting chlorophyll a fluorescence parameters. The objective
of this study was to identify the spectral bands within hyperspectral data that correlate
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with chlorophyll a fluorescence indicators. The research also emphasizes the integration
and optimization of advanced reflectance, transmittance, and absorbance hyperspectral
sensors to capture all leaf information and apply multivariate statistical methods, including
PCA and PLS, to enhance the predictive accuracy of hyperspectral datasets for chlorophyll
a fluorescence, as shown in Figure 1.
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Figure 1. Flowchart describing the prediction of chlorophyll a parameters in Hibiscus rosa-sinensis L.
(Hibiscus) and Pelargonium zonale L’Hér. Ex. Aiton (Geranium) using two hyperspectral sensors. In
the first stage (1◦ stage), plants are grown in a greenhouse, and their leaves are measured with two
hyperspectral sensors to capture reflectance, transmittance, and absorbance spectra. In the second
stage (2◦ stage), the leaves are analyzed to assess alterations in their optical properties. During
the third stage (3◦ stage), the leaves are acclimated to both light and dark conditions to measure
chlorophyll a fluorescence parameters, drawing from the JIP-test dataset and observing modifications
in the electron transport chain. Finally, in the fourth stage (4◦ stage), the data are analyzed using PLS
and other multivariate statistical methods for the classification and prediction of parameters.

2. Materials and Methods
2.1. Plant Material and Experimental Design

Hibiscus rosa-sinensis L. (Hibiscus) and Pelargonium zonale L’Hér. Ex. Aiton (Geranium)
plants were cultivated in 2 L pots in the Botanical Garden at the State University of Maringá,
Brazil, under greenhouse conditions. These conditions provided natural ambient light,
with temperatures maintained between 22 ◦C and 26 ◦C and a photoperiod of 16 h. To
ensure consistent hydration, the plants were watered twice daily, specifically at 8 a.m. and
6 p.m. For the study, leaves of various ages and different positions (apex, middle, and
base) were sampled from different parts of the plants. A total of 200 samples were collected
for both hyperspectral reflectance analysis and assessment of leaf biochemical profiles. To
guarantee uniformity in data collection, all measurements were conducted between 11 a.m.
and 1 p.m. A summarized scheme of the flowchart analyses can be observed in Figure 1.

2.2. OJIP Chlorophyll a Fluorescence Transient

Measurements on leaves were conducted using an infrared gas exchange analyzer
(IRGA; LI-6800, LI-COR Inc., Lincoln, NE, USA) equipped with a Multiphase FlashTM

Fluorometer (LI-6800-01; LI-COR Inc., Lincoln, NE, USA). The settings maintained were
as follows: a constant 400 µmol mol−1 in the chamber sample (CO2_sample), 60% sample
chamber relative humidity (%RH_sample), a flow rate of 700 µmol s−1, a fan speed of
10,000 rpm, and a 25 ◦C heat exchanger temperature for the sample (Theat_sample) within
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a 6 cm2 sample chamber. The sensor employed operates at >720 nm, specifically for
chlorophyll fluorescence [6].

The induction of chlorophyll a fluorescence transients was carried out using an LI-6800
instrument on the same leaves used for the reflectance, transmittance, and absorbance
hyperspectral measurements. Prior to measurement, each chosen leaf underwent dark
acclimation overnight for 12 h. Subsequently, a clipping chamber was used, and a saturating
light pulse of 15,000 µmol m−2 s−1 was applied for 1 s in induction mode, ensuring the
closure of all reaction centers. The methodology for data analysis and the equations
for calculating JIP-test parameters have been detailed in previous studies [6,13]. The
Biolyzer software version 4.0® (Laboratory of Bioenergetics, University of Geneva; Geneva,
Switzerland) facilitated the estimation of JIP-test parameters linked to the electron transport
chain in plants [13].

2.3. Hyperspectral Optical Leaf Properties

Leaf reflectance (R) and transmittance (T) were measured using a FieldSpec® 3 Spec-
troradiometer (Analytical Spectral Devices ASD Inc., Longmont, CO, USA) equipped with
an ASD Contact PlantProbe® with a 10 mm diameter [1]. This device incorporates 512
Si photodiodes, capturing wavelengths between 350–2500 nm. To reduce atmospheric
interference, a PlantProbe® leaf clip (Analytical Spectral Devices ASD Inc., Boulder, CO,
USA) was employed. The data were preprocessed to switch the sensor at 1000 and 1800 nm
using the ViewSpec Pro software version 6.2 (ASD Inc., Boulder, CO, USA). Calibration
and optimization of the equipment were achieved using standard white reference plates
(Spectralon®, Labsphere Inc., Longmont, CO, USA) as per [1]. The plant probe directed a
high-intensity light beam onto the leaf’s upper surface, whereas another probe, with its
light beam deactivated, assessed the leaf’s lower surface. Both reflectance and transmit-
tance for each wavelength were recorded concurrently. Absorbance was determined using
the formula [A = 1 − (R + T)] [1,13].

2.4. Analysis of Leaf Spectral Fingerprints

The hyperspectral curves, parameters derived from the hyperspectral data, and JIP-test
parameters were used for decision analysis. The effect of the Hibiscus and Geranium plants
on the leaf traits was analyzed by one-way analysis of variance (ANOVA). The effects of
variety on the reflectance (R), transmittance (T), and absorbance (A) profiles were assessed
using PERMANOVA and variable importance projections (VIPs) exactly as described in [6].

2.5. Hyperspectral Vegetation Indices Using Optimal Wavelengths for JIP-Test Parameters

To optimize the accuracy of JIP-test parameter assessments, key hyperspectral bands
were identified using the normalized difference vegetation index formula (Equation (1))
drawn from Crusiol et al. (2023) [28]. This approach generated distinct hyperspectral vege-
tation indices (HVIs). Each HVI was correlated with cross-sections relevant to chlorophyll
a kinetic parameters. Correlations were quantified via the Pearson correlation coefficient
and the coefficient of determination (R2) using a custom IDL code. A ground-based sensor
captured spectra from 350 nm to 2500 nm, with results depicted in a contour map.

HVI =
Wavelength 1−Wavelength 2
Wavelength 1 + Wavelength 2

(1)

2.6. Partial Least Squares Regression (PLSR) by Analysis of Spectroscopy Data

Hyperspectral data were centered on the mean and subjected to PLSR. To obtain
prediction models of JIP-test parameters, the spectral data of the different parameters of
200 samples were divided into two groups: 75% (150) of the samples in the first group,
with the aim of creating the model (training), and the remaining 25% (50) in the second
group, with the aim of testing (prediction) to adjust the model, as described in [13,29].
This proportion (75:25) was selected to ensure estimates that were (1) valid, in the sense
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that they did not overestimate the accuracy (i.e., did not underestimate the approximation
error), and (2) the most accurate among all valid estimates (i.e., their overestimation of the
approximation error was the smallest possible), based on a previous analysis described
in [13,25,29].

Calibration (Cal) and cross-validation (Cva) were used to predict the quality attributes
based on the JIP-test. In addition, the predictive ability of the calibration model was evalu-
ated by calculating metrics such as the coefficient of determination (R2; 1 − SSres

SStot
), offset,

root mean square error (RMSE;
√

∑n
i=1

(Ŷi−Yi)2

n ), and ratio of performance to deviation
(RPD; 1√

1−R2
x
), and bias was used to assess the quality, precision, and accuracy of the

model, as described in [6].

2.7. Statistical Analyses
2.7.1. Descriptive, Univariate, and Multivariate Statistical Analyses

To characterize the JIP-test metrics, descriptive statistics were employed. For each
parameter, evaluations included the count (n), mean, median, minimum, maximum, and
coefficient of variation (CV, %), as delineated by [6]. The categorization of CV was observed
according to the criteria proposed by Zar (2010) [30]. To ascertain the interrelationships
between the biophysical attributes, Pearson’s correlation methodology was harnessed. For
these analytical tasks, we used Statistica 10® (StatSoft Inc., Tulsa, OK, USA) and the R
software framework. Graphical depictions were generated using a suite of applications:
SigmaPlot 10.0® (Systat Inc., Santa Clara, Silicon Valley, CA, USA), R packages, Excel
(Microsoft Inc., Silicon Valley, CA, USA), and CorelDraw 2020® (Corel Corp., Ottawa, ON,
Canada).

2.7.2. Principal Component Analysis (PCA)

The Unscrambler X software, version 10.4 (CAMO Software, Oslo, Norway), was
used to conduct PCA on the growth parameter data, with a statistical significance level
set at p < 0.01. To avoid underfitting and overfitting, the optimal number of principal
components was determined based on the first maximum value of overall accuracy [31].

3. Results
3.1. Description Statistical for Chlorophyll a Fluorescence

Table 1 shows the chlorophyll a parameters in Hibiscus and Geranium, with 200 sam-
ples analyzed for each parameter. For Ψ(EO), the mean was 0.57, with a median of 0.57,
spanning a minimum of 0.46 to a maximum of 0.64, and a coefficient of variation of 6.1%.
Ψ(RO) showed a mean of 0.17, a median of 0.17, a range of 0.14 to 0.22, and a variation
coefficient of 7.2%. The φ(PO) parameter had a mean of 0.76, a median of 0.76, and values
between 0.71 and 0.82, with a 3.5% coefficient of variation. For φ(EO), the mean was 0.43,
the median was 0.42, with values from 0.33 to 0.51, and the variation was 9.4%. The φ(RO)
had a mean and median of 0.13, values from 0.11 to 0.18, and a coefficient of variation of
8.1%. For the φ(DO) parameter, the mean was 0.24, the median was 0.24, and it ranged
from 0.18 to 0.28 with an 11.2% variation. δRo had a mean of 0.31, a median of 0.31, and
values between 0.25 and 0.45, with a 9.1% coefficient of variation. ρRo exhibited a mean of
0.74, a median of 0.73, values from 0.53 to 1.12, and a variability of 13.9%. The mean and
median of Kn were both 0.005, with a range of 0.005 to 0.006 and a 5.6% variation. Kp had a
mean of 0.017 and a median of 0.016, with values stretching from 0.013 to 0.021 and a 10.5%
coefficient of variation, respectively. The SFI(abs) parameter had a mean of 1.31, a median
of 1.23, ranged from 0.78 to 1.87, and exhibited a variation of 24.2%. PI(abs) indicated a
mean of 13.76, a median of 11.61, values from 5.03 to 26.44, and a pronounced variation of
41.8%. Last, for the D.F., the mean was 2.53, the median was 2.45, the range was between
1.62 and 3.28, and the coefficient of variation was 17.1% (Table 1).
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Table 1. Descriptive statistics of chlorophyll a parameters measured in leaves of Hibiscus rosa-sinensis
L. (Hibiscus) and Pelargonium zonale (L.) L’Hér. Ex. Aiton (Geranium). For each parameter, the table
presents the count (n), mean, median, minimum, maximum, and coefficient of variation (CV %).
Abbreviations are described in the Materials and Methods. (n = 200).

Parameter Count (n) Mean Median Minimum Maximum CV (%)

Ψ(EO) 200 0.57 0.57 0.46 0.64 6.11
Ψ(RO) 200 0.17 0.17 0.14 0.22 7.22
φ(PO) 200 0.76 0.76 0.71 0.82 3.50
φ(EO) 200 0.44 0.43 0.33 0.51 9.38
φ(RO) 200 0.13 0.13 0.11 0.18 8.05
φ(DO) 200 0.24 0.24 0.18 0.29 11.21
δRo 200 0.31 0.31 0.25 0.45 9.10
ρRo 200 0.74 0.73 0.53 1.12 13.87
Kn 200 0.005 0.005 0.005 0.006 5.62
Kp 200 0.017 0.016 0.013 0.021 10.48

SFI(abs) 200 1.31 1.23 0.78 1.87 24.17
PI(abs) 200 13.76 11.61 5.03 26.44 41.75

D.F. 200 2.53 2.45 1.62 3.28 17.13

3.2. Chlorophyll a Fluorescence Kinetics

Photosynthetic performance was evaluated using OJIP curves and variable fluores-
cence curves (Figure 2). These analyses revealed a significant pigment variation between
Hibiscus (Figure 2A) and Geranium (Figure 2B) (p < 0.01). Declines in ∆Vt were observed at
∆L (~20 µs), ∆K (~300 µs), ∆J (~2 ms), ∆I (~10 ms), and ∆P (~40 ms) (Figure 2A,B). Distinct
patterns were identified in the chlorophyll a fluorescence curves of Hibiscus and Geranium.
Data points O, L, K, J, I, and P demonstrated significant variations between the two species
(Figure 2). Notably, while points O and P exhibited nearly identical fluorescence intensities
for both species, Geranium consistently displayed elevated values at the L, K, J, and I points
compared to Hibiscus (Figure 2).
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Figure 2. Spectral chlorophyll a fluorescence kinetics in leaves. (A) Hibiscus rosa-sinensis L. (Hibiscus).
(B) Pelargonium zonale (L.) L’Hér. Ex. Aiton (Geranium). The inset displays a radar plot indicating
parameters derived from the JIP-test. The O, L, K, J, I, and P phases indicate specific points for
calculating JIP-test parameters step by step. (n = 200).

∆Vt kinetics suggested a decreased efficiency in the light-harvesting complex, active
RCs, and electron transport between PSII and PSI, as depicted in Figure 2. These findings
align with the JIP-test parameters. The JIP-test indicated that the Ψ(EO) value for Hibiscus
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was 0.6017, 11.3% higher than Geranium’s value of 0.5407. Other metrics, such as Ψ(RO)
and φ(PO), follow a similar trend. However, Geranium outperformed in the φ(DO) and δRo
parameters. For ρRo, Hibiscus demonstrated superior values, but Geranium was higher in
the Kn and Kp metrics. Geranium’s SFI(abs) value of 0.5079 was 37.1% higher than that
of Hibiscus at 0.3705. The PI(abs) values were more closely matched, with Geranium’s
value of 0.5132 being 10.2% higher than Hibiscus’ value of 0.4657. For the D.F. metric,
Geranium’s value of 0.4166 exceeded Hibiscus’s value of 0.3706 by 12.4%. Therefore, the
combined analysis of fluorescence data and JIP-test parameters provides insights into the
photosynthetic differences between Hibiscus and Geranium plants (Figure 2A,B; insets).

3.3. Hyperspectral Reflectance, Transmittance, and Absorbance Curves

Differences in reflectance values between Hibiscus and Geranium were observed
at the responsive wavelengths across each spectral range (Figure 3A,B). In the VIS spec-
trum (400–700 nm), a notable disparity was evident at 544 nm. Within the NIR range
(700–1300 nm), the most pronounced difference was observed at 700 nm. For the SWIR1
spectrum (1300–1800 nm), the peak difference was at 1441 nm, whereas in the SWIR2
range (1800–2500 nm), the largest variation was at 2488 nm. Given the consistently low
p values (below 0.05) for these wavelengths, these differences are statistically significant,
indicating that these specific wavelengths might be key in differentiating between Hibiscus
and Geranium based on reflectance (Figure 3A,B).

Transmittance values also demonstrated significant variations between the two species
at specific wavelengths in each spectral band (Figure 3C,D). In the VIS spectrum, the most
marked difference was observed at 400 nm. In the NIR spectrum, the peak difference was
at 1125 nm, in SWIR1, it was at 1607 nm, and in SWIR2, it peaked at 2175 nm. The notably
low p values for these wavelengths affirm their statistical significance, suggesting that
transmittance at these specific wavelengths can also differentiate between Hibiscus and
Geranium plants (Figure 3C,D).

Absorbance analysis further revealed significant variations between Hibiscus and
Geranium at distinct wavelengths across the spectral bands (Figure 3E,F). The most sig-
nificant differences were observed at 495 nm in VIS_Blue, 498 nm in VIS_Green, 733 nm
in VIS_Red, 800 nm in VIS_Far-red, 1117 nm in NIR, 1575 nm in SWIR1, and 2175 nm
in SWIR2. The extremely low p values associated with these wavelengths confirm their
statistical significance, indicating that absorbance at these wavelengths can be instrumental
in distinguishing Hibiscus from Geranium plants (Figure 3E,F).

3.4. Principal Component Analysis for Fluorescence, Reflectance, Transmittance, and Absorbance
Sensors

Utilizing the PERMANOVA, based on 999 permutations, a test statistic of 3.33 emerged
for fluorescence curves, accompanied by a p value of 0.001. This underscores the distinc-
tiveness between Hibiscus and Geranium fluorescence curves at a 95% confidence interval.
The kappa coefficient (k) was 0.897, and the accuracy reached 0.948, suggesting 94.8%
concordance when referencing the global average (Figure 4A).

For the reflectance curves, the PERMANOVA yielded a test statistic of 0.487. With
a p value of 0.001, the discernible differences between both plants at a 95% confidence
interval became evident. The kappa coefficient (k) was 0.852, indicating robust agreement.
The accuracy metric, measured at 0.927, indicated that 92.7% of the wavelengths were
harmoniously classified against the global mean (Figure 4B).

Addressing the transmittance curves, the PERMANOVA presented a test statistic of
0.246. This, coupled with a p value of 0.001, emphasizes the marked variations between the
plants at the 95% confidence interval. A high kappa coefficient (k) of 0.978 was obtained.
Furthermore, with an accuracy level of 0.987, a staggering 98.7% of wavelengths showed
uniformity when juxtaposed with the global average (Figure 4C).
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Figure 3. Spectral leaf reflectance, transmittance, and absorbance (in vivo) curves from 350 to 2500 
nm in leaves of Hibiscus rosa-sinensis L. (Hibiscus) and Pelargonium zonale (L.) L’Hér. Ex. Aiton (Ge-
ranium) plants. (A,B) The reflectance curves. (C,D) The transmittance curves. (E,F) The absorbance 
curves. Reflectance was measured directly with a sensor on the adaxial surface of the leaf. A second 
sensor, positioned on the abaxial surface of the leaf, measured the light that passed through (trans-
mittance). Absorbance was obtained using the equation [A = 1 − (R + T)] (more details are shown in 
Figure 1). (A,C,E) Green lines represent Hibiscus plants. (B,D,F) Blue lines represent Geranium 
plants. (n = 200). 

Figure 3. Spectral leaf reflectance, transmittance, and absorbance (in vivo) curves from 350 to 2500 nm
in leaves of Hibiscus rosa-sinensis L. (Hibiscus) and Pelargonium zonale (L.) L’Hér. Ex. Aiton (Geranium)
plants. (A,B) The reflectance curves. (C,D) The transmittance curves. (E,F) The absorbance curves.
Reflectance was measured directly with a sensor on the adaxial surface of the leaf. A second sensor,
positioned on the abaxial surface of the leaf, measured the light that passed through (transmittance).
Absorbance was obtained using the equation [A = 1 − (R + T)] (more details are shown in Figure 1).
(A,C,E) Green lines represent Hibiscus plants. (B,D,F) Blue lines represent Geranium plants. (n = 200).
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netic data. (B) Hyperspectral reflectance data. (C) Hyperspectral transmittance data. (D) Hyperspec-
tral absorbance data. Clustering color leaves are displayed as green and blue circles. 

Figure 4. Principal component (PC) (in vivo) from 350 to 2500 nm in leaves of Hibiscus rosa-sinensis L.
(Hibiscus) and Pelargonium zonale (L.) L’Hér. Ex. Aiton (Geranium) plants. (A) Fluorescence kinetic
data. (B) Hyperspectral reflectance data. (C) Hyperspectral transmittance data. (D) Hyperspectral
absorbance data. Clustering color leaves are displayed as green and blue circles.

Regarding the absorbance curves, the analysis resulted in a test statistic of 1.215 and
a p value of 0.001, indicating distinct differences at the 95% confidence level. A kappa
coefficient (k) of 0.946 and an accuracy metric of 0.973 revealed that 97.3% of wavelengths
were consistent when compared to the global mean (Figure 4D).

Within the reflectance data, the first principal component (PC-1) identified leading
wavelengths at the blue bands at 450 nm, the green bands at 553 nm, the red bands at
572 nm, the NIR bands at 1276 nm, the SWIR1 bands at 1696 nm, and the SWIR2 bands
at 2217 nm. Similar wavelengths were documented for PC-2 and PC-3 in the reflectance
dataset (Figure 5).

In the transmittance spectrum for PC-1, relevant wavelengths were found in the blue
bands at 452 nm, the green bands at 550 nm, the red bands at 670 nm, the NIR bands at
1060 nm, the SWIR1 bands at 1677 nm, and the SWIR2 bands at 2213 nm. Consequent PCs,
PC-2 and PC-3 in the transmittance data, also pinpointed an array of pivotal wavelengths
(Figure 5).

For the absorbance measurements, the foremost wavelengths for PC-1 included the
blue range at 493 nm; the green range at 550 nm; the red range at 672 nm; the NIR range at
713 nm; the SWIR1 range at 1829 nm and 1835 nm; and the SWIR2 range at 2247 nm. The
absorbance results for PC-2 and PC-3 also revealed key wavelengths (Figure 5).

These findings align with the regression coefficients and provide insights into the most
influential wavelengths across the reflectance, transmittance, and absorbance spectra.



Remote Sens. 2023, 15, 5067 10 of 23

Remote Sens. 2023, 15, 5067 10 of 24 
 

 

Within the reflectance data, the first principal component (PC-1) identified leading 
wavelengths at the blue bands at 450 nm, the green bands at 553 nm, the red bands at 572 
nm, the NIR bands at 1276 nm, the SWIR1 bands at 1696 nm, and the SWIR2 bands at 2217 
nm. Similar wavelengths were documented for PC-2 and PC-3 in the reflectance dataset 
(Figure 5). 

In the transmittance spectrum for PC-1, relevant wavelengths were found in the blue 
bands at 452 nm, the green bands at 550 nm, the red bands at 670 nm, the NIR bands at 
1060 nm, the SWIR1 bands at 1677 nm, and the SWIR2 bands at 2213 nm. Consequent PCs, 
PC-2 and PC-3 in the transmittance data, also pinpointed an array of pivotal wavelengths 
(Figure 5). 

For the absorbance measurements, the foremost wavelengths for PC-1 included the 
blue range at 493 nm; the green range at 550 nm; the red range at 672 nm; the NIR range 
at 713 nm; the SWIR1 range at 1829 nm and 1835 nm; and the SWIR2 range at 2247 nm. 
The absorbance results for PC-2 and PC-3 also revealed key wavelengths (Figure 5). 

These findings align with the regression coefficients and provide insights into the 
most influential wavelengths across the reflectance, transmittance, and absorbance spec-
tra. 

 
Figure 5. Figure 5 displays scores, β-loadings, and regression coefficients obtained from fluores-
cence sensor, reflectance, transmittance, and absorbance hyperspectral analyses of Hibiscus rosa-
sinensis L. (Hibiscus) and Pelargonium zonale (L.) L’Hér. Ex. Aiton (Geranium) plants. (A–D) Varia-
bility and accumulation (%) based on 10 principal components. (E–H) PC1–3, corresponding to the 
sensors. (I–L) Regression coefficients for PC1-3 from 350 to 2500 nm. Green line represents PC1. 
Orange line represents PC2. Blue line represents PC3. The light-green line delimits −0.75 to +0.75. 

 

Figure 5. Figure 5 displays scores, β-loadings, and regression coefficients obtained from fluorescence
sensor, reflectance, transmittance, and absorbance hyperspectral analyses of Hibiscus rosa-sinensis L.
(Hibiscus) and Pelargonium zonale (L.) L’Hér. Ex. Aiton (Geranium) plants. (A–D) Variability and
accumulation (%) based on 10 principal components. (E–H) PC1–3, corresponding to the sensors.
(I–L) Regression coefficients for PC1-3 from 350 to 2500 nm. Green line represents PC1. Orange line
represents PC2. Blue line represents PC3. The light-green line delimits −0.75 to +0.75.

3.5. Selection of Variables by PLS Algorithms for Hyperspectral Vegetation Index

The reflectance dataset reveals distinct regions with high correlation (Figure 6), marked
by red indicators, especially within specific wavelength bands. This pronounced corre-
lation is evident at the outset of the spectrum, primarily within the visible (VIS) range.
Additionally, such correlation patterns are identifiable in selected areas of both the near-
infrared (NIR) and shortwave infrared (SWIR) spectra. In contrast, the spectrum showcases
sporadic sections, delineated in blue, where correlation is either minimal or absent. These
low-correlation zones predominantly appear around the midpoint of the spectrum and
within certain segments of the SWIR (Figure 6) or Ψ(RO), φ(RO), and Kn (Figure 6B,E,I)
with low values (p > 0.05).
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Figure 6. Count plot map of the coefficient of correlation (R2) from the linear regression between JIP-
test parameters and wavelength1 vs. wavelength2 from hyperspectral reflectance from 350 to 2500 
nm. (A) Ψ(EO). (B) Ψ(RO). (C) ϕ(PO). (D) ϕ(EO). (E) ϕ(RO). (F) ϕ(DO). (G) δRo. (H) ρRo. (I) Kn. (J) 
Kp. (K) SFI(abs). (L) PI(abs). (M) D.F. Dark to light red display increased associations. Abbreviations 
in the Introduction section. 

Figure 6. Count plot map of the coefficient of correlation (R2) from the linear regression between
JIP-test parameters and wavelength1 vs. wavelength2 from hyperspectral reflectance from 350 to 2500
nm. (A) Ψ(EO). (B) Ψ(RO). (C) φ(PO). (D) φ(EO). (E) φ(RO). (F) φ(DO). (G) δRo. (H) ρRo. (I) Kn. (J)
Kp. (K) SFI(abs). (L) PI(abs). (M) D.F. Dark to light red display increased associations. Abbreviations
in the Introduction section.

In the transmittance dataset (Figure 7), it is discernible that areas of high correlation
predominantly cluster at the spectrum’s onset, specifically in the visible domain, and are
also present within defined bands of the NIR. Scattered peaks within the SWIR further
substantiate this observation. However, as one navigates through the remainder of the
spectrum, especially within the SWIR realm, the trend veers towards a low to nonexistent
correlation (Figure 7) or Ψ(RO), φ(RO), and Kn (Figure 7B,E,I) with low values (p > 0.05).
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Figure 7. Count plot map of the coefficient of correlation (R2) from the linear regression between JIP-
test parameters and wavelength1 vs. wavelength2 from hyperspectral transmittance from 350 to 
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Figure 7. Count plot map of the coefficient of correlation (R2) from the linear regression between
JIP-test parameters and wavelength1 vs. wavelength2 from hyperspectral transmittance from 350
to 2500 nm. (A) Ψ(EO). (B) Ψ(RO). (C) φ(PO). (D) φ(EO). (E) φ(RO). (F) φ(DO). (G) δRo. (H) ρRo.
(I) Kn. (J) Kp. (K) SFI(abs). (L) PI(abs). (M) D.F. Dark to light red displayed increased associations.
Abbreviations in the Introduction section.

In the context of the absorbance dataset (Figure 8), the data suggest substantial correla-
tions pervading numerous sections of the spectrum, particularly in the VIS and NIR regions.
The consistency in the distribution of these high-correlation regions, accentuated in red,
stands in stark contrast with the other datasets. However, it is essential to acknowledge the
less pervasive yet discernible regions of diminished correlation, primarily situated within
certain SWIR stretches or Ψ(RO), φ(RO), and Kn (Figure 8B,E,I) with low values (p > 0.05).
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Figure 8. Count plot map of the coefficient of correlation (R2) from the linear regression between
JIP-test parameters and wavelength1 vs. wavelength2 from hyperspectral absorbance from 350 to
2500 nm. (A) Ψ(EO). (B) Ψ(RO). (C) φ(PO). (D) φ(EO). (E) φ(RO). (F) φ(DO). (G) δRo. (H) ρRo.
(I) Kn. (J) Kp. (K) SFI(abs). (L) PI(abs). (M) D.F. Dark to light red displayed increased associations.
Abbreviations in the Introduction section.

Based on these observations, the visual data shows that wavelengths within the VIS
and NIR, as well as VIS and SWIR2, exhibit a robust correlation with hyperspectral veg-
etation indices (HVIs) across the three examined datasets, which include hyperspectral
sensors measuring reflectance, transmittance, and absorbance. The SWIR spectrum pro-
vides some relevance in characterizing ChlF parameters, unveiling a dichotomy of high
and low correlations, contingent on the dataset and the specific SWIR segment. Notably, of
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all the datasets, the absorbance one elucidates the most balanced distribution of prominent
correlations throughout the spectrum, with its counterparts, reflectance and transmittance,
presenting a more varied distribution (Figures 6–8).

3.6. Chlorophyll a Fluorescence Predicted Parameters
3.6.1. Calibration and Validation Models

Our research delved deeply into a comprehensive evaluation of three spectrometric
modalities: reflectance, transmittance, and absorbance (Table 2). Reflectance, which focuses
on the fraction of light or radiation reflected by a material while excluding the absorbed
portions, revealed several distinct outcomes. Higher performers in this category include
φ(PO) due to its R2 values of 0.86 in calibration and 0.83 in cross-validation. This, combined
with a consistently minimized RMSE, suggests an effective model adept at capturing
intrinsic variance. The ratio of performance to deviation (RPD) further underscores these
parameters (Table 2).

The most notable performers in the reflectance modality were Ψ(EO) and φ(EO). Both
displayed R2 values, with Ψ(EO) at 0.77 for calibration and 0.75 for cross-validation and
φ(EO) at 0.81 and 0.77, respectively. Their associated RMSE values support their model’s
precision. Another parameter, φ(DO), with an R2 of 0.85 for calibration and 0.82 for cross-
validation, confirms its significant contribution to reflectance assessments. Meanwhile,
parameters such as δRo, ρRo, Kn, Kp, SFI(abs), and PI(abs) exhibited moderate R2 values.
Here, δRo and ρRo indicate potential areas for optimization. Interestingly, despite high R2

values, parameters such as Kn were highlighted because of their minor inconsistencies in
cross-validation metrics. On the other end of the spectrum, parameters Ψ(RO) and φ(RO)
had the lowest accuracy (p > 0.05). Showing considerably low R2 values and Ψ(RO) notably
missing cross-validation results while φ(RO) show 0.12 in calibration, there are significant
concerns regarding their efficacy in reflectance assessments.

It is evident that the transmittance sensor, which quantifies the fraction of light passing
through a medium, is a critical facet of spectrometry. Leading the pack here are φ(PO)
and φ(DO). They had R2 values of ≈0.89 and 0.86 for calibration and cross-validation,
respectively, which show higher predictive capabilities. Ψ(EO), φ(EO), Kn, SFI(abs), and
PI(abs) also emerge as trustworthy assets in transmittance evaluations, with their R2 values
oscillating between 0.70 and 0.89 during calibration. However, δRo, ρRo, and Kp, despite
their promise, disclosed disparities between calibration and cross-validation, hinting at
enhancement opportunities. Conversely, the recurring underperformance of Ψ(RO) and
φ(RO) is the lowest, especially given the low R2 value of 0.01 for Ψ(RO), which questions
its aptness in transmittance evaluations (Table 2).

Last, in the context of absorbance, where the central task is gauging the amount
of light absorbed by leaves, φ(PO) and φ(DO) continue their consistent streak. Both R2

values approach or exceed 0.82, accentuating their dominant role in absorbance evaluations.
Similarly, parameters such as Ψ(EO), φ(EO), Kn, SFI(abs), and D.F., with R2 values in the
vicinity of mid−0.7 s to mid−0.8 s, confirm their steadfastness in absorbance evaluations.
ρRo, Kp, and PI(abs) provided acceptable calibration results, but their minor deviations in
the cross-validation data suggest room for improvement. Once again, the performance of
Ψ(RO) and φ(RO) is low for this modality, with their significantly lower R2 values (Table 2).

3.6.2. Predicted

Reflectance quantifies the light or radiation that bounces off a material (Table 3).
Certain high-precision predictors have emerged prominently in assessing the predictive
performance of various parameters. For instance, Ψ(EO) exhibited a correlation coefficient
(R2) of 0.84, augmented with an SEP of 0.01 and an RPD of 1.84, highlighting its remarkable
prediction accuracy. φ(EO) and φ(DO), with r values of 0.86 and 0.85, respectively, and
RPDs of 1.96 and 1.91, further underscored superior predictive abilities. Additionally,
SFI(abs) made a notable mark with an R2 value of 0.90 and an RPD of 2.32 (Table 3;
reflectance data).
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Table 2. Statistical metrics from the PLSR model in the calibration and cross-validation phases.
R-square for model goodness-of-fit (R2), slope, offset, root mean squared error (RMSE), ratio of
performance to deviation (RPD), and bias to base models (a prediction using an independent sample
coupled to calibrated models), parameters of JIP-test parameters from reflectance (single sensor),
transmittance (single sensor), and absorbance (two sensors) hyperspectral data of Hibiscus and
Geranium leaves.

Sensor Parameter Maximum
Factor PLS

Calibration Cross-Validation

R2 Offset RMSE RPD R2 Offset RMSE RPD

Reflectance

Ψ(EO) 4 0.77 0.13 0.02 1.58 0.75 0.14 0.02 1.51
Ψ(RO) 10 0.22 0.13 0.01 1.03 n/a 0.16 0.02 n/a
φ(PO) 4 0.86 0.11 0.01 1.96 0.83 0.12 0.01 1.80
φ(EO) 4 0.81 0.08 0.02 1.69 0.77 0.09 0.02 1.57
φ(RO) 3 0.12 0.12 0.01 1.01 0.09 0.12 0.09 1.00
φ(DO) 4 0.85 0.04 0.01 1.87 0.82 0.04 0.01 1.74
δRo 7 0.54 0.14 0.02 1.19 0.42 0.16 0.02 1.10
ρRo 4 0.61 0.29 0.06 1.26 0.52 0.36 0.07 1.17
Kn 4 0.84 0.00 0.00 1.83 0.80 0.00 0.00 1.67
Kp 4 0.71 0.00 0.00 1.42 0.67 0.01 0.00 1.34

SFI(abs) 4 0.82 0.24 0.14 1.73 0.80 0.25 0.14 1.68
PI(abs) 5 0.85 2.05 2.24 1.92 0.81 2.47 2.58 1.69

D.F. 4 0.86 0.36 0.16 1.95 0.84 0.39 0.18 1.85

Transmittance

Ψ(EO) 6 0.72 0.16 0.02 1.44 0.68 0.17 0.02 1.36
Ψ(RO) 1 0.01 0.17 0.01 1.00 n/a 0.18 0.01 n/a
φ(PO) 6 0.89 0.08 0.01 2.23 0.86 0.08 0.01 1.95
φ(EO) 6 0.86 0.06 0.01 1.97 0.82 0.07 0.02 1.76
φ(RO) 3 0.16 0.11 0.01 1.01 0.07 0.12 0.01 1.00
φ(DO) 6 0.88 0.03 0.01 2.10 0.84 0.03 0.01 1.84
δRo 5 0.48 0.16 0.02 1.14 0.38 0.17 0.02 1.08
ρRo 3 0.49 0.38 0.08 1.15 0.40 0.46 0.09 1.09
Kn 5 0.85 0.00 0.00 1.90 0.83 0.00 0.00 1.79
Kp 3 0.70 0.01 0.00 1.39 0.69 0.01 0.00 1.38

SFI(abs) 6 0.89 0.14 0.11 2.20 0.85 0.19 0.13 1.92
PI(abs) 5 0.87 1.85 2.13 2.02 0.83 2.35 2.43 1.80

D.F. 6 0.86 0.35 0.16 1.98 0.84 0.40 0.18 1.82

Absorbance

Ψ(EO) 3 0.74 0.74 0.02 1.50 0.71 0.16 0.02 1.42
Ψ(RO) 1 0.01 0.17 0.01 1.00 n/a 0.17 0.01 n/a
φ(PO) 3 0.85 0.11 0.01 1.92 0.84 0.12 0.01 1.83
φ(EO) 3 0.82 0.08 0.02 1.74 0.79 0.09 0.02 1.65
φ(RO) 2 0.11 0.12 0.01 1.01 0.08 0.12 0.01 1.00
φ(DO) 3 0.82 0.04 0.01 1.76 0.81 0.04 0.01 1.72
δRo 1 0.38 0.19 0.02 1.08 0.38 0.20 0.02 1.08
ρRo 3 0.49 0.38 0.08 1.15 0.39 0.47 0.09 1.09
Kn 6 0.85 0.00 0.00 1.91 0.81 0.00 0.00 1.71
Kp 3 0.70 0.00 0.00 1.40 0.66 0.01 0.00 1.34

SFI(abs) 3 0.86 0.19 0.12 1.94 0.83 0.21 0.13 1.78
PI(abs) 3 0.79 2.86 2.65 1.65 0.79 2.92 2.73 1.61

D.F. 3 0.83 0.44 0.18 1.79 0.80 0.50 0.19 1.65

Stable performers, such as φ(PO), δRo, ρRo, Kn, Kp, and D.F., registered R2 values
between 0.50 and 0.88, indicating their reliable predictive behavior. Conversely, parameters
such as Ψ(RO) and φ(RO), with r values of −0.02 and 0.22 and RPDs of 1.00 and 1.02,
respectively, pinpoint areas needing refinement or select few bands to enhance correlations
and R2 and RPD metrics (Table 3; reflectance).

Transmittance denotes the fraction of light traversing a medium. High-precision
predictors in this category included Ψ(EO), φ(PO), φ(EO), and φ(DO), all presenting R2

values above 0.90 and RPDs between 2.27 and 2.68. SFI(abs) distinguished itself with an
exceptional R2 value of 0.95 and an RPD of 3.32 (Table 3; transmittance).
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Table 3. Statistical metrics from the PLSR model in the predicted phases. R-square for model
goodness-of-fit (R2), slope, offset, root mean squared error (RMSE), ratio of performance to deviation
(RPD), and bias to base models (a prediction using an independent sample coupled to calibrated
models), parameters of JIP-test parameters from reflectance (single sensor), transmittance (single
sensor), and absorbance (two sensors) hyperspectral data of Hibiscus and Geranium leaves.

Sensor Parameter Maximum
Factor PLS

Predicted

R2 Slope Offset SEP RPD Bias

Reflectance

Ψ(EO) 4 0.84 0.71 0.17 0.01 1.84 0.001
Ψ(RO) 1 −0.02 −0.03 0.18 0.01 1.00 0.000
φ(PO) 4 0.85 0.80 0.15 0.01 1.90 0.004
φ(EO) 4 0.86 0.75 0.11 0.02 1.96 0.000
φ(RO) 3 0.22 0.29 0.09 0.01 1.02 0.002
φ(DO) 4 0.85 0.80 0.05 0.01 1.91 0.000
δRo 7 0.50 0.38 0.19 0.02 1.15 0.004
ρRo 4 0.71 0.94 0.06 0.05 1.42 0.015
Kn 4 0.82 0.75 0.00 0.00 1.76 0.000
Kp 4 0.77 0.82 0.00 0.00 1.55 0.000

SFI(abs) 4 0.90 0.78 0.27 0.10 2.32 0.003
PI(abs) 5 0.89 0.94 1.20 1.87 2.15 0.383

D.F. 4 0.88 0.80 0.51 0.15 2.10 0.004

Transmittance

Ψ(EO) 6 0.90 0.81 0.11 0.01 2.27 0.001
Ψ(RO) 1 −0.03 −0.02 0.18 0.01 1.00 0.001
φ(PO) 6 0.92 0.83 0.13 0.01 2.49 0.000
φ(EO) 6 0.91 0.84 0.01 0.12 2.47 0.003
φ(RO) 3 0.22 0.37 0.09 0.01 1.03 0.002
φ(DO) 6 0.93 0.81 0.05 0.01 2.68 0.000
δRo 5 0.49 0.27 0.23 0.02 1.14 0.008
ρRo 3 0.74 0.75 0.19 0.04 1.50 0.014
Kn 5 0.83 0.66 0.00 0.00 1.77 0.000
Kp 3 0.79 0.73 0.00 0.00 1.63 0.000

SFI(abs) 6 0.95 0.87 0.17 0.07 3.32 0.003
PI(abs) 5 0.92 0.87 1.83 1.57 2.56 0.051

D.F. 6 0.95 0.85 0.38 0.11 3.21 0.000

Absorbance

Ψ(EO) 3 0.86 0.66 0.2 0.0 1.95 0.0
Ψ(RO) 1 0.03 0.00 0.2 0.0 1.00 0.0
φ(PO) 3 0.86 0.75 0.2 0.0 1.95 0.0
φ(EO) 3 0.88 0.71 0.1 0.0 2.08 0.0
φ(RO) 2 0.23 0.27 0.1 0.0 1.03 0.0
φ(DO) 3 0.87 0.72 0.1 0.0 2.02 0.0
δRo 1 0.48 0.30 0.2 0.0 1.14 0.0
ρRo 3 0.74 0.79 0.2 0.0 1.49 0.0
Kn 6 0.80 0.70 0.0 0.0 1.66 0.0
Kp 3 0.78 0.74 0.0 0.0 1.60 0.0

SFI(abs) 3 0.91 0.78 0.3 0.1 2.45 0.0
PI(abs) 3 0.91 0.76 3.2 1.5 2.41 0.0

D.F. 3 0.90 0.73 0.7 0.2 2.29 0.0

Other consistently performing predictors, namely, δRo, ρRo, Kn, Kp, and D.F., showed
R2 values from 0.49 to 0.95. However, the effectiveness of Ψ(RO) in transmittance prediction
warrants scrutiny given its R2 value of 0.03 and an RPD of approximately 1.00 (Table 3;
transmittance data).

For absorbance, which measures the amount of light absorbed, many high-precision
predictors were evident (Table 3; absorbance data). Ψ(EO), φ(EO), and φ(DO) all had R2

values ranging from 0.86 to 0.88 and RPDs surpassing 1.95, affirming their higher prediction
capabilities for absorbance. SFI(abs) further stood out with an R2 value of 0.91 and an RPD
of 2.45. While φ(PO), δRo, ρRo, Kn, Kp, and D.F. showcased R2 values between 0.48 and
0.90, highlighting predictive abilities, Ψ(RO) left room for enhancement, registering an R2
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value of 0.03 and an RPD marginally over one, signaling potential prediction challenges
(Table 3; absorbance data).

Scatter plot data between predicted and observed values revealed that the data ob-
tained by absorbance were more consistent and larger in comparison to reflectance and
transmittance data (p < 0.01) (Figures 9–11).
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The scatter plots for reflectance display a wide dispersion of points, suggesting a
lower consistency between observed and predicted values for various variables (Figure 9).
Variables such as Ψ(EO) and φ(PO) show moderate correlations, whereas δRo and SFI(abs)
have weaker correlations. The color gradient, transitioning from blue to green, signifies
correlation strength, with blue being associated with low values and green with high
values.

Transmittance scatter plots also show a broad dispersion of points, with some variables,
such as φ(RO) and PI(abs), displaying moderate correlations, whereas others, such as Ψ(RO)
and Kn, present weaker correlations (Figure 10).

In contrast, the absorbance scatter plots revealed a tighter clustering of points around a
1:1 line, indicating a robust and consistent correlation between the observed and predicted
values (Figure 11). The intensity of the colors leans more towards green, suggesting stronger
correlations compared to reflectance and transmittance sensors.

In summary, absorbance is the most reliable method for predicting plant characteristics
among the three, with reflectance and transmittance showing the greatest variability in
their predictions.

4. Discussion

The application of hyperspectral sensors in predicting chlorophyll a fluorescence pa-
rameters has gained considerable attention in recent plant physiological research
(Figures 1–11) [4,6,13]. The interactions between light and plant tissues, including ab-
sorption, reflection, and transmission, provide valuable insights beyond the superficial
health of plants. They reveal crucial physiological processes and adaptive mechanisms.
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This section critically evaluates the present research findings in the context of established
scientific knowledge.

4.1. Insights into Chlorophyll a Fluorescence Parameters

Chlorophyll a fluorescence is a noninvasive technique that is widely accepted for
evaluating photosystem II (PSII) functionality and the overall physiological status of a
plant [32,33]. The variations observed between Hibiscus and Geranium in their OJIP
test parameters underscore the inherent species-specific characteristics of photochemical
processes.

In this context, prediction data with high coefficients of variation (CV %) and max-
imum and minimum values should be evaluated to understand whether hyperspectral
curves are capable of capturing this information using most of the electromagnetic spec-
trum [34,35]. This approach aligns with the growing interest in hyperspectral imaging for
plant phenotyping, which provides detailed information on plant health and photosyn-
thetic performance [3,36]. However, it is important to note that while hyperspectral data
can provide valuable insights into plant health and physiology, the interpretation of these
data requires a thorough understanding of both the underlying biological processes and
the technical aspects of hyperspectral imaging and nonimaging [37]. Therefore, careful
analysis and interpretation of hyperspectral data are key to the accurate prediction of
plant traits and the assessment of plant health [26,38–41]. For example, understanding
the species-specific characteristics of photochemical processes using techniques such as
chlorophyll a fluorescence can provide valuable insights into plant physiology [6,29]. When
combined with advanced imaging techniques such as hyperspectral imaging, it can poten-
tially enhance our ability to monitor plant health and predict plant traits. However, further
research is required to improve the accuracy and reliability of these methods.

In this sense, the elevated fluorescence intensities at the L, K, J, and I points in Gera-
nium might be attributed to the early phases of electron transfer. These variations could
potentially be linked to mechanisms such as nonphotochemical quenching or changes in
electron transport rates (Figure 2; Tables 2 and 3).

4.2. Hyperspectral and Principal Component Analysis by Reflectance, Transmittance, and
Absorbance

Hyperspectral sensors offer in-depth spectral data, enabling a thorough analysis of
plant biochemical and biophysical characteristics [7]. Reflectance provides information
about the surface and internal structure of leaves [42]. Changes in reflectance patterns can
indicate variations in chlorophyll concentration or cellular modifications, as supported
by previous studies [43,44]. Transmittance patterns are valuable for understanding light
diffusion within the leaf, reinforcing the findings of [45,46]. The large datasets derived from
hyperspectral sensors necessitate the use of dimensionality reduction techniques such as
principal component analysis (PCA). This research successfully employed PCA to identify
vital spectral regions associated with variations in chlorophyll a fluorescence parameters.
Identifying these regions is crucial for the development of effective remote sensing tools, a
concept also emphasized by [28,47].

In this context, prediction data with high coefficients of variation (CV %) and max-
imum and minimum values should be evaluated to understand whether hyperspectral
curves are indeed capable of capturing this information, using most of the electromagnetic
spectrum (Figures 3 and 4). This approach aligns with the growing interest in using hyper-
spectral imaging for plant phenotyping, which provides detailed information about plant
health and photosynthetic performance (Figures 2 and 5–9 and Tables 2 and 3). However, it
is important to note that while hyperspectral data can provide valuable insights into plant
health and physiology, the interpretation of these data requires a thorough understanding
of both the underlying biological processes and the technical aspects of hyperspectral
imaging. Therefore, careful analysis and interpretation of hyperspectral data are crucial for
accurate prediction of plant monitoring [5,16,28,48].
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The parameters Ψ(EO), Ψ(RO), φ(PO), φ(EO), φ(RO), φ(DO), δRo, ρRo, Kn, Kp,
SFI(abs), PI(abs), and D.F. (JIP-test) are all parameters that can be derived from the JIP-
test, which quantifies PSII performance [21,49]. These parameters can provide valuable
insights into various aspects of photosynthetic performance and plant health. For example,
Ψ(EO) and φ(PO) have been shown to be sensitive indicators of changes in photosynthetic
efficiency, whereas δRo and SFI(abs) can provide information regarding energy dissipation
mechanisms within the photosystem [50,51].

By correlating these parameters with hyperspectral data, it may be possible to de-
velop predictive models that can estimate them based on hyperspectral measurements
(Figures 1–11). For example, despite the use of hyperspectral imaging sensors, advance-
ments in this quantification could be explored using hyperspectral cameras or perhaps
with the use of multispectral sensors.

4.3. Predictive Modeling-Based Reflectance, Transmittance, and Absorbance

By integrating hyperspectral sensors with partial least squares (PLS) algorithms, we
can effectively predict parameters such as chlorophyll a fluorescence. This parameter is a
vital indicator of photosynthetic performance and the electron transport chain [13].

Both variable importance in projection (VIP) and hyperspectral vegetation indices
(HVIs) are pivotal tools in hyperspectral data analysis. They serve as dependable selectors
of the wavelength, significantly enhancing the predictive accuracy of the models. These
methodologies adeptly pinpoint the key spectral regions rich in significant information,
thereby aiding in the understanding of various plant characteristics. Consequently, their
combined use paves the way for more accurate and holistic assessments (Figures 3 and 5).

Given the vast amount of data generated by hyperspectral sensors, it is imperative
to employ dimensionality reduction techniques, such as principal component analysis
(PCA). PCA, in particular, excels at identifying the essential spectral regions associated
with variations in chlorophyll a fluorescence parameters. Recognizing these regions is
crucial for crafting proficient remote sensing tools specifically designed to estimate plant
properties such as chlorophyll, nitrogen content, and JIP-test parameters, which include
thermal dissipation and electron flow in the electron transport chain.

Calibration and validation models stemming from this synergistic approach not only
facilitate real-time analysis but also highlight the potential of remote sensing in large-
scale monitoring. This is in line with current viewpoints that emphasize the revolutionary
potential of remote sensing technologies for globally monitoring and managing plant health
and productivity [47,52]. By delivering timely and accurate data on plant health, these
technologies have the potential to influence decision-making in areas such as agriculture,
forestry, and other sectors related to remote sensing, guiding them toward enhanced
productivity and sustainability.

Therefore, although predictive modeling utilizing hyperspectral data holds immense
potential to enhance our understanding of plant health and physiology, ongoing research is
essential. Deepening our insights will not only refine these methods but also extend their
use across a range of plant species and environmental settings. With the ongoing progress
in the field, noninvasive plant health assessments are poised to become indispensable in
sustainable practices, especially when analyzing reflectance, transmittance, and absorbance
sensors simultaneously [13].

Whole-spectrum-based models such as PLSR, LDA, and SVR excel at classifying
and predicting leaf properties, offering invaluable insights for interpreting chlorophyll
a fluorescence data, which are crucial for JIP-test evaluations [5,16,28,48]. These models
capitalize on the full spectrum of available data, ensuring a nuanced understanding of
intricate leaf attributes, including interactions in leaf optical properties and the complex
chemistry involving various molecules associated with photosystems and the electron
transport chain. The detailed spectral analysis is integral to a comprehensive understanding
of the complex interplay between leaf biochemical compositions, including proteins and
other molecules to photosystems. In the realm of chlorophyll a fluorescence data, the depth
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and breadth of insights offered by whole-spectrum approaches are pivotal [21,49]. While
VIS and VIs simplify computational demands, they compromise on the richness of data,
potentially overlooking critical insights. Whole-spectrum models counter this limitation,
offering enhanced accuracy and reliability in assessing chlorophyll a fluorescence, thus
amplifying the depth of insights gleaned from JIP-test data evaluations.

5. Conclusions

This study examined the use of hyperspectral sensors to predict chlorophyll a fluores-
cence parameters, emphasizing their role in gauging photosynthetic efficiency in Hibiscus
and Geranium. The data revealed a clear correlation between hyperspectral readings and
ChlF parameters. The developed models were highly precise, highlighting the effectiveness
of the employed multivariate statistical methods. The spectral regions linked to these
parameters, ranging from blue to shortwave infrared, are vital for noninvasive assessments
of plant physiology.

The use of the hyperspectral vegetation indices (HVIs) tool was essential in selecting
wavelengths, which led to improved outcomes in the partial least squares (PLS) models.
The accuracy achieved by these models indicates the promising role of hyperspectral
sensors in understanding plant photosynthesis.

For subsequent studies, it would be beneficial to study a wider variety of plant species
and to incorporate additional methods. This enhances the accuracy and relevance of the
hyperspectral sensors in plant biology. Furthermore, testing this approach in diverse field
settings may provide more clarity on its consistency and versatility.
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