
Citation: Zhou, X.; Tian, K.; Zhou, Z.;

Ning, B.; Wang, Y. SID-TGAN: A

Transformer-Based Generative

Adversarial Network for Sonar

Image Despeckling. Remote Sens.

2023, 15, 5072. https://doi.org/

10.3390/rs15205072

Academic Editor: Andrzej Stateczny

Received: 27 September 2023

Revised: 17 October 2023

Accepted: 19 October 2023

Published: 23 October 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

SID-TGAN: A Transformer-Based Generative Adversarial
Network for Sonar Image Despeckling
Xin Zhou 1,† , Kun Tian 1,*,†, Zihan Zhou 1, Bo Ning 1 and Yanhao Wang 2

1 School of Information Science and Technology, Dalian Maritime University, Dalian 116026, China;
zhouxin314159@dlmu.edu.cn (X.Z.); zmzzh@dlmu.edu.cn (Z.Z.); ningbo@dlmu.edu.cn (B.N.)

2 School of Data Science and Engineering, East China Normal University, Shanghai 200062, China;
yhwang@dase.ecnu.edu.cn

* Correspondence: tkflying@dlmu.edu.cn
† These authors contributed equally to this work.

Abstract: Sonar images are inherently affected by speckle noise, which degrades image quality and
hinders image exploitation. Despeckling is an important pre-processing task that aims to remove
such noise so as to improve the accuracy of analysis tasks on sonar images. In this paper, we
propose a novel transformer-based generative adversarial network named SID-TGAN for sonar
image despeckling. In the SID-TGAN framework, transformer and convolutional blocks are used to
extract global and local features, which are further integrated into the generator and discriminator
networks for feature fusion and enhancement. By leveraging adversarial training, SID-TGAN learns
more comprehensive representations of sonar images and shows outstanding performance in speckle
denoising. Meanwhile, SID-TGAN introduces a new adversarial loss function that combines image
content, local texture style, and global similarity to reduce image distortion and information loss
during training. Finally, we compare SID-TGAN with state-of-the-art despeckling methods on one
image dataset with synthetic optical noise and four real sonar image datasets. The results show that
it achieves significantly better despeckling performance than existing methods on all five datasets.

Keywords: sonar image; speckle denoising; generative adversarial network (GAN); transformer

1. Introduction

With the rapid development of ocean engineering, underwater sonar imaging systems
have been successfully applied to many different tasks, including underwater target de-
tection and tracking, marine environment monitoring, and seabed resource exploration.
However, sonar imaging systems are often disturbed by various kinds of noise during
the imaging process due to the complexity and diversity of the underwater environment,
resulting in poor visualization, low resolution, weak picture texture, and blurred edges of
sonar images [1]. In particular, speckle noise caused by bottom reverberation, which can
come from the sea surface or surrounding scatterers, seawater and marine life scatterers,
seabed or surrounding scatterers [2], is a common type of noise that seriously affects the
quality of underwater sonar images. To better extract and interpret information from
images and thus further improve the accuracy of downstream analysis tasks, denoising
speckle noise (or despeckling) has been regarded as an essential preprocessing step for sonar
image processing.

The interest in sonar image despeckling has been intense since the early 1980s. From
then on, many effective filtering-based methods [3–9] were proposed for sonar image
despeckling. However, filtering-based methods suffer from two fundamental drawbacks.
First, they require prior statistical knowledge of speckle noise in sonar images to effec-
tively reduce it. However, such knowledge is difficult to obtain in advance. Second, they
inevitably lead to losses in the resolution, textures, and many other details of sonar images
after denoising. Therefore, more recently, researchers have turned their attention to deep
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neural network-based methods [10–17] for sonar image despeckling. In particular, convolu-
tional neural networks (CNNs) are the most widely adopted due to their strong abilities for
spatial feature extraction, which is important to reduce speckle noise from sonar images
since such noise is inherently spatial-aware. As such, CNN-based methods have achieved
much better despeckling performance than filtering-based methods in the sense that they
do not require any prior statistical knowledge and cause much fewer losses of image quality.
However, since CNNs typically only consider the relationships between neighboring pixels,
they cannot capture global features of images, which are potentially used jointly with local
(spatial) features to further improve the performance of sonar image despeckling.

To overcome the limitation of CNN-based methods for despeckling by extracting
global characteristics and combining them with local (spatial) characteristics, we propose a
Transformer-based Generative Adversarial Network for Sonar Image Despeckling named
SID-TGAN in this paper. Our main contributions are summarized as follows:

• We design the architecture of SID-TGAN with transformer and convolutional blocks
to perform a multi-scale local-to-global feature learning so as to extract more compre-
hensive features from the input images, which are then integrated into the generator
and discriminator networks for feature fusion and enhancement.

• We propose a new adversarial loss function for SID-TGAN, which combines image
content, local texture style, and global similarity to better preserve the mapping of the
relationship between local and global information and reduce image distortion and
information loss during training.

• We conducted extensive experiments to compare SID-TGAN with several state-of-
the-art despeckling methods on an image dataset with synthetic optical noise and
four real sonar image datasets. The results show that SID-TGAN has substantially
better despeckling performance by achieving 2.53–39.84%, 19.23–48.36%, 2.50–32.20%,
17.00–61.03%, and 11.32–15.43% improvements in image quality than existing methods
in the synthetic and real noise settings.

Paper Organization. The rest of this paper is organized as follows. We discuss the relevant
work to sonar image denoising in Section 2. Then, we introduce our SID-TGAN model in
detail in Section 3. We present the experimental results to verify the despeckling perfor-
mance of SID-TGAN in Section 4. Finally, we conclude this paper and indicate possible
directions for future work in Section 5.

2. Related Work
2.1. Filtering-Based Methods for Speckle Denoising

The classic methods to remove speckle noise from images are based on filtering,
generally divided into local filtering and non-local filtering. Local filtering methods, such
as median and mean filtering, are based on adjusting the filtering window according to
local image statistics to deal with signal nonstationarity. They only achieve good noise
removal performance in a uniform area but lead to blurred boundaries when applied to a
non-uniform area. To address this issue, non-local filtering methods were proposed to better
preserve the edge information of images. Danielyan et al. [4] proposed the Block Matching
3D (BM3D) algorithm, where the denoising and deblurring operations are decoupled based
on the Nash equilibrium balance of their objective functions. BM3D was known to achieve
good speckle denoising performance on sonar images. Han et al. [18] proposed an improved
BM3D sonar image denoising algorithm, which adjusts parameters based on the noise
characteristics of sonar images and incorporates Gaussian filtering and grayscale correction
before the basic estimation to eliminate speckle noise. Fan et al. [5] considered converting
multiplicative speckle noise into additive Gaussian noise and performing speckle denoising
on sonar images through adaptive BM3D. Chen et al. [8] proposed a speckle noise reduction
method for side-scan sonar images based on adaptive BM3D. Wang et al. [7] proposed an
adaptive non-local spatial information denoising method with improved performance on
underwater sonar images. Furthermore, Wang et al. [9] proposed a shearlet transform-based
noise reduction method for sonar images. Jin et al. [6] used a saliency detection method
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based on manifold sorting for sonar image processing, automatically segmenting a sonar
image into salient and non-salient areas. Li et al. [19] proposed a denoising method for
sub-bottom profile sonar images that combines guiding weights with a non-local low-rank
filtering framework. Chaillan et al. [20] proposed an adaptive approach that combines a
multi-resolution transformation and a filtering method to reduce speckle noise in synthetic
aperture sonar (SAS) images [21,22].

Although the above filtering-based speckle denoising methods can achieve good
denoising performance in some cases, they require accurate noise estimation to obtain prior
statistical knowledge of speckle noise from sonar images for effective denoising. However,
accurately estimating speckle noise is very difficult on real images. In addition, they are
prone to damaging the details and textures of sonar images, which reduces their quality.
The above shortcomings limit their usage in practical scenarios.

2.2. Deep Learning Methods for Speckle Denoising

Convolutional neural networks (CNNs), which have achieved great success in dif-
ferent image-processing tasks, have also been applied to image denoising due to their
powerful spatial feature extraction and representation capabilities. Chierchia et al. [10]
proposed a CNN-based image despeckling method called SAR-CNN, which generates
clean images through multi-temporal fusion and uses residual learning and discriminative
model learning for denoising. An auto-encoder model that could reduce speckle noise
from sonar images while maintaining their resolutions was proposed in [11]. They then
used a loss function based on structural similarity measures to reduce speckle noise while
preserving important geometric properties of sonar images. Liu et al. [23] introduced
a hybrid denoising approach that employs CNN and consistent cycle spinning (CCS) in
the nonsubsampled shearlet transform (NSST) domain for synthetic aperture radar (SAR)
images. Huang et al. [13] proposed the Neighbor2Neighbor method for image denois-
ing. Neighbor2Neighbor used a random neighborhood subsampler to generate training
image pairs, trained a denoising network on the generated subsampled training pairs, and
introduced a regularization term into the loss function to obtain better performance. By
avoiding heavy dependence on the noise distribution assumptions, it has good denoising
performance on images in various domains, including sonar images. Vishwakarma [17]
incorporated sparse representation techniques into CNNs to improve the denoising and
inpainting of sonar images. Chen et al. [14] proposed an ANLResNet model for sonar image
despeckling by combining SRResNet with non-local blocks of asymmetrical pyramids for
speckle noise in sonar images. Zhou et al. [15] proposed a self-supervised denoising method
for sonar images without high-quality reference images since obtaining such references
during the sonar image denoising process was often difficult. Perera et al. [24] proposed a
transformer-based model for sonar image despeckling.

The above despeckling methods for sonar images are primarily based on CNNs.
However, CNNs cannot directly model the global context because they only use local
receptive fields for feature extraction. Transformer blocks can extract the dependencies
between distant pixels and parallelize hierarchical representation learning to extract global
features of images. However, the local and global features extracted by the convolutional
and transformer blocks are still poorly integrated using the existing model architectures. To
address the above issues, we are inspired by [25] to propose a transformer-based generative
adversarial network for sonar image despeckling named SID-TGAN.

3. The SID-TGAN Model
3.1. Problem Statement

We consider that sonar images are affected by multiplicative speckle noise during
imaging. The relationship between an observed noisy image Y with multiplicative speckle
noise N and a clean image X is Y = XN. We do not make any assumption about the
distribution of N. The goal of despeckling is to remove the speckle noise N from a noisy
image Y and recover the clean image X.
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3.2. Model Architecture

Similar to the original generative adversarial network (GAN), our proposed SID-
TGAN model consists of two components, namely the generator and discriminator net-
works. For a noisy input image Y, the goal of the generator network is to produce a
despeckled image YG. Then, the goal of the discriminator network is to distinguish the
produced image YG from the clean image X, thus improving the quality of the despeckled
images through adversarial training. Next, we will present the architectures of the genera-
tor and discriminator networks, respectively, and introduce the adversarial loss function
that we use for training.

3.2.1. The Generator Network

The architecture of the generator network in SID-TGAN is shown in Figure 1.
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Figure 1. The architecture of the generator network in SID-TGAN.

The three key components to produce the despeckled image YG for a noisy input
image Y in the generator network are as follows:

• Encoder: It first obtains the low-level shallow features Yo of the noisy image Y
through a deep convolutional layer with a kernel size of 3× 3. Then, it acquires the
high-level features Ys from Yo through an encoder. The encoder consists of three
transformer layers and three down-sampling operations to capture the context in the
image Y. The first layer of the encoder consists of eight transformer blocks, with the
number of subsequent transformer blocks decreasing by half per layer. The spatial
size of the feature map in each encoder layer is reduced half layer by layer through
the down-sampling operation, while its channel capacity is doubled accordingly.

• Feature Integration: The component for feature integration consists of a transformer
layer with two transformer blocks and a convolutional layer with a kernel size of 3× 3.
It connects the encoder and the decoder. The transformer and convolutional layers
extract the high-level global and local fine features from Ys.

• Decoder: The decoder consists of three decoding groups corresponding to the encoder,
which are used to fuse multi-scale features and restore images. Each decoding group
consists of (1) an up-sampling layer to reduce the channel capacity by half and double
the size of the feature map, (2) a skip connection layer to fuse deep and shallow
features through channel-wise concatenation operation, (3) a 1× 1 convolutional layer
to halve the channel number of feature map output by the skip connection layer, and
(4) a transformer layer to capture the fine global features. The decoder’s feature map
Yd output is fed into a convolutional layer, and the output features are added to a
noisy image Y to generate its despeckled counterpart YG.

Figure 2 illustrates the structure of each transformer block, which is the same as that in
Restormer [25]. Generally, a transformer block comprises a Multi-Dconv head Transposed
Attention (MDTA) module and a Gated-Dconv Feed-Forward Network (GDFN) module.
The MDTA module first generates query (Q), key (K), and value (V) projections enriched by
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the local context. Next, it reshapes the query and key projections so that their dot–product
interaction generates a transposed-attention map A of size C× C instead of a huge regular
attention map of size HW×HW. Therefore, compared with the original transformer model,
it has a higher processing efficiency for high-resolution images. The GDFN module uses a
gating mechanism to improve representation learning. The gating mechanism is formulated
as the element-wise product of two parallel paths of linear transformation layers, one of
which is activated with the GELU non-linearity function [26]. It controls the information
flow through the respective hierarchical levels in the pipeline, thereby allowing each level
to focus on the fine details complementary to the other levels.
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Figure 2. The structure of each transformer block [25].

3.2.2. The Discriminator Network

For a generated despeckled image YG and a clean image X, the goal of the discrimina-
tor network in SID-TGAN is to distinguish YG from X. The architecture of the discriminator
network adopts that of the Markov discriminator [27] as shown in Figure 3. The discrim-
inator consists of four 3× 3 deep convolutional layers and two transformer layers. The
input images first pass through a transformer layer for shallow global feature extraction.
Then, deep local features are obtained through four deep convolutional layers. Further-
more, a transformer layer further fuses the multi-scale feature maps. A sigmoid activation
function obtains the final discrimination result. After a deep convolution operation in each
convolutional layer, a layer normalization operation [28] is adopted to prevent overfitting,
and a non-linear activation function LeakyRelu [29] is used to avoid the sawtooth path of
gradient updates, which retains the negative gradient information so that it will not be
lost entirely.
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Figure 3. The architecture of the discriminator network in SID-TGAN.

3.2.3. The Loss Function

Given a source domain Y (of noisy images with speckle noise N) and the desired
domain X (of clean images), our goal is to learn a mapping G : {Y, N} → X to perform
speckle denoising. The standard GANs are powerful generative models but suffer from
instability during training. WGAN-GP [30] penalizes the norm of the gradient of the critic
with respect to its input based on the Wasserstein GAN (WGAN) to improve the stability of
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the GAN training process and thus generates higher-quality images. Unlike the adversarial
loss function of standard GANs in Equation (1), the adversarial loss function of WGAN-GP
is expressed as Equation (2):

LGAN(G, D) = Ex∼Pr [log D(X)] +Ex̃∼Pg [log(1− D(x̃))] (1)

LWGAN-GP(G, D) = Ex̃∼Pg [D(x̃)]−Ex∼Pr [D(x)] + λEx̂∼Px̂

[
(‖ 5x̂D(x̂) ‖2 −1)2

]
(2)

where the generator G aims to minimize the loss function, while the discriminator D
aims to maximize it, Pr is the data distribution, Pg is the model distribution implicitly
defined by x̃ = G(Y, N), Px̂ denotes uniform sampling along straight lines between pairs
of points sampled from the data distribution Pr and the generator distribution Pg, and λ is
a hyperparameter setting of 10 as in [30] by default.

WGAN-GP can only prompt the network to generate an image similar to the reference
image, but the processing granularity of the content and global details of the image are
relatively coarse. Therefore, we propose a new loss function for SID-TGAN, which contains
three additional factors to quantify the loss between the despeckled image and the clean
image to guide SID-TGAN to generate higher-quality images. These factors are global
similarity, image content, and local texture and style.
Global Similarity. Global similarity measures the similarity between two images from a
global perspective to detect the degree of image distortion. Since L1 losses are less prone
to blurring, the L1 loss in Equation (3) is adopted to calculate the average distance per
pixel between the reference and generated images. We simplify the multiplicative speckle
noise model as an additive model through a logarithmic transformation to better retain the
original information while removing noise. Therefore, the distance between each pixel pair
after performing a logarithmic transformation is calculated as follows:

LGS(G) = EX,Y[‖ log(X)− log(G(Y)) ‖1] (3)

Image Content. Image content losses can enhance the ability to describe and distinguish
image details and edge information. The L2 loss in Equation (4) is used to measure the
content loss between the generated image and the clean image to encourage the generator
G to generate an image close to the content of the reference image:

LIC(G) = EX,Y[‖ X− G(Y) ‖2] (4)

Local Texture and Style. Local textures and styles describe the surface properties of the
scene corresponding to an image or image area and preserve the authenticity of the image.
We rely on the discriminator D to enforce the consistency of local textures and styles. The
adversarial loss function is expressed in Equation (2).

To sum up, the final loss function of SID-TGAN is defined as follows:

L = LWGAN-GP + αLGS + βLIC (5)

where α and β are the two hyperparameters indicating the weights of global similarity
losses and image content losses.
Comparison with Prior Art. SID-TGAN is inspired by Restormer [25], a state-of-the-
art transformer-based model for image restoration. However, compared to the original
Restormer, SID-TGAN has been significantly improved in the following four aspects. First,
the generator network of SID-TGAN streamlines Restormer by reducing the refinement
stages and halving the number of input channels of the first-level decoder, thereby lowering
the model complexity. Also, the feature aggregation layer introduces additional convolution
components to better preserve local feature information in sonar images during global
feature extraction. Second, the generator network of SID-TGAN also modifies the number
of transformer blocks in the encoder and aggregation layers from 4, 4, 6, 8 to 8, 4, 2, 1.



Remote Sens. 2023, 15, 5072 7 of 19

Employing more transformer blocks on large-scale image blocks can better capture global
information; meanwhile, using fewer transformer blocks on small-scale image blocks can
prevent over-cleaning and avoid image blurriness. Third, SID-TGAN introduces a novel
discriminator to further optimize Restormer. The discriminator distinguishes between
generated and real data through local feature extraction, thereby guiding the generator
to produce more realistic data and enhancing the quality of denoised images. Fourth,
SID-TGAN uses a different loss function from Restormer, which comprehensively considers
global similarity, image content, and texture style. This further improves the performance
of SID-TGAN in sonar image despeckling.

4. Experiments

In this section, we evaluate our proposed SID-TGAN model for speckle denoising
through extensive experiments. We first introduce our experimental setup in Section 4.1.
Then, the evaluation metrics for the quality of speckle denoising with and without reference
images are introduced in Section 4.2. Next, the performance of SID-TGAN compared to the
state-of-the-art denoising methods is presented in Section 4.3. Finally, we conduct ablation
studies on SID-TGAN in Section 4.4.

4.1. Experimental Setup

Dataset. A clean sonar image X and a noisy sonar image Y should be input into SID-TGAN
to train a speckle denoising model. However, clean sonar images are often not available in
practice, whereas obtaining clean optical images is much easier. Thus, we adopted a transfer
learning approach that first trains SID-TGAN on paired optical images and then tested it
on sonar images. We utilized one optical image dataset and four sonar image datasets. For
the optical image dataset, we randomly selected 5500 images of various categories from the
ImageNet dataset [31]. Each optical color image was transformed into its corresponding
grayscale image to serve as a reference image. Subsequently, we introduced synthetic
speckle noise by applying additive noise following a Rayleigh distribution with a mean
of 0 and a variance of 1, as well as Gaussian additive noise, to the reference images using
Equation (6). This allowed us to create the corresponding synthetic speckle noisy images:

Y = X · NR(σ(t)) + NG, (6)

where NR represents the Rayleigh-distributed noise with parameter σ(t) denoting its
variance and NG signifies additive Gaussian noise.

For sonar image datasets, the first two are derived from ocean debris data cap-
tured by the ARIS Explorer 3000 [32] forward-looking sonar (FLS), the third is a pub-
licly available side-scan sonar (SSS) image dataset from the 2021 CURPC Competition
(https://www.curpc.com.cn, accessed on 21 October 2023), and the fourth is obtained
from the SASSED Synthetic Aperture Sonar (SAS) dataset (https://github.com/isaacgerg/
synthetic_aperture_sonar_autofocus, accessed on 21 October 2023). Detailed information
on the five datasets is provided in Table 1. In the speckle removal task, we randomly
selected 4500 optical images as the training set. For the test sets, we chose 500 optical
images, 500 forward-looking sonar images, 500 side-scan sonar images, and 100 synthetic
aperture sonar images. To further assess the speckle removal performance of different
methods, we employed 1457 noisy (or denoised) forward-looking sonar images for training
and 111 noisy (or denoised) forward-looking sonar images for testing in the context of
target detection. Due to the lack of ground truth, we did not test the side-scan and synthetic
aperture sonar images in the target detection task.

https://www.curpc.com.cn
https://github.com/isaacgerg/synthetic_aperture_sonar_autofocus
https://github.com/isaacgerg/synthetic_aperture_sonar_autofocus
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Table 1. Statistics of datasets in the experiments.

Dataset Training Set Test Set Is Paired

Optical-Despeckling 4500 500 Paired
FLS-Despeckling — 500 Unpaired
SSS-Despeckling — 500 Unpaired
SAS-Despeckling — 100 Unpaired
Target-Detection 1457 411 —

Methods and Implementation. The following despeckling methods are compared in
our experiments.

• BM3D [4]: A filtering-based image denoising algorithm based on the Nash equilibrium
balance to decouple the denoising and deblurring operations.

• BM3D-G [18]: A filtering-based speckle reduction algorithm that adjusts the parame-
ters of the BM3D algorithm and introduces Gaussian filtering and grayscale correction
before basic estimation.

• NBR2NBR [13]: A self-supervised framework to train CNN denoisers based only on
noisy images.

• SAR-CNN [10]: A CNN-based model for SAR image despeckling.
• SAR-Transformer [24]: A transformer-based despeckling method with a transformer-

based encoder to learn global dependencies between different image regions.
• SID-TGAN: Our transformer-based GAN model for sonar image despeckling.

We implemented all models in Python 3 with PyTorch. For a fair comparison, we
trained all baseline models in the same configuration, using the source code released by
their authors. The hyper-parameters we used include (1) the initial learning rate 3× 10−4,
(2) the batch size 4, (3) the number of pre-train epochs from 1 to 150, and (4) the weights
of loss functions α = 0.5 and β = 1. In addition, Adam was used as the default optimizer.
Data augmentation was performed by flipping horizontally and vertically at random.

All experiments were carried out on a desktop with an Intel® Core™ i5-9600KF CPU @
3.70 GHz, 16 GB DDR4 RAM, and a Nvidia® GeForce® RTX™ 3090SUPER GPU with 24 GB
GDDR6 RAM.

4.2. Evaluation Criteria

Metrics for Despeckling Quality with Reference Images. When clean reference images
and noisy images are both available and have been paired, we use the Peak Signal-to-Noise
Ratio (PSNR), Structural Similarity Index Measure (SSIM), and Coincidence degree of the
Gray Histogram (GHC) to evaluate the despeckling performance of different methods.

PSNR is an engineering term that represents the ratio of the maximum possible power
of a signal to the destructive noise power that affects its representation accuracy. A higher
PSNR value represents that the despeckled image is closer to the clean image, thus implying
better quality. The calculation of PSNR is presented in Equation (7):

PSNR = 10 log10

(
(2n − 1)2

MSE

)
, (7)

where MSE is the mean square error between the clean image X and the despeckled image
YG, and n is the width of the image X.

SSIM measures the structural similarity between the clean images X and the despeck-
led image YG. Unlike PSNR, SSIM considers not only the brightness information but also
the contrast and structural information of the image, thus having higher accuracy and
reliability in evaluating image quality. A larger SSIM value implies a higher similarity
between two images. The calculation of SSIM is shown in Equation (8):

SSIM(X, YG) = [l(X, YG)]
α[c(X, YG)]

β[s(X, YG)]
γ, (8)
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and

l(X, YG) =
2µXµYG + C1

µ2
X + µ2

YG
+ C1

, (9)

c(X, YG) =
2σXσYG + C2

σ2
X + σ2

YG
+ C2

, (10)

s(X, YG) =
σXYG + C3

σXσYG + C3
, (11)

where l(X, YG), c(X, YG), and s(X, YG) measure the brightness, contrast, and structure of
X and YG, respectively; α, β, and γ are the weights to adjust the relative importance of
l(X, YG), c(X, YG), and s(X, YG); µX and µYG , and σX and σYG are the mean and standard
deviations of X and YG, respectively; σXYG is the covariance of X and YG; and C1, C2, and
C3 are all constants to maintain the stability of l(X, YG), c(X, YG), and s(X, YG).

GHC calculates the coincidence rate of the gray pixel value distribution of two images.
When the gray distribution of the two images completely overlaps, the value of GHC is 1.
Equation (12) presents how GHC is computed:

GHC(X, YG) =
n

∑
i=0

1− |y(i)− x(i)|
max(y(i), x(i))

, y(i) 6= x(i)

1, y(i) = x(i)
(12)

where y(i) and x(i) represent the grayscale pixel distribution of the despeckled image YG
and the reference image X, and n is the range of the pixel values.
Metrics for Despeckling Quality without Reference. When reference images were not
available, we used the Equivalent Number of Looks (ENL), Speckle Suppression Index
(SSI), and Speckle suppression and Mean Preservation Index (SMPI) as metrics for the
quality of the despeckling.

ENL measures the smoothness of a uniform area and reflects the ability to remove
speckle noise. A higher ENL value represents a higher smoothing efficiency of the speckle
noise in homogeneous areas. The calculation of ENL is presented in Equation (13):

ENL =
µ2

σ2 , (13)

where µ is the mean value of the image, and σ is the standard deviation of the image.
Generally speaking, the mean of an image represents its information, while its standard
deviation represents its noise severity.

SSI evaluates the speckle noise suppression effect of the denoising model by comparing
the mean and standard deviation of pixel values between the noisy image Y and the
denoised image YG. The smaller the SSI value, the better the speckle denoising performance.
SSI is defined in Equation (14):

SSI =
√

σ(YG)

µ(YG)
/

√
σ(Y)

µ(Y)
(14)

Compared with ENL and SSI, SMPI considers the difference in the mean value between
the despeckled image YG and the noisy image Y. When the mean value of the despeckled
image deviates too much from the noisy image, the reliability of the SMPI value is higher
than that of ENL and SSI. A lower SMPI value indicates better model performance in terms
of mean preservation and noise reduction. SMPI is defined in Equation (15):

SMPI = Q×
√

σ(YG)√
σ(Y)

, where Q = 1 + |µ(Y)− µ(YG)| (15)
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Metrics for Accuracy of Target Detection. In addition, we further evaluate the accuracy
of target detection on despeckled image output by different methods using three metrics,
named mAP, mAP@50, and mAP@75. mAP is the mean of average precision (AP) of
detecting all target categories. AP is expressed as the area under the PR (precision and
recall) curve from Equation (16):

AP =
∫ 1

0
P(R)dR, (16)

where P represents the proportion of correctly predicted positive samples among all the
predicted positive samples, and R represents the proportion of correctly predicted positive
samples among all the correctly predicted samples. A higher mAP value represents a
higher despeckling quality. mAP50 is the mean of average precision calculated at the IoU
(Intersection over Union) threshold value of 0.5. mAP75 is the mean of average precision
calculated at the IoU threshold value of 0.75. The mean of the average precision calculated
at the IoU thresholds from 0.5 to 0.95 with an interval of 0.05 is called mAP.

4.3. Performance Evaluation

Despeckling Quality for Optical Images with Reference Images. We compare SID-TGAN
with five baselines for their performance on the Optical-Despeckling dataset. The despeck-
ling performance of the six methods is shown in Table 2.

Table 2. Performance of different methods on Optical-Despeckling. Here, “↑” means that a higher
value indicates better performance on the measure.

Method PSNR (↑) SSIM (↑) GHC (↑)

BM3D [4] 19.962 0.492 0.565
BM3D-G [18] 18.679 0.522 0.507

NBR2NBR [13] 20.810 0.631 0.542
SAR-CNN [10] 24.636 0.643 0.738

SAR-Transformer [24] 25.203 0.671 0.732
SID-TGAN 25.467 0.688 0.751

From Table 2, we observe that SID-TGAN achieves the best despeckling performance
in all metrics on optical images. SID-TGAN improves on the existing methods in terms
of PSNR, SSIM, and GHC by at least 0.326, 0.020, and 0.013, and at most 6.788, 0.196, and
0.244. SAR-Transformer and SID-TGAN outperform the other four baselines in the PSNR
metric, indicating that transformer blocks better capture the global dependencies between
different image regions, mitigate the shortcomings of CNNs, and improve the despeckling
performance. Unlike SAR-Transformer, SID-TGAN adopts the architecture of GAN and the
adversarial loss to generate higher-quality images. Both SID-TGAN and SAR-CNN use
discriminative model learning for image despeckling. They achieve the best and second-
best GHC values, indicating that the discriminative model drives the local texture and style
toward consistency in an adversarial fashion. In addition, we also provide a comparison of
the coincidence of the grayscale histogram between the despeckled image returned by each
method and the clean image in Figure 4. We can see that the grayscale histogram of the
despeckled image returned by SID-TGAN highly overlaps with the grayscale histogram of
the clean image. The despeckling performance of SID-TGAN significantly outperforms all
other baselines in all evaluation metrics.
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BM3D-G NBR2NBR BM3D 

SAR-CNN SAR-Transformer SID-TGAN

Figure 4. Grayscale histogram coincidence between the despeckled image returned by each method
and the clean image.

We further visualize the despeckled optical images returned by different methods in
Figure 5. The despeckled images generated by SID-TGAN are also closer to clean images
from a sensory perspective.

Clean Noisy BM3D BM3D-G NBR2NBR SAR-CNN SAR-

Transformer
SID-TGAN

Figure 5. Visual comparison of different despeckling methods on optical images.

Despeckling Quality for Sonar Images without References. We compare SID-TGAN
with five baseline methods on the despeckling performance in the forward-looking sonar
(FLS), side-scan sonar (SSS), and synthetic aperture sonar (SAS) image datasets. For each
input sonar image with a size of 256× 256, we adopt six different methods to generate
the despeckled images. Then, a homogeneous area with a size of 20× 20 and the smallest
variance from the noisy sonar image is selected as a homogeneous image patch. The
same homogeneous area from six different despeckled images is selected to evaluate the
despeckling performance for each method in terms of three quality metrics (i.e., ENL, SSI,
and SMPI). The results are shown in Tables 3–5. We also compute the mean standard
deviation (MSD) of the homogeneous area from each selected despeckled image patch in
Tables 3–5.



Remote Sens. 2023, 15, 5072 12 of 19

Table 3. Performance of different methods on FLS-Despeckling. Here, “↑” and “↓” mean that higher
and lower values indicate better performance on the measure, respectively.

Method ENL (↑) SSI (↓) SMPI (↓) MSD (↓)

BM3D [4] 2053.424 0.122 0.208 1.922
BM3D-G [18] 1606.703 0.133 11.305 3.412

NBR2NBR [13] 1731.848 0.130 0.922 1.875
SAR-CNN [10] 1277.364 0.157 3.206 1.618

SAR-Transformer [24] 5016.373 0.078 1.100 0.915
SID-TGAN 9277.537 0.063 0.572 0.715

Table 4. Performance of different methods on SSS-Despeckling. Here, “↑” and “↓” mean that higher
and lower values indicate better performance on the measure, respectively.

Method ENL (↑) SSI (↓) SMPI (↓) MSD (↓)

BM3D [4] 1977.021 0.213 0.213 0.022
BM3D-G [18] 2471.611 0.193 0.229 0.025

NBR2NBR [13] 2686.033 0.154 0.150 0.013
SAR-CNN [10] 2837.097 0.128 0.110 0.011

SAR-Transformer [24] 2443.385 0.100 0.092 0.008
SID-TGAN 5284.768 0.083 0.073 0.007

Table 5. Performance of different methods on SAS-Despeckling. Here, “↑” and “↓” mean that higher
and lower values indicate better performance on the measure, respectively.

Method ENL (↑) SSI (↓) SMPI (↓) MSD (↓)

BM3D [4] 8.489 0.680 0.459 0.008
BM3D-G [18] 142.902 0.124 5.202 0.517

NBR2NBR [13] 2.577 0.712 0.726 0.013
SAR-CNN [10] 2.729 0.713 0.769 0.010

SAR-Transformer [24] 2.751 0.712 1.100 0.011
SID-TGAN 3.126 0.603 0.518 0.007

Based on the denoising results of each method on the FLS images, as shown in Table 3,
SID-TGAN and SAR-Transformer achieve the best and second-best results on the ENL,
SSI, and MSD values, once again showing that transformer-based despeckling methods
are superior to CNN-based methods. The transformer and CNN blocks of SID-TGAN
capture the global and local dependencies between pixels, respectively. Thus, it generates
fine despeckled images of the highest quality using the proposed loss function. SID-TGAN
is superior to the second-best result by a large margin, with increases of 29% and 34% in
terms of SSI and MSD. SID-TGAN is slightly inferior to BM3D in terms of SMPI since SMPI
is highly correlated with the size of the selected homogeneous area.

As depicted in Table 4, SID-TGAN demonstrates outstanding speckle suppression
performance on SSS images. Its performance notably surpasses that of other comparative
methods. Across all four evaluation metrics, SID-TGAN achieves the best results and,
compared to the second-best method, shows performance improvements of 17%, 21%, and
13% in terms of SSI, SMPI, and MSD, respectively. These results underscore the exceptional
applicability of SID-TGAN in the context of speckle reduction for SSS images.

Upon scrutinizing the results in Table 5, we find that SID-TGAN demonstrates com-
mendable denoising capabilities on SAS images as well. Notably, our chosen SAS dataset
predominantly exhibits images with lower overall brightness. BM3D-G [18] involves
gamma correction, a preprocessing step that adjusts the brightness and contrast of input
images. This adjustment has a substantial influence on the calculation of the ENL value in
the evaluation, which ultimately results in considerably higher ENL values for the output
images produced by BM3D-G that surpass those of any other method. We also note that
the noise distribution in SAS images differs markedly from those of FLS and SSS images.
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However, the training set employed in the experiment is tailored to simulate the speckle
noise distribution from FLS and SSS images by generating synthetically matched pairs from
optical grayscale images. Consequently, the model parameters are not ideally suited for
SAS images, which leads to the degraded performance of SID-TGAN. In contrast, BM3D [4]
does not depend on the types of noise distribution and outperforms SID-TGAN. Neverthe-
less, we observe that SID-TGAN still performs much better than other deep learning-based
methods on SAS images.

We present the visualizations of the despeckled sonar images returned by different
methods in Figure 6. The first row depicts the despeckled sonar image of size 256× 256,
while the second row portrays the despeckled homogeneous area image patch, sized
20× 20 extracted from the red box in the first row of Figure 6. In summary, SID-TGAN
outperforms all other methods in terms of quantitative and sensory analysis on forward-
looking sonar images.

Sonar BM3D BM3D-G NBR2NBR SAR-CNN SAR-

Transformer
SID-TGAN

Figure 6. Visual comparison of different despeckling methods on forward-looking sonar images. The
red frame in the first image indicates the position of the despeckled homogeneous area image patch
presented in the second row.

Accuracy for Target Detection on Despeckled Sonar Images. We compare the accuracy of
target detection using Faster-RCNN [33] on noisy and despeckled sonar images to evaluate
the improvements of different despeckling methods in image quality. The results for target
detection on the sonar-detection dataset are shown in Table 6. Undoubtedly, despeckled
sonar images provided by SID-TGAN and SAR-Transformer [24] exhibit superior image
quality. Compared to noisy sonar images, despeckled sonar images provided by SID-TGAN
show a remarkable improvement in all three accuracy metrics for target detection, i.e., mAP,
mAP@50, and mAP@75 by 4.5%, 1.7%, and 8.4%, respectively. It is surprising that the
mAP, mAP@50, and mAP@75 of the despeckled sonar images returned by NBR2NBR [13]
and SAR-CNN [10] are even lower than those of noisy sonar images. This implies that
NBR2NBR [13] and SAR-CNN [10] fail to effectively remove the speckle noise in the
sonar images. After despeckling sonar images with two filtering-based methods, namely
BM3D [4] and BM3D-G [18], the mAP, mAP@50, and mAP@75 metrics show marginal
improvements but are still inferior to transformer-based despeckling methods, i.e., SID-
TGAN and SAR-Transformer [24]. We also visualize the effects of using despeckled images
by different methods for the target detection task in Figure 7. The above results confirm
that SID-TGAN achieves better despeckling performance and provides sonar images of
higher quality for target detection compared to existing despeckling methods.
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Table 6. Target detection accuracy on sonar images using different despeckling methods. Here, “↑”
means that a higher value indicates better performance on the measure.

Method mAP (↑) mAP@50 (↑) mAP@75 (↑)

No-despeckling 0.584 0.937 0.631
BM3D [4] 0.513 0.874 0.528

BM3D-G [18] 0.569 0.933 0.596
NBR2NBR [13] 0.540 0.904 0.581
SAR-CNN [10] 0.602 0.946 0.678

SAR-Transformer [24] 0.605 0.947 0.681
SID-TGAN 0.610 0.953 0.698

BM3D-G NBR2NBR BM3D 

SAR-CNN SAR-Transformer SID-TGAN

Noisy

Figure 7. Visual comparison of target detection on different despeckled sonar images. In each image,
the green box indicates the ground-truth target position, the red box indicates a wrong predicted
target position due to noise, the yellow box indicates a correct predicted target position owing to
denoising, and the numbers indicate the probabilities that the target object is classified as its true
category, i.e., “can”.

Efficiency Evaluation. We present the running time required by each method to train the
model and to perform the denoising process on a single image in Table 7. It should be
noted that SID-TGAN, in comparison to CNN-based denoising methods, exhibits slightly
higher training and denoising time. This can be attributed to the fact that the transformer
model needs to extract global positional information when processing input data, which, in
contrast to the localized nature of convolutional operations, results in prolonged processing
time. In addition, filtering-based approaches do not require any training procedure in
advance but take more than three orders of magnitude longer time in the denoising process.
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Table 7. The time required by each method to train the model and to perform the denoising process
on a single image.

Method Training Time (h) Denoising Time (s)

BM3D [4] — 82.59
BM3D-G [18] — 81.42

NBR2NBR [13] 7.58 0.0156
SAR-CNN [10] 3.61 0.0157

SAR-Transformer [24] 13.49 0.0161
SID-TGAN 24.01 0.0685

4.4. Ablation Studies

The despeckling performance of SID-TGAN is improved through the following key
contributions. First, it integrates the transformer layer into the GAN framework to capture
global dependencies among image pixels. Second, it optimizes Restormer [25] by removing
the final refinement stage and introducing deep convolutional layers in the feature integra-
tion component to improve the extraction of global features while retaining local features.
Third, it proposes a new loss function that promotes the generation of high-quality images
in SID-TGAN by considering global similarity, image content, and local texture and style.
To evaluate the impact of each factor on the despeckling performance of SID-TGAN, we
conduct ablation studies on the optical-despeckling and sonar-despeckling datasets. We uti-
lize two widely adopted full reference image quality metrics, PSNR and SSIM, to evaluate
the despeckling performance on the optical images. Similarly, two image quality metrics
without references, SSI and SMPI, are employed to evaluate the despeckling performance
on the sonar images.
Effect of Transformer Module. We compare the denoising performance of SID-TGAN
with and without the transformer layer on FLS, SSS, and SAS images in Tables 8 and 9.
Another baseline is the original WGAN [30] model with weight clipping and gradient
penalty. From Table 8, we can see that adding transformer layers to the discriminator of
SID-TGAN marginally improves its performance, while adding transformer layers to the
generator of SID-TGAN improves its performance much more significantly. After adding
transformer layers to the generator of SID-TGAN, the values of PSNR, SSIM, SSI, and
SMPI increase by 15%, 27%, 31%, and 78%, respectively. When transformer layers are
added to both the generator and discriminator networks, SID-TGAN achieves the best
despeckling performance. Table 9 reveals that the incorporation of the transformer module
into SID-TGAN leads to significant improvements in the denoising performance for SSS
and SAS images as well. For SSS images, the SSI and SMPI values increase by 93% and 94%.
For SAS images, the SSI and SMPI values also show improvements of 58% and 89%. The
above results indicate that the transformer module effectively captures global dependencies
between pixels, compensating for the limitations of convolutional operations that only
capture local dependencies between pixels, thus significantly improving the despeckling
performance of SID-TGAN.

Table 8. Performance of SID-TGAN with or without the transformer module on Optical-Despeckling
and FLS-Despeckling, where D and G are the abbreviations for the discriminator and generator of
SID-TGAN. Here, “↑” and “↓” mean that higher and lower values indicate better performance on the
measure, respectively.

Model Transformer PSNR (↑) SSIM (↑) SSI FLS(↓) SMPI FLS(↓)
WGAN [30] w/o 22.062 0.540 0.350 4.247

SID-TGAN
wD w/oG 22.258 0.544 0.346 4.131
wG w/oD 25.441 0.673 0.067 1.003

wG wD 25.467 0.688 0.063 0.572
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Table 9. Performance of SID-TGAN with or without the transformer module on SSS-Despeckling
and SAS-Despeckling, where D and G are the abbreviations for the discriminator and generator of
SID-TGAN. Here, “↓” means that a lower value indicates better performance on the measure.

Model Transformer SSI SSS(↓) SMPI SSS(↓) SSI SAS(↓) SMPI SAS(↓)

WGAN [30] w/o 1.168 1.151 1.434 4.678

SID-TGAN
wD w/oG 0.769 0.952 1.337 4.060
wG w/oD 0.088 0.077 0.712 0.627

wG wD 0.083 0.073 0.603 0.518

Improvements upon Restormer’s Performance. We conducted a series of experiments to
show how the performance of SID-TGAN is improved upon Restormer to highlight the
exceptional capabilities of SID-TGAN. Tables 10 and 11 present the results, where the base-
line model is Restormer itself, and ResGAN replaces the generator with Restormer while
utilizing the discriminator from SID-TGAN. The results in Tables 10 and 11 demonstrate
that by introducing the discriminator into the Restormer model, removing the refinement
layers in Restormer, and adding deep convolutional layers in the encoder output stage,
as well as incorporating dimensionality reduction operations in the primary decoder, we
further extract advanced and refined global and local features. This improvement has had
a significant impact on the despeckling performance across three sonar image datasets. On
FLS images, the SSI and SMPI values increase by 63% and 76%. On SSS images, the SSI
and SMPI values show improvements of 22% each. On the SAS images, the SSI and SMPI
values increase by 20% and 13%.

Table 10. Performance comparison of different feature integration components, Restormer, ResGAN,
and SID-TGAN, on Optical-Despeckling and FLS-Despeckling. Here, “↑” and “↓” mean that higher
and lower values indicate better performance on the measure, respectively.

Feature Integration PSNR (↑) SSIM (↑) SSI FLS(↓) SMPI FLS(↓)
Restormer [25] 25.397 0.681 0.170 2.391

ResGAN 25.459 0.686 0.079 1.220
SID-TGAN 25.467 0.688 0.063 0.572

Table 11. Performance comparison of different feature integration components, Restormer, ResGAN,
and SID-TGAN, on SSS-Despeckling and SAS-Despeckling. Here, “↓” means that a lower value
indicates better performance on the measure.

Feature Integration SSI SSS(↓) SMPI SSS(↓) SSI SAS(↓) SMPI SAS(↓)
Restormer [25] 0.106 0.094 0.752 0.593

ResGAN 0.089 0.075 0.716 0.546
SID-TGAN 0.083 0.073 0.603 0.518

Effect of Loss Function Component. The loss function of SID-TGAN consists of the
global similarity loss LGS, the image content loss LIC, and the local texture and style
loss LWGAN-GP. We evaluate the impact of each component of the loss function on the
despeckling performance of SID-TGAN in Tables 12 and 13. Since SID-TGAN is a GAN
model, LWGAN-GP is the default adversarial loss function. After LGS or LIC is added to
LWGAN-GP, the despeckling performance of SID-TGAN improves significantly for both
optical images and sonar images. These results confirm that the global similarity loss
function LGS better retains global information while removing noise. Similarly, the image
content loss function LIC also effectively improves image quality by better preserving
the original information in the image. After both LGS and LIC are added to LWGAN-GP,
SID-TGAN achieves the best performance.

By examining Tables 12 and 13, we can deduce that the LIC loss function has a signifi-
cantly greater impact on the performance of the model compared to the LGS loss function.
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When considering the comprehensive loss in Equation (5) and after extensive experimen-
tation involving parameter adjustments, we observe that when the hyperparameter α is
set too small, the contribution of LGS to the total loss becomes marginal, resulting in the
retention of certain levels of blur in the denoised images. Conversely, when α is set too high,
the prominence of the LGS model’s weight interferes with LIC’s ability to handle image
details and edge information, thus adversely affecting the overall model performance. As a
result, based on our experimental findings, we accordingly configured the values of α and
β as 0.5 and 1, respectively, where the model achieves the best overall performance.

Table 12. Performance of SID-TGAN on Optical-Despeckling and FLS-Despeckling with different
loss functions. Here, “↑” and “↓” mean that higher and lower values indicate better performance on
the measure, respectively.

Loss Function PSNR (↑) SSIM (↑) SSI FLS(↓) SMPI FLS(↓)
LWGAN-GP 13.346 0.215 1.179 12.169

LWGAN-GP + LGS 25.421 0.681 0.067 0.972
LWGAN-GP + LIC 25.435 0.683 0.082 1.263

LWGAN-GP + LIC + LGS 25.467 0.688 0.063 0.572

Table 13. Performance of SID-TGAN on SSS-Despeckling and SAS-Despeckling with different loss functions.
Here, “↓” means that a lower value indicates better performance on the measure.

Loss Function SSI SSS(↓) SMPI SSS(↓) SSI SAS(↓) SMPI SAS(↓)
LWGAN-GP 1.100 1.022 1.304 1.965

LWGAN-GP + LGS 0.139 0.128 0.698 0.536
LWGAN-GP + LIC 0.103 0.094 0.699 0.524

LWGAN-GP + LIC + LGS 0.083 0.073 0.603 0.518

5. Conclusions and Future Work

This paper introduces SID-TGAN, a sonar image despeckling model based on genera-
tive adversarial networks. By integrating transformer blocks for global feature extraction
and convolutional blocks for local (spatial) feature extraction within the generator and
discriminator networks, SID-TGAN effectively extracts and enhances useful features from
sonar images. SID-TGAN comprehensively learns features from the training data by lever-
aging adversarial training, resulting in better despeckling performance. Furthermore, by
adopting a novel adversarial loss function, SID-TGAN emphasizes the overall consistency
of images and ensures the meticulous representation of local features, leading to significant
improvements in image quality with more intricate detail preserved. Extensive experi-
mental results on synthetic optical noise image datasets and real sonar image datasets
demonstrate that SID-TGAN significantly outperforms state-of-the-art filtering methods
and CNN-based despeckling approaches in terms of despeckling performance. In gen-
eral, our proposed SID-TGAN model effectively reduces speckle noise in sonar images,
offering a promising solution to improve image quality and preserve important features in
subsequent sonar image analysis tasks.

For future work, we would like to delve into the application of SID-TGAN in other
sonar image-processing tasks and further optimize its performance in diverse noise pat-
terns and complex scenarios. This endeavor is poised to bring forth novel insights and
breakthroughs in the realm of sonar image-processing research.
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