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Abstract: Accurate global monitoring of carbon dioxide (CO;) is essential for understanding climate
change and informing policy decisions. This study compares column-averaged dry-air mole fractions
of CO, (XCOy) between ACOS_L2_Lite_FP VO9r for Japan’s Greenhouse Gases Observing Satellite
(GOSAT), OCO-2_L2_Lite_FP V10r for the USA’s Orbiting Carbon Observatory-2 (OCO-2), and
IAPCAS V2.0 for China’s Carbon Dioxide Observation Satellite (TANSAT) collectively referred to
as GOT, with data from the Total Carbon Column Observing Network (TCCON). Our findings are
as follows: (1) Significant data quantity differences exist between OCO-2 and the other satellites,
with OCO-2 boasting a data volume 100 times greater. GOT shows the highest data volume between
30-45°N and 20-30°S, but data availability is notably lower near the equator. (2) XCO, from GOT
exhibits similar seasonal variations, with lower concentrations during June, July, and August (JJA)
(402.72-403.74 ppm) and higher concentrations during December, January, and February (DJF)
(405.74-407.14 ppm). XCO, levels are higher in the Northern Hemisphere during March, April, and
May (MAM) and DJFE, while slightly lower during JJA and September, October, and November (SON).
(3) The differences in XCO, (AXCO,) reveal that AXCO, between OCO-2 and TANSAT are minor
(—0.47 £ 0.28 ppm), whereas the most significant difference is observed between GOSAT and TANSAT
(—1.13 £ 0.15 ppm). Minimal differences are seen in SON (with the biggest difference between GOSAT
and TANSAT: —0.84 £ 0.12 ppm), while notable differences occur in DJF (with the biggest difference
between GOSAT and TANSAT: —1.43 £ 0.17 ppm). Regarding latitudinal variations, distinctions
between OCO-2 and TANSAT are most pronounced in JJA and SON. (4) Compared to TCCON, XCO,
from GOT exhibits relatively high determination coefficients (RZ > 0.8), with GOSAT having the
highest root mean square error (RMSE = 1.226 ppm, <1.5 ppm), indicating a strong relationship
between ground-based observed and retrieved values. This research contributes significantly to our
understanding of the spatial characteristics of global XCO,. Furthermore, it offers insights that can
inform the analysis of differences in the inversion of carbon sources and sinks within assimilation
systems when incorporating XCO, data from satellite observations.
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1. Introduction

The Earth’s climate system is experiencing profound changes, primarily due to anthro-
pogenic activities, with the emission of greenhouse gases (GHGs) into the atmosphere [1-3].
Among these GHGs, carbon dioxide (CO,) has the utmost importance due to its long-lasting
effects and pivotal role in driving global warming [4,5]. The accurate measurement and
monitoring of atmospheric CO; concentrations are crucial for assessing the rate of climate
change, understanding its impacts on ecosystems, and formulating effective mitigation
strategies [6,7].

Traditional ground-based measurements, while providing valuable data, have limi-
tations in terms of spatial coverage and the comprehensive capture of intricate nuances
in atmospheric CO, distribution patterns. This limitation has prompted the development
of carbon satellite-based missions in different countries. For example, Japan’s Green-
house Gases Observing Satellite (GOSAT) [8], the Orbiting Carbon Observatory-2 (OCO-2)
mission operated by the National Aeronautics and Space Administration (NASA) [9,10],
and China’s Carbon Dioxide Observation Satellite Mission (TANSAT) [11,12], collectively
referred to as GOT, provide globally averaged dry-air mole fractions of CO, (XCO,) at
various temporal and spatial scales.

In the realm of satellite-based CO, measurements, significant advancements have been
achieved in XCO, retrieval algorithms, atmospheric correction methods, and validation
techniques [13-17]. Many studies have utilized GOSAT and OCO-2 data to investigate
CO; concentration distributions at both regional and global scales [18-21]. Furthermore, in
anticipation of future decision-making regarding emission reduction strategies and climate
change mitigation, there is a pressing need for highly precise information regarding CO,
sources and sinks. In response to this urgency, numerous researchers have endeavored
to assess the dynamic interplay of carbon sources and sinks in terrestrial ecosystems by
leveraging GOSAT and OCO-2 satellite data along with diverse inversion methods [22-25].
These studies have made significant contributions to unraveling the complexities of CO,
sources and sinks, as well as the integral role of landmasses, oceans, and vegetation in the
intricate carbon cycle [25-29].

However, despite these advancements, challenges and controversies persist in accu-
rately quantifying the temporal and spatial variability of CO, sources and sinks for various
reasons [28,30,31]. These reasons include: (1) inherent limitations in atmospheric CO,
observations [32]; (2) the capabilities of model simulations [33]; and (3) data uncertainties
in observational conditions. In this context, our focus is on the third point. Although
carbon satellites help mitigate some of the limitations of sparse data, existing satellite
missions emphasize that cloud-free observations are captured on less than 2% of the Earth’s
surface area, even on a monthly basis [34]. Previous studies have also highlighted the
significant influence of model setup in perpetuating uncertainty in carbon budgets and
China’s terrestrial ecosystems. This study underscores the need for a larger ensemble of in-
version systems to address this challenge [32]. Integrating XCO, data derived from carbon
satellites into inversion models to retrieve carbon source and sink information presents
another challenge. Discrepancies between satellite data and ground measurements, such as
those obtained from the Total Carbon Column Observing Network (TCCON), have been
reported [15,35-39]. These disparities can be attributed to various factors, including instru-
mental biases, uncertainties in atmospheric corrections, and differences in spatiotemporal
resolutions. Understanding these discrepancies is crucial for further improving the quality
of satellite-based CO, measurements and enhancing our comprehension of datasets when
integrated into inversion models.

Despite the extensive comparisons conducted among various carbon satellite datasets
and their respective correlations with TCCON data, there is a noticeable gap in compre-
hensive studies that simultaneously compare data from GOSAT, OCO-2, and TANSAT.
In the case of China, specifically, understanding the differences between XCO, data from
domestic satellites and international XCO, data is essential for setting satellite parameters
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and improving data quality. This understanding will help us better achieve our goals of
carbon peak and carbon neutrality.

In our study, we aim to conduct a comprehensive comparative analysis of XCO,
data from GOT (referred to as XGOT) to assess the consistency and discrepancies within
their XCO, measurements, covering several critical aspects. We will scrutinize factors
such as the satellite’s orbital characteristics and sensor parameters, as well as perform
an intercomparison of XGOT data from seasonal, spatial, and latitudinal perspectives.
Additionally, our investigation will involve discerning the contrasts between XGOT data
and the data obtained from TCCON. Examining the similarities and discrepancies between
the datasets from these missions will make a significant contribution to addressing existing
issues. Our efforts are geared towards shedding light on the reliability and inherent
limitations of satellite-based XCQO, observations. Furthermore, we will use these XGOT
data to invert the carbon source and sink using a carbon tracking model (CT-China) [40] in
the near future, exploring how disparities in XCO, data influence the results of assimilation
inversions. The findings from this study hold the potential to provide strong support for
our subsequent, in-depth investigation into disparities among the three satellite-derived
carbon sink inversions. This endeavor also serves as a valuable comparative case study for
the research community utilizing these three distinct XCO, datasets.

We have structured this paper as follows: In Section 2, we describe the data, including
XCO; from GOT and TCCON observations, and the methods we use to intercompare three
satellite XCO, datasets and evaluate the differences between satellite XCO, and TCCON.
Section 3 presents the results of the intercomparison and difference evaluation between
satellite XCO, and TCCON. In Section 4, we discuss the uncertainties and implications of
the results and draw conclusions.

2. Materials and Methods
2.1. Datasats

Our research datasets included XCO, data retrieved from GOT and ground validation
sites (TCCON). Table 1 displays the orbit and observation geometry parameters as well as
spectral information for each satellite sensor.

Table 1. Orbits, observation geometry, and sensor parameters of GOSAT, OCO-2, and TANSAT.

Satellites” Characteristics GOSAT [8] 0CO-2 [41] TANSAT [42]
Launch time 2009.01 2014.07 2016.12
Orbit Height/km 666 705 712
Inclination (°) 98.1 98.2 98.2
Recurrent Period/day 3 16 16
Local Time 12:45-12:55 13:30 £ 0.15 13:30
Pointing Mlﬂtlpk t.argets w1th.a 2-axis Nadir, Glint, Target Nadir, Glint, Target
pointing mechanism
Swath/km 790 10.6 18
Footprint (Nadir) Circle of 10.5 km diameter 1.29 x 2.25 km? 2 x 2 km?
Sensors FTS, CAI 3-Channel Grating ACGS, CAPI
Spectrometer
Bands/pum 0.76-0.78, 51'552__114756 1.92-2.08, 0.76-0.77,1.59-1.62,2.04-2.08  0.76-0.77,1.59-1.62, 2.04-2.08

2.1.1. Greenhouse Gases Observing Satellite (GOSAT)

GOSAT, Japan’s first high-spectral resolution satellite, was launched in 2009 to observe
GHGs in the atmosphere. It orbits along a solar quasi-return trajectory at an average alti-
tude of 666 km and an inclination of 98.1°. Its revisit period is 3 days, with the descending
node transiting between approximately 12:45 p.m. and 12:55 p.m. local time [43]. The
satellite’s carbon observation instrument, TANSO, consists of two sensors: the Fourier
Transform Spectrometer (FTS) and the Cloud and Aerosol Imager (CAI). The FTS detects
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GHG signals, while the CAI collects synchronized cloud and aerosol information. Specifi-
cally, the FTS wavelength band of 1.56~1.72 um is used for inverting atmospheric XCO, [44].
Its instantaneous field of view (IFOV) spans 15.8 mrad, corresponding to a diameter range
of approximately 10.5 km at the lower point of nadir observation. The satellite’s scanning
angle encompasses £20° in the orbital direction and £35° in the side-scanning direction [8].

The XCO, data used in this study were obtained from the ACOS_L2_Lite_FP product
(V9r) [22]. The inversion algorithm employed is the ACOS algorithm [8], which is detailed
in the ACOS Algorithm Level 2 Standard Product and Lite Data Product User’s Guide [45].
The accuracy of the concentration observations is approximately 1 ppm. The data were
archived at the Goddard Earth Science Data Information and Services Center (GES DIS) [46].
For this study, we selected the time range from 1 March 2017 to 28 February 2018 (one
year for seasonal analysis), based on the availability of data from GOT (XCO, data from
TANSAT are only available after 1 March 2017). Data quality screening was performed here
(using the algorithm developers’ quality flag) to ensure subsequent analysis.

2.1.2. Orbiting Carbon Observatory-2 (OCO-2)

OCO-2, launched on 2 July 2014, represents NASA’s pioneering mission aimed at
monitoring atmospheric CO; levels. OCO-2 follows a near-polar, sun-synchronous orbit
with an altitude of 705 km, an inclination of 98.2°, and a revisit period of 16 days [9].
Its orbital path intersects the local time at approximately 1:30 p.m. Equipped with a
three-band grating hyperspectral spectrometer, OCO-2 facilitates precise measurements
of CO; concentrations, crucial for scientific insights. The spectrometer covers the oxygen
A band (0.758-0.773 um), a weak CO; absorption band (1.591-1.621 um), and a strong
CO; absorption band (2.043-2.083 um). These distinct spectral bands enable researchers to
accurately discern variations in CO, concentrations [47].

OCO-2 operates in three observation modes: nadir, glint, and target mode. The nadir
mode is employed when the zenith angle is less than 85°, thereby enhancing spatial resolu-
tion, mitigating cloud interference, and capturing valuable cloud-free samples. The glint
mode focuses on improving the signal-to-noise ratio (SNR) by observing solar altitude an-
gles below 75°, particularly enhancing observations over oceanic regions [48]. In proximity
to ground-based validation sites, the target mode becomes operational, facilitating targeted
observations lasting up to 9 min and providing approximately 12,000 observations within
the designated location. In the context of nadir observations, OCO-2 employs a cross-track
IFOV of 0.1° and an integration time of 0.333 s. This specific configuration results in 4 to
8 bypass footprints, each effectively covering an area of 1.29 km x 2.25 km [49].

This study utilizes XCO, data from the OCO-2_L2_Lite_FP product (V10r), and the
inversion algorithm employed is ACOS [47,50]. The resulting full-column estimates of
XCO; have single-sounding precisions of approximately 0.5 ppm [51]. All data relevant to
the current study are archived at the Goddard Earth Science Data Information and Services
Center [46]. The XCO, data underwent screening adhering to quality markers (using the
algorithm developers’ quality flag) for subsequent utilization.

2.1.3. China’s Carbon Dioxide Observation Satellite (TANSAT)

In 2016, China successfully launched its inaugural GHG observation satellite, TANSAT.
It operates in a sun-synchronous orbit positioned at an altitude of 712 km with an inclination
of 98.2°. The local time of its ascending node is 1:30 p.m., and it completes a full revisit cycle
every 16 days [42]. TANSAT features two distinct instruments: the Hyperspectral Green-
house Gas Sounder (ACGS) and the Cloud and Aerosol Polarization Imager (CAPI). The
ACGS module specifically captures absorption bands of O; at 0.76 pm and CO; at 1.61 um
and 2.06 um. The CAPI instrument, serving as a wide-angle and medium-resolution imag-
ing spectrometer, provides supplementary information to address observational errors
caused by clouds and aerosols [52]. TANSAT’s observing modes primarily include nadir,
glint, and target modes. In the nadir mode, the footprint measures 2 km x 2 km, and each
swath includes 9 such footprints [53]. The IFOV width spans 18 km. The data we used are
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from version 2.0, level L1B, and the inversion algorithm used is the Institute of Atmospheric
Physics Carbon dioxide retrieval Algorithm for Satellite remote sensing (IAPCAS) [54].
This algorithm achieves an impressive inversion accuracy of 1% (4 ppm) [52].

2.1.4. Total Carbon Column Observing Network (TCCON)

We utilized TCCON for assessing XCO, retrieved by GOT. TCCON operates ground-
based Fourier transform spectrometers, capturing solar near-infrared spectra to retrieve
XCO, values [55]. This method precisely aligns the instrument with solar radiation, reduc-
ing the influence of factors such as aerosols and thin clouds on the optical path. Moreover,
TCCON is tied to WHO by an extensive aircraft intercomparison campaign, and as a result
an airmass-dependent and independent correction factor is applied to the network data.
All of the above results in the collection of high-precision XCO, data [56]. The use of the
same instruments and data processing methods ensures consistency across measurement
sites, creating a unified dataset.

To establish a correspondence between GOT data and TCCON data, we accessed the
GGG2020 and GGG2014 versions (available for download at https://TCCONdata.org/,
accessed on 8 July 2023). The GGG2020 version comprises data from 31 distinct sites, while
the GGG2014 version includes data from 35 sites. The 2020 version takes precedence, with
supplementation from the 2014 version (see Figure 1 for more detail). In preparation for
this dataset, a 3-sigma screening method (details of which can be found in the Methods
section) was implemented before its use in our study.
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Figure 1. The spatial distribution of TCCON sites used in our study. See Table 2 for the full name of
each site.

Since the XCO; dataset from three satellites covers the time range from March 2017 to
February 2018, we conducted time matching with TCCON. The sites used by each satellite
are listed in Table 2. The spatial distribution of all the sites used is illustrated in Figure 1.

We are aware that, for the land portion, the typical pointing mode for these three
satellites is nadir, while for the ocean portion, it is usually the glint mode. To eliminate
the difference between these two pointing modes, this study exclusively focused on the
analysis of terrestrial areas.

2.2. Methods
2.2.1. Data Screening Method for TCCON

In our study, we employed a 3-sigma method to screen the TCCON data. Specifically,
we selected data within the time range from March 2017 to February 2018 (to match the
XGOT data) and calculated the differences between adjacent observations. We obtained
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the average value (m) and standard deviation (o) of these differences. Observations with
differences that fell outside the range of m & 30 (forward and backward simultaneously)
were considered outliers and were subsequently removed. To illustrate this process, we
use the Burgos (bu) site as an example to demonstrate the contrast before and after the
removal of abnormal values (Figure 2). The m + o changes from 406.629 £ 1.581 ppm to
406.632 + 1.526 ppm after the removal of outliers, with the total number of observations
going from 36,163 to 36,043 (0.3% of the data was excluded).

Table 2. TCCON site information used in our study and the number of pairs matched with satellites.

. Locatin, NC with NC with NC with
Sites Name Abb (Long, Lagt) GOSAT 0CO-2 TANSAT Reference

Anmyeondo an 126.33°E, 36.54°N 4 - - [57]
Bialystok bi 23.02°E, 53.23°N 8 2 - [58]
Burgos bu 120.65°E, 18.53°N 6 9 - [59]
Caltech ful 118.13°W, 34.14°N 102 8 2 [60]
Darwin db 130.89°E, 12.43°S 43 4 10 [61]
Dryden df 117.88°W, 34.96°N 48 3 - [62]
East Trout Lake et 104.99°W, 54.36°N - 8 4 [63]
Eureka eu 86.42°W, 80.05°N - 2 - [64]
Garmisch gm 11.06°E, 47.48°N 8 2 - [65]
Hefei hf 117.17°E, 31.9°N 2 - 2 [66]
Izana iz 16.5°W, 28.31°N - 2 - [67]
PL, Pasadena it 118.18°W, 34.2°N 198 17 2 [68]
Saga js 130.29°E, 33.24°N 33 8 - [69]
Karlsruhe ka 8.44°E, 49.1°N 6 12 - [70]
Lauder 11 169.68°E, 45.04°S 42 12 5 [71]
Ny-Alesund ny 11.92°E, 78.92°N - - 2 [72]
Lamont oc 97.49°W, 36.6°N 59 31 10 [73]
Orléans or 2.11°E, 47.96°N - 2 - [74]
Park Falls pa 90.27°W, 45.94°N 14 9 8 [75]
Paris pr 2.36°E, 48.85°N 1 4 - [76]
Reunion Island ra 55.48°E, 20.9°S - 4 1 [77]
Rikubetsu 1j 143.77°E, 43.46°N 2 6 - [78]
Sodankyla SO 26.63°E, 67.37°N 12 4 3 [79]
Tsukuba tk 140.12°E, 36.05°N 53 11 - [80]
Wollongong wg 150.88°E, 34.41°S 4 10 1 [81]
Zugspitze z8 10.98°E, 47.42°N 5 7 2 [82]

Note: Abb: Abbreviation; NC: Number of Collocations.
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Dates

Figure 2. The original values of the Burgos site (bu) and the values after removing anomalies using
the 30 method are compared from March 2017 to March 2018.
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2.2.2. Spatiotemporal Collocation Criterion for Intercomparison among Satellites

Table 1 illustrates the differences in footprint (spatial resolution) between the three
carbon satellites. To facilitate their intercomparison, we calculated the counts of values
and XCO, within each 1° x 1° spatial resolution grid. This choice aligns with the typical
resolution used in most global models, which is 1° x 1°. Our approach involved the
following steps: (1) We counted the number of data points within each 1° x 1° spatial
range and sum points at the same latitude to analyze differences at varying latitudes for all
three satellites. (2) For XCO,, we first identified all XCO, values within each 1° x 1° range
and then computed their average to obtain grid-level values. We also calculated the mean
values of XCO; and standard deviations at different latitudes. (3) When analyzing the
difference in XCO, (AXCO,) between two satellites, we directly employed the difference
method as shown in Equation (1) for each corresponding grid. To compare differences
across different latitude bands, we averaged the differences of all grids within each latitude
band and examined their variation with latitude. (4) Regarding the time scale, we analyzed
the point counts and XCO, values of each satellite in four periods (seasons): December,
January, February (DJF); March, April, May (MAM); June, July, August (JJA); and September,
October, November (SON).

AXCO, = XCOsg1 — XCOsz4 1)

where s1 and s2 represent any two satellites in GOT that we use to calculate their XCO,
difference.

2.2.3. Matching Criteria for Satellites and TCCON

When matching the XGOT data with TCCON, we followed these steps: (1) Spatial
Matching: Initially, we identified the location of each TCCON site. Next, we centered
each point within a 1° x 1° spatial range and retrieved the XCO, values from the satellites
within that range. These values were then averaged to create a spatial match. (2) Temporal
Matching: Given that there were fewer or even no matching points on a per-minute scale,
we matched the satellite data with a time range of 30 min based on the acquisition time at
the TCCON site. These values were averaged to form the final value for matching with
TCCON. (3) Averaging: Since TCCON data are high-frequency values, we averaged the
TCCON data and matched satellite values every half hour, starting at 0:00 UTC on 1 March
2017, to obtain the final results for analysis. (4) Additionally, to assess the proximity of
satellite values to TCCON data at hemispherical scale, we calculated the differences in
matching pairs for the Northern Hemisphere (NH) and Southern Hemisphere (SH).

2.2.4. Disparity Assessment

We used four indices, namely coefficient of determination (RZ), root mean square error
(RMSE), expectation (X), and standard deviation (o) to evaluate the AXCO, from satellites
and TCCON. The mathematical expressions for these indices are as follows:

n 5\ 2
R2 =1 _ &i=l (Yi —Yi) 2)
n 2
ie1 (Yi — Yi)
1
RMSE = \/ ) (G- ) 3)

where n represents the total matching number, X is the XCO, from the satellite, Y is the
XCO, from TCCON, Y; is the predicted value of Y, and Y; is the mathematical expectation
of Y.

Concerning X and o, they satisfy the formula for the normal distribution:

f(x) = e 26; 4)
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where x is the differences of XCO, between TCCON and satellite from collocation, X
represents the mean value of AXCO,, and o represents the standard deviation, respectively.

3. Results
3.1. Spatial Coverage Characteristics of XCO, from Satellites

GOT consists of different observation programs, leading to variability in the amount of
observational data and spatial coverage. GOSAT employs discrete sampling points for its
observations, limiting its ability to continuously monitor space and providing only limited
spatial coverage. In contrast, OCO-2 and TANSAT use narrow-amplitude (10-25 km)
continuous pixel observations facilitated by high-resolution raster spectroscopy. However,
there is a noticeable observational gap area between their orbital paths [83]. Figure 3
displays the spatial distribution of the original scattered XCO, data, revealing significant
disparities between the GOT platforms. GOSAT has a northeast-southwest orientation,
while OCO-2 and TANSAT direct their observations in the northwest-southeast direction.
Additionally, it is evident that GOSAT has the largest orbital gaps, followed by TANSAT,
whereas OCO-2’s annual XCO, data can almost cover the entire terrestrial area. Since
the inversion algorithm of TANSAT is primarily for land areas, there is no coverage over
the oceans.

Figure 4al-al2 displays the spatial distribution of point counts within each 1° x 1°
grid for the three satellites in four periods. Figure 4b1-b12 shows the total counts of XCO,
points in each latitude band. It is important to note that, due to the extensive volume of
data from OCO-2, we applied a logarithmic transformation with a base of 100 to map the
spatial distribution of scatter counts.

90°N
60°NTE
30°N|
0° |
30°8 111]8
60°S1 ’
90°8
90°N P
60°N LR :
30°N{//

0
300s {7/
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Figure 3. Scatter plot of the original XCO, data from the three satellites from March 2017 to February
2018. MAM: March, April, May; JJA: June, July, August; SON: September, October, November; DJF:
December, January, February.

From the perspective of the spatial distribution of point counts, we can observe a
significant degree of similarity among the GOT satellites, except in northern South America,
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where GOSAT has a lower volume of XCO, data in all four periods. Similarly, TANSAT
exhibits a lower volume of XCO; data in northern Africa during MAM, JJA, and SON.

When examining the counts in each latitude band, the GOT satellites show consistent
distribution patterns with seasonal variations. For example, except for the Antarctic
and Arctic regions, it is evident that all the satellites have limited data near the equator
throughout the four periods, while data volume peaks in the NH and SH. In the NH, these
peaks are predominantly concentrated within the latitudinal range of 30-45°N. Meanwhile,
in the SH, the peaks are primarily concentrated between 20-30°S.

There are also disparities in the distribution of XCO, counts between the GOT satel-
lites. Firstly, the XCO, data volume from OCO-2 is approximately 100 times larger than
that of the other two satellites, and TANSAT’s data volume is roughly twice that of GOSAT.
Secondly, GOSAT and OCO-2 exhibit similar data distribution patterns across all four
periods, whereas the TANSAT satellite shows significant variations in data quantity dis-
tribution. Notably, TANSAT’s data volume reaches its peak during JJA and experiences a
significant reduction during DJF. Thirdly, during JJA, TANSAT’s data shows the highest
volume around 70°N, a characteristic not exhibited by GOSAT and OCO-2. Finally, during
DJF, TANSAT’s data is scarce in the SH.
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Figure 4. Spatial distribution of the number of XCO; points in 1° x 1° grids for GOSAT, OCO-2, and
TANSAT in four periods (al-al12) and the sum values of all grids in the same latitude band at 1°
intervals (b1-b12).

3.2. The Intercomparison of XCO; from Satellites
3.2.1. Comparison of XCO,: Seasonal, Spatial, and Latitudinal Aspects

Figure 5 compares the XGOT from seasonal, spatial, and latitudinal aspects. We
injtially evaluated the XGOT data in four periods. Figure 5a illustrates that XGOT exhibits
a consistent seasonal variation pattern across all four periods. Specifically, XGOT has the
lowest values in JJA (402.72 ppm, 403.76 ppm, and 403.74 ppm for GOT, respectively),
followed by SON (403.39 ppm, 4.4.05 ppm, and 404.07 ppm), with the highest values
occurring in DJF (405.74 ppm, 405.98 ppm, and 407.14 ppm). Furthermore, the XCO; values
of TANSAT are consistently higher than those of OCO-2 throughout all periods, while
GOSAT consistently exhibits the lowest values. Moreover, the standard error of TANSAT is
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the largest, while OCO-2 has the smallest standard error, reflecting the relative consistency
of the XCO, data to some extent.

From a spatial distribution perspective (Figure 5b1-b12), it is evident that XGOT
exhibits similar spatial distribution characteristics. In MAM and DJF, human activities
such as industrial activities and fossil fuel combustion contribute to a noticeable increase in
global CO; concentration in the NH compared to the SH. However, with the onset of JJA, the
photosynthetic efficiency of terrestrial vegetation in the NH leads to a substantial reduction
in XCO, values, effectively reflecting the ‘carbon sequestration” effect of ecosystems with
seasonal changes.
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Figure 5. (a) The mean value of XCO, for four periods of GOSAT, OCO-2, and TANSAT; the black
lines above the histogram represent the standard error of XCO, for each satellite during each period.
(b) The spatial distribution of XCO,. (b1-b12) The spatial distribution of XCO, on a 1° x 1° grid for
four periods of three satellites. In (b13-b24), the dark blue line represents the average value of XCO,

in latitudes with 1° intervals, and the light blue area indicates one standard deviation on either side
of the mean value.
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Analyzing XGOT in terms of latitude at 1° intervals (Figure 5b13-b24), we observed
some common characteristics in all periods. For instance, during MAM and DJF, XCO,
values in the NH are higher than those in the SH. Additionally, in MAM and JJA, XCO,
values in the NH are slightly lower than those in the SH. Moreover, all three satellites
indicate that the standard deviation of XCO, in the NH is greater than that in the SH
during all periods (the area shaded in light blue is larger in the NH), indicating a larger
dispersion of XCO; data in the NH. Simultaneously, small differences within the XGOT data
have emerged. For example, in the NH during MAM and DJE, XGOT gradually increases
northward overall, with TANSAT having a reduction between 30-60°N when compared to
the other two satellites. Moreover, GOSAT’s XCO, data exhibit more variability across all
latitudes, which may be a feature of the discrete sampling that GOSAT uses.

3.2.2. Comparison of AXCO;: Seasonal, Spatial, and Latitudinal Aspects

Figure 6 compares the AXCO; from seasonal, spatial, and latitudinal aspects be-
tween satellites. Figure 6a reveals that AXCO, of GOT (AXGOT) remains relatively small
(<1.5 ppm) throughout all periods. However, it exhibits some seasonal variation, with the
difference being more pronounced in MAM and DJF (the biggest difference was between
GOSAT and TANSAT at —1.33 ppm and —1.43 ppm, respectively) compared to JJA (the
biggest difference between GOSAT and OCO-2: —0.95 ppm) and SON (the biggest differ-
ence between GOSAT and TANSAT: 0.84 ppm). Additionally, AXCO; between GOSAT and
TANSAT shows significance across all periods (highlighted in purple), with an average an-
nual difference of —1.13 ppm. The difference between OCO-2 and TANSAT is the smallest,
except in DJF, with an average annual AXCO; of —0.47 ppm. The average annual AXCO,
between GOSAT and OCO-2 is —0.62 ppm.

The spatial distribution maps of AXGOT were calculated to analyze their spatial dif-
ferences (Figure 6b1-b12). Overall, the AXCO; between GOSAT and the other satellites
exhibits similar characteristics in all four periods, with relatively small differences and no
significant seasonal changes. However, there is some seasonal variation and variability
in AXCO; between OCO-2 and TANSAT. During JJA in the NH, TANSAT’s XCO, val-
ues were higher than OCO-2, and a similar phenomenon occurred in SON, albeit with
weaker intensity.

To compare AXGOT at different latitudes, we calculated the mean AXCO, for each
latitude band at 1° intervals (Figure 6b13-b24). In general, the AXCO, across latitude
bands for all three satellites remained within +4 ppm. The difference between GOSAT
and OCO-2 was the smallest, especially during DJF, suggesting that these two satellites
exhibited greater consistency in their XCO; values. In contrast, AXCO; between TANSAT
and both GOSAT and OCO-2 was much larger. The AXCO, between GOSAT and OCO-2
was predominantly negative (Figure 6b13-b16) in all four periods, indicating that GOSAT’s
XCO; values were consistently lower than those of OCO-2. GOSAT’s XCO, values were
also consistently lower than those of TANSAT throughout the year, and this difference
was more pronounced compared to OCO-2. However, the difference between OCO-2
and TANSAT exhibited noticeable seasonal and latitudinal variations. For example, in
MAM and DJF, AXCO, was primarily negative, indicating that TANSAT’s values were
larger than OCO-2 in these two periods. However, in JJA and SON there were differences
between the NH and SH. In the NH (e.g., 45°-75°N), AXCO, was positive, indicating that
OCO-2’s values were larger than TANSAT’s. In the SH (e.g., 0°-60°S), AXCO, was negative,
indicating that OCO-2’s values were smaller than TANSATs.
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Figure 6. (a) The mean value of AXCO, for four periods of GOSAT, OCO-2, and TANSAT with
standard error. The red line is the mean value of AXCO; of three satellites per period. (b1-b12) is the
spatial distribution of AXCO, on a 1° x 1° grid for four periods of three satellites. In (b13-b24), the
blue bar graph represents the average value of AXCO, in latitude bands with 1° intervals.

3.3. Evaluation of AXCO; between Satellites and TCCON
3.3.1. Evaluation of AXCO, at Annual Scale

TCCON serves as a valuable source of ground-based data for validating satellite
XCO,. Figure 7al-a3 displays the validation plot of TCCON XCO, (XTCCON) against
the matched XGOT data. GOSAT had the largest number of collocations (N = 650), while
TANSAT had the least amount of data (N = 52). The fitted lines for the collocation data of
all three satellites closely follow a 1:1 relationship, indicating that the XCO, obtained from
satellite inversions is highly accurate. When analyzing the two parameters, R* and RMSE,
TANSAT exhibited the highest accuracy (with the largest R? of 0.880 and the smallest RMSE
of 1.055), followed by OCO-2 (R? = 0.817, RMSE = 1.067), and GOSAT demonstrated the
lowest accuracy with an R? of 0.808 and an RMSE of 1.226.

Figure 7b1-b3 displays the frequency distribution of AXCO,, the difference between
TCCON XCO; and satellite-derived XCO,. The frequency distributions of AXCO; are all
normally transformed and fitted to the line using Equation (4). All AXCO; values are
within the range of £4 ppm. GOSAT had an X value of 0.319, which is greater than 0,
suggesting that GOSAT’s inversion underestimates XCO, compared to TCCON. The x
values for OCO-2 and TANSAT are both less than 0, indicating that the inverted XCO,
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values from both satellites are higher than those of TCCON. In terms of ¥ and ¢ parameters,
OCO-2 exhibited the highest XCO; accuracy (x is closest to 0 and ¢ is smallest), followed
by TANSAT, while GOSAT had the lowest accuracy.

3.3.2. Evaluation of AXCO; at Seasonal and Hemispheric Scales

Considering the limited number of collocations, we used NH and SH averages to
analyze the AXCO, between TCCON and the satellites during all periods. As depicted
in Figure 8, the AXCO, values between TCCON and the satellites exhibited hemispheric
divergence and seasonal variability. It is worth noting that TANSAT had no matched
pair data in the SH during DJF. Overall, the satellites had more matches with TCCON
in the NH, resulting in a more scattered AXCO, pattern (Figure 8al—c4). Regarding the
disparities between the NH and SH (Figure 8d1-d4), TANSAT showed the largest disparity,
as indicated by the green bars changing direction between the hemispheres (Figure 8d1,d2)
and displaying a substantial difference (Figure 8d3). In contrast, OCO-2 exhibited the
smallest AXCO, between the NH and SH, with orange bars clustered near AXCO, = 0
(Figure 8d1-d4). Concerning seasonal variability (Figure 8d1-d4), the satellites were closest
to TCCON values in JJA and SON but showed more significant differences from TCCON
values in MAM and SON.
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Figure 7. Scatter plot of the collocations of TCCON and XCO,; from GOSAT (al), OCO-2 (a2), and
TANSAT (a3), using the 1° x 1° and £30 min coincidence criteria. The blue dashed line is the one-to-
one reference line, and the dark red solid line is the fitted line for the scatter with the corresponding
regression formula shown in the Figure. N represents the number of matched collocations, R
represents the determination coefficient, and RMSE is the root mean square error. (b1-b3) Plots of
the frequency distribution of AXCO, for TCCON versus the three satellites. The red solid line is the
fitted line of the frequency distribution using Equation (4), the red dashed line corresponds to the x
value (expectation) in the plot, and ¢ is the standard deviation.
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Regarding XGOT, TANSAT displayed significantly larger AXCO, values compared
to the other satellites in MAM and DJF, indicating that TANSAT had lower values than
TCCON in these two periods. However, in SON, AXCO, was smaller compared to the two
other satellites, indicating that the XCO, values were higher than those of TCCON in this
period. For GOSAT, all four periods exhibited AXCO; > 0 (c), suggesting that its values
were lower than those of TCCON. For OCO-2, AXCO, < 0 in most periods, except for
AXCO; > 01in JJA, indicating that it was underestimated in JJA and overestimated during
other periods compared to TCCON, but the degree of underestimation and overestimation
was relatively low.
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Figure 8. Data distribution of XCO, differences (AXCO;) between TCCON and GOSAT, OCO-2, and
TANSAT over four periods and the NH and SH (al-c4). NH: Northern Hemisphere, SH: Southern
Hemisphere. Note: The box has three lines, from bottom to top, referring to the quarter-quartile,
median, and three-quarter-quartile. The top line is the maximum value in the non-anomalous range,
the bottom line is the minimum value in the non-anomalous range, and the red cross symbols are the
abnormal values. (d1-d4) The mean values of AXCO, over four periods in the NH and SH. TANSAT
has no matching data for the SH in DJF.

4. Discussion and Conclusions
4.1. Discussion and Recommendation

Analysis of XCO, data frequently involves the comparison of observational data
collected from multiple satellite platforms. Investigating the disparities between them to
understand the global spatial distribution of CO, has important implications for insights
into mitigation measures. Previously, extensive studies have been conducted in this area.
In this context, our study adds a comparative analysis to the existing findings. Our results
revealed that GOSAT had the lowest XCO; values, while TANSAT had the highest XCO,
values as illustrated in Figure 5a. Moreover, the annual difference between GOSAT and
OCO-2 was —0.62 ppm as demonstrated in Figure 6a. A similar result was reported
previously [84]; the authors found the mean biases and standard deviations of GOSAT and
OCO-2 are —0.57 % 3.33 ppm over land. In addition, it was found that the GOSAT and
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OCO-2 XCO; retrievals agree well in general, with a mean bias & standard deviation of
—0.21 & 1.3 ppm [36]. These results were in line with the previous studies.

In the context of TCCON evaluation, we chose spatial and temporal collocation criteria:
a 1° x 1° box with TCCON at its center and within 30 min. The upside of such a choice is
the avoidance of additional collocation errors in our comparison results, and this criterion
is consistent with the spatiotemporal resolution of the assimilated data required for our
subsequent studies. The downside is a very limited dataset which effectively limits the
analysis to seasonal, NH/SH aggregated data only. Another potential source of bias is that
with strict criteria only a handful of stations effectively dominate the dataset, erroneously
assuming that these (sometimes very local) measurements represent an entire hemisphere.
For example, if we look at GOSAT collocations 300 of the 650 (all) or 561 (NH) collocated
data points originate from the city of Los Angeles (Caltech and Pasadena), a highly polluted
urban site, confined within the Los Angeles basin, and thus hardly representative of an
entire hemisphere.

Despite the drawbacks, this study found that the RMSE values for GOSAT, OCO-2, and
TANSAT with respect to TCCON were 1.226 ppm, 1.067 ppm, and 1.055 ppm, respectively
(as shown in Figure 7al-a3). These results align with previous findings. For instance, a
comparison of XCO, data from OCO-2 with TCCON reported RMSE differences of less
than 1.5 ppm [85]. Similarly, XCO, measurements from GOSAT and OCO-2 were 1.8 ppm
and 1.76 ppm higher than the FTS measurements within a £1° range centered on the
ground-based FTS site in Beijing [86]. In our study, while the XCO; values from OCO-2
were higher than XTCCON, GOSAT’s XCO, was lower than XTCCON. It is worth noting
that negative systematic biases were identified in the XCO, measurements from OCO-2
in nadir modes at most TCCON sites [9]. Our study revealed a systematic bias between
OCO-2 and TCCON of 0.068 (as shown in Figure 7b2). These varying conclusions suggest
that differences in results can be attributed to the use of different TCCON observations (e.g.,
the number of TCCON sites, and the algorithm version of TCCON data) for comparison.
Additionally, variations in results can be linked to the temporal range of the data. Therefore,
it is crucial to conduct comparisons with TCCON using continuous measurements to
evaluate the quality of satellite-derived XCO, data throughout their missions.

When comparing XCO, differences with TCCON at a hemispherical scale in four
periods, the limitations of collocations between TANSAT and TCCON result in higher
variations in the two hemispheres compared to GOSAT and OCO-2. A comparison of XCO,
data from OCO-2 with XTCCON using different latitude zones found that in the mid-low
latitudes OCO-2 data yielded good results in filtering and bias correction. However, in the
high latitudes of the NH and SH, bias correction still required improvement [39]. In the
future, multi-year XCO; data from satellites should be used to evaluate differences with
TCCON in different latitude bands, not just on a hemispheric scale.

Regarding comparisons across different latitude bands, we conducted an intercom-
parison of XGOT using latitude bands with a 1° interval. While our global-scale analysis
showed that AXCO; between OCO-2 and TANSAT is small during JJA and SON (as de-
picted in Figure 6a), a more detailed examination revealed significant differences in AXCO,
between the SH and NH (Figure 6b). In essence, the global perspective can mask regional
variations in AXCO, due to the opposite signs of AXCO, between the hemispheres. This
underscores the importance of conducting more detailed analyses to gain a more accurate
understanding of the sources of data errors and establish a foundation of higher accuracy
and reliability for future research and data applications.

Based on our current research findings, we propose several future research prospects.
Firstly, we recommend an extended analysis of data over a longer period to obtain a
comprehensive understanding of XCO, variability. Secondly, we advocate for an in-depth
exploration of the sources of XCO, errors, focusing on factors such as latitude, surface
properties, and the influence of aerosol scattering. This analysis has the potential to
improve inversion algorithms and enhance product quality. Furthermore, we encourage
the utilization of these data in assimilation systems for flux inversion. This could lead to



Remote Sens. 2023, 15, 5073

16 of 20

more accurate estimates of carbon flux and contribute valuable insights to the scientific
community in resolving ongoing debates in flux estimation [32,83]. Our study plays a
crucial role in evaluating how the integration of XGOT into assimilation systems influences
the distribution of inversion flux results.

4.2. Conclusions

GOT have emerged as popular satellites for specialized global CO; distribution de-
tection. This study conducts comprehensive cross-comparisons of ACOS_L2_Lite_FP VOr
for GOSAT, OCO-2_L2_Lite_FP V10r for OCO-2, and IAPCAS V2.0 for TANSAT over land
areas. The primary focus is on data quantity patterns and XCO, variability with spatial,
seasonal, and 1° latitude interval variations. Moreover, to gauge the accuracy, TCCON data
were employed to assess GOT’s performance at annual, seasonal, and hemispheric scales.
The principal findings can be summarized as follows:

Observational Strategies and Spatial Coverage Differences: Noticeable differences
exist in the observational strategies and spatial coverage of the three satellites. GOSAT relies
on discrete sampling points, limiting its coverage and leading to significant orbital gaps.
Conversely, OCO-2 and TANSAT employ continuous pixel-level observations, resulting
in more extensive coverage. Particularly noteworthy is OCO-2's data volume, which is a
hundredfold greater than the combined output of the other two satellites, while TANSAT
records a data volume twice that of GOSAT. All three satellites exhibit data volume peaks
between 30—45°N and 20-30°S, with relatively fewer data points near the equator. With
the exception of TANSAT, which shows limited data during DJF, data volumes remain
relatively consistent across all periods.

Seasonal XCO;, Measurements: The XGOT display similar seasonal variations, with
the lowest values during JJA (402.72-403.74 ppm) and the highest values during DJF
(405.74-407.14 ppm). TANSAT consistently records the highest XCO, values within each
period, while GOSAT consistently reports the lowest values. When assessing latitude
bands, the highest XCO; values for all satellites are observed within the 0-30°N range.
During MAM and DJF, the NH exhibits higher concentrations than the SH, whereas the
reverse pattern is observed during JJA and SON.

Inter-satellite AXCO, Comparisons: The study reveals that the lowest AXCO, values
between GOT are observed in SON (the biggest difference was —0.84 ppm between GOSAT
and TANSAT), while the highest occurs in DJF (the biggest difference was —1.33 ppm
between GOSAT and TANSAT). The AXCO, value between OCO-2 and TANSAT is the
smallest (—0.47 ppm), whereas the AXCO, of GOSAT and TANSAT appears the highest
(—1.13 ppm). The AXCO, between GOSAT and the other two satellites uniformly underes-
timates values across different latitude bands. However, the AXCO, between OCO-2 and
TANSAT exhibits latitude band variations, particularly during JJA and SON. Specifically, in
the NH during JJA and SON, TANSAT values are noticeably higher than OCO-2, while the
SH reflects the opposite phenomenon. Importantly, when comparing data from different
satellite sources, comprehensive analyses at appropriate temporal and spatial scales are
crucial for accurate results. Furthermore, all three satellites demonstrate good accuracy
when compared with TCCON data, with R? values exceeding 0.8, and the maximum RMSE
observed in GOSAT is 1.226 ppm.

These findings collectively enhance our understanding of the role of GOT data in
the global carbon cycle, enriching insights into carbon cycle dynamics and aiding climate
change mitigation efforts. Despite some differences among GOT, they all provide accurate
inversion results. This study offers a detailed analysis of the consistency of XCO, products
from GOT, contributing to the analysis of global CO, concentration characteristics. Addi-
tionally, it provides valuable references for selecting data for incorporation into assimilation
inversion systems and supports attribution analyses of spatial flux inversion.

Author Contributions: Conceptualization, B.C.; methodology, J.E,; software, J.F.; validation, B.C.,
H.Z. and M.G.; formal analysis, ]J.F,, H.Z. and TM.G; investigation, J.F. and C.L.; resources, B.C.;
data curation, J.E, X.Z. and S.L.; writing—original draft preparation, J.F.; writing—review and



Remote Sens. 2023, 15, 5073 17 of 20

editing, B.C., J.F,, X.Z., HZ. and A.D.; visualization, ].F. and S.L.; supervision, B.C. and H.Z.; project
administration, B.C.; funding acquisition, H.Z. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China (No.
41890854, No. 41771114), the Chinese Academy of Sciences Class A Strategic Pilot Science and
Technology Project (No. XDA23100202), and the Innovation Project of LREIS (No. KPI005).

Data Availability Statement: Regarding data availability, a detailed explanation is provided in
Section 2.1, along with the website for data download. For more information, please refer to
Section 2.1.

Acknowledgments: We acknowledge the ACOS GOSAT, ACOS OCO-2, and TANSAT projects for
providing the XCO, data archives. The GOSAT and OCO-2 data were obtained from the OCO-2
data archive maintained at the NASA Goddard Earth Science Data and Information Services Center.
The TANSAT data were obtained from Xingying Zhang at National Satellite Meteorological Center,
China Meteorological Administration. The TCCON data were obtained from the TCCON Data
Archive hosted by CaltechDATA at https:/ /tccondata.org (accessed on 8 July 2023). We also express
our gratitude to the TCCON Project, especially for TCCON PIs for the TCCON measurements at
the stations of Anmyeondo, Bialystok, Burgos, Caltech, Darwin, Dryden, East Trout Lake, Eureka,
Garmisch, Hefei, Izana, Pasadena, Saga, Karlsruhe, Lauder, Ny—Alesund, Lamont, Orléans, Park
Falls, Paris, Reunion Island, Rikubetsu, Sodankyld, Tsukuba, Wollongong, and Zugspitze. The Paris
TCCON site has received funding from Sorbonne Université, the French research center CNRS, the
French space agency CNES, and Région Ile-de-France. The TCCON stations at Rikubetsu and Burgos
are supported in part by the GOSAT series project. Local support for Burgos is provided by the
Energy Development Corporation (EDC, Philippines). Darwin and Wollongong TCCON stations are
supported by ARC grantsDP160100598, LE0668470, DP140101552, DP110103118, and DP0879468.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Lenzen, M. Global Warming Effect of Leakage from CO, Storage. Crit. Rev. Environ. Sci. Technol. 2011, 41, 2169-2185. [CrossRef]

2. Al-Ghussain, L. Global warming: Review on driving forces and mitigation. Environ. Prog. Sustain. Energy 2019, 38, 13-21.
[CrossRef]

3. Sun, LY.;; Wang, M.H. Global warming and global dioxide emission: An empirical study. J. Environ. Manag. 1996, 46, 327-343.
[CrossRef]

4. Williams, R.G.; Roussenov, V.; Goodwin, P.; Resplandy, L.; Bopp, L. Sensitivity of Global Warming to Carbon Emissions: Effects of
Heat and Carbon Uptake in a Suite of Earth System Models. J. Clim. 2017, 30, 9343-9363. [CrossRef]

5. IPCC. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the
Intergovernmental Panel on Climate Change; IPCC: Cambridge, UK; New York, NY, USA, 2013.

6. Cao,].; Ho, M,; Liu, Q.F. Analyzing multi-greenhouse gas mitigation of China using a general equilibrium model. Environ. Res.
Lett. 2023, 18, 025001. [CrossRef]

7. Wen, Z.G,; Di, ].H,; Yu, X W,; Zhang, X. Analyses of CO;, mitigation roadmap in China’s power industry: Using a Backcasting
Model. Appl. Energy 2017, 205, 644-653. [CrossRef]

8.  Crisp, D. Retrieving CO, from GOSAT observations using the ACOS/OCO-2 retrieval algorithm. In Proceedings of the 39th
COSPAR Scientific Assembly, Mysore, India, 14-22 July 2012; p. 377.

9. Bi, Y;Wang, Q; Yang, Z.; Chen, |.; Bai, W. Validation of Column-Averaged Dry-Air Mole Fraction of CO, Retrieved from OCO-2
Using Ground-Based FTS Measurements. J. Meteorol. Res. 2018, 32, 433—443. [CrossRef]

10. O’Dell, C.W.; Connor, B.; Bosch, H.; O'Brien, D.; Frankenberg, C.; Castano, R.; Christi, M.; Crisp, D.; Eldering, A ; Fisher, B.; et al.
The ACOS CO; retrieval algorithm—Part 1: Description and validation against synthetic observations. Atmos. Meas. Tech. 2012, 5,
99-121. [CrossRef]

11. Liu, Y; Yang, D.; Cai, Z. A retrieval algorithm for TanSat XCO, observation: Retrieval experiments using GOSAT data. Chin. Sci.
Bull. 2013, 58, 1520-1523. [CrossRef]

12.  Liu, Y,; Cai, Z.N.; Yang, D.X.; Zheng, Y.Q.; Duan, M.Z.; Lu, D.R. Effects of spectral sampling rate and range of CO, absorption
bands on XCOj retrieval from TanSat hyperspectral spectrometer. Chin. Sci. Bull. 2014, 59, 1485-1491. [CrossRef]

13.  Zhou, M.; Zhang, X.; Wang, P.; Wang, S.; Guo, L.; Hu, L. XCO; satellite retrieval experiments in short-wave infrared spectrum
and ground-based validation. Sci. China-Earth Sci. 2015, 58, 1191-1197. [CrossRef]

14.  Yoshida, Y.; Kikuchi, N.; Morino, I.; Uchino, O.; Oshchepkov, S.; Bril, A.; Saeki, T.; Schutgens, N.; Toon, G.C.; Wunch, D.; et al.

Improvement of the retrieval algorithm for GOSAT SWIR XCO, and XCH,4 and their validation using TCCON data. Atmos. Meas.
Tech. 2013, 6, 1533-1547. [CrossRef]


https://tccondata.org
https://doi.org/10.1080/10643389.2010.497442
https://doi.org/10.1002/ep.13041
https://doi.org/10.1006/jema.1996.0025
https://doi.org/10.1175/JCLI-D-16-0468.1
https://doi.org/10.1088/1748-9326/acb0e7
https://doi.org/10.1016/j.apenergy.2017.08.026
https://doi.org/10.1007/s13351-018-7118-6
https://doi.org/10.5194/amt-5-99-2012
https://doi.org/10.1007/s11434-013-5680-y
https://doi.org/10.1007/s11434-014-0215-8
https://doi.org/10.1007/s11430-015-5080-z
https://doi.org/10.5194/amt-6-1533-2013

Remote Sens. 2023, 15, 5073 18 of 20

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

Yang, D.; Boesch, H.; Liu, Y.; Somkuti, P.; Cai, Z.; Chen, X; Di Noia, A.; Lin, C.; Lu, N.; Lyu, D.; et al. Toward High Precision
XCO; Retrievals from TanSat Observations: Retrieval Improvement and Validation Against TCCON Measurements. J. Geophys.
Res. Atmos. 2020, 125, €2020]D032794. [CrossRef] [PubMed]

Someya, Y.; Yoshida, Y.; Ohyama, H.; Nomura, S.; Kamei, A.; Morino, I.; Mukai, H.; Matsunaga, T.; Laughner, ].L.; Velazco, V.A,;
et al. Update on the GOSAT TANSO-FTS SWIR Level 2 retrieval algorithm. Atmos. Meas. Tech. 2023, 16, 1477-1501. [CrossRef]
David, L.; Breon, F-M.; Chevallier, F. XCO, estimates from the OCO-2 measurements using a neural network approach. Atmos.
Meas. Tech. 2021, 14, 117-132. [CrossRef]

Liu, R.-X,; Zhang, X.-Y.; Liu, J.; Liu, Y.-G. A Spatial-Temporal Distribution Characteristics Study on The Atmospheric Carbon
Dioxide Observed By Gosat Satellite Remote Sensing. J. Trop. Meteorol. 2015, 21, 408—416.

Golkar, F.; Mousavi, S.M. Variation of XCO, anomaly patterns in the Middle East from OCO-2 satellite data. Int. . Digit. Earth
2022, 15, 1219-1235. [CrossRef]

Mustafa, F; Bu, L.; Wang, Q.; Ali, M.; Bilal, M.; Shahzaman, M.; Qiu, Z. Multi-Year Comparison of CO, Concentration from
NOAA Carbon Tracker Reanalysis Model with Data from GOSAT and OCO-2 over Asia. Remote Sens. 2020, 12, 2498. [CrossRef]
Hammerling, D.M.; Michalak, AM.; O’Dell, C.; Kawa, S.R. Global CO, distributions over land from the Greenhouse Gases
Observing Satellite (GOSAT). Geophys. Res. Lett. 2012, 39, L08804. [CrossRef]

Jiang, F; Ju, W.; He, W.; Wu, M.; Wang, H.; Wang, |.; Jia, M,; Feng, S.; Zhang, L.; Chen, ] M. A 10-year global monthly averaged
terrestrial net ecosystem exchange dataset inferred from the ACOS GOSAT v9 XCO; retrievals (GCAS2021). Earth Syst. Sci. Data
2022, 14, 3013-3037. [CrossRef]

Patra, PK.; Hajima, T.; Saito, R.; Chandra, N.; Yoshida, Y.; Ichii, K.; Kawamiya, M.; Kondo, M.; Ito, A.; Crisp, D. Evaluation of
earth system model and atmospheric inversion using total column CO, observations from GOSAT and OCO-2. Prog. Earth Planet.
Sci. 2021, 8, 25. [CrossRef]

Philip, S.; Johnson, M.S.; Baker, D.E; Basu, S.; Tiwari, Y.K.; Indira, N.K.; Ramonet, M.; Poulter, B. OCO-2 Satellite-Imposed
Constraints on Terrestrial Biospheric CO, Fluxes Over South Asia. J. Geophys. Res. Atmos. 2022, 127, €2021JD035035. [CrossRef]
He, W,; Jiang, E; Ju, W.; Chevallier, F; Baker, D.F.; Wang, J.; Wu, M.; Johnson, M.S.; Philip, S.; Wang, H.; et al. Improved Constraints
on the Recent Terrestrial Carbon Sink Over China by Assimilating OCO-2 XCO, Retrievals. |. Geophys. Res. Atmos. 2023, 128,
€2022]D037773. [CrossRef]

Yang, D.; Zhang, H.; Liu, Y.; Chen, B.; Cai, Z.; Lii, D. Monitoring carbon dioxide from space: Retrieval algorithm and flux
inversion based on GOSAT data and using CarbonTracker-China. Adv. Atmos. Sci. 2017, 34, 965-976. [CrossRef]

Jiang, E; He, W.; Ju, W.; Wang, H.; Wu, M.; Wang, J.; Feng, S.; Zhang, L.; Chen, ].M. The status of carbon neutrality of the world’s
top 5 CO, emitters as seen by carbon satellites. Fundam. Res. 2022, 2, 357-366. [CrossRef]

Jiang, F; Chen, J.M.; Zhou, L.X; Ju, WM.; Zhang, H.F,; Machida, T.; Ciais, P,; Peters, W.; Wang, HM.; Chen, B.Z,; et al. A
comprehensive estimate of recent carbon sinks in China using both top-down and bottom-up approaches. Sci. Rep. 2016, 6, 22130.
[CrossRef] [PubMed]

Chevallier, E; Broquet, G.; Zheng, B.; Ciais, P.; Eldering, A. Large CO, Emitters as Seen from Satellite: Comparison to a Gridded
Global Emission Inventory. Geophys. Res. Lett. 2022, 49, e2021GL097540. [CrossRef] [PubMed]

Zhang, H.E,; Chen, B.Z,; van der Laan-Luijkx, I.T.; Chen, J.; Xu, G.; Yan, ] W.; Zhou, L.X,; Fukuyama, Y.; Tans, P.P.; Peters, W. Net
terrestrial CO, exchange over China during 2001-2010 estimated with an ensemble data assimilation system for atmospheric CO,.
J. Geophys. Res. Atmos. 2014, 119, 3500-3515. [CrossRef]

Piao, S.L.; Ciais, P; Lomas, M.; Beer, C.; Liu, H.Y.; Fang, ].Y.; Friedlingstein, P.; Huang, Y.; Muraoka, H.; Son, YH.; et al.
Contribution of climate change and rising CO, to terrestrial carbon balance in East Asia: A multi-model analysis. Glob. Planet.
Change 2011, 75, 133-142. [CrossRef]

Chen, B.; Zhang, H.; Wang, T.; Zhang, X. An atmospheric perspective on the carbon budgets of terrestrial ecosystems in China:
Progress and challenges. Sci. Bull. 2021, 66, 1713-1718. [CrossRef]

Guerlet, S.; Butz, A.; Schepers, D.; Basu, S.; Hasekamp, O.P,; Kuze, A.; Yokota, T.; Blavier, J.F.,; Deutscher, N.M.; Griffith, D.W.T,;
et al. Impact of aerosol and thin cirrus on retrieving and validating XCO, from GOSAT shortwave infrared measurements. J.
Geophys. Res. Atmos. 2013, 118, 4887—4905. [CrossRef]

Wang, Y.; Tian, X.; Chevallier, F; Johnson, M.S.; Philip, S.; Baker, D.E; Schuh, A.E.; Deng, F.; Zhang, X.; Zhang, L.; et al.
Constraining China’s land carbon sink from emerging satellite CO, observations: Progress and challenges. Glob. Change Biol.
2022, 28, 6838-6846. [CrossRef] [PubMed]

Zhang, L.L.; Yue, T.X,; Wilson, ].P.; Zhao, N.; Zhao, Y.P; Du, Z.P; Liu, Y. A comparison of satellite observations with the XCO(2)
surface obtained by fusing TCCON measurements and GEOS-Chem model outputs. Sci. Total Environ. 2017, 601-602, 1575-1590.
[CrossRef] [PubMed]

Kong, Y.; Chen, B.; Measho, S. Spatio-Temporal Consistency Evaluation of XCO; Retrievals from GOSAT and OCO-2 Based on
TCCON and Model Data for Joint Utilization in Carbon Cycle Research. Atmosphere 2019, 10, 354. [CrossRef]

Liang, A.; Gong, W.; Han, G.; Xiang, C. Comparison of Satellite-Observed XCO, from GOSAT, OCO-2, and Ground-Based
TCCON. Remote Sens. 2017, 9, 1033. [CrossRef]

Hong, X.; Zhang, P; Bi, Y,; Liu, C.; Sun, Y.; Wang, W.; Chen, Z,; Yin, H.; Zhang, C.; Tian, Y.; et al. Retrieval of Global Carbon
Dioxide from TanSat Satellite and Comprehensive Validation with TCCON Measurements and Satellite Observations. IEEE Trans.
Geosci. Remote Sens. 2022, 60, 1-16. [CrossRef]


https://doi.org/10.1029/2020JD032794
https://www.ncbi.nlm.nih.gov/pubmed/33777605
https://doi.org/10.5194/amt-16-1477-2023
https://doi.org/10.5194/amt-14-117-2021
https://doi.org/10.1080/17538947.2022.2096936
https://doi.org/10.3390/rs12152498
https://doi.org/10.1029/2012GL051203
https://doi.org/10.5194/essd-14-3013-2022
https://doi.org/10.1186/s40645-021-00420-z
https://doi.org/10.1029/2021JD035035
https://doi.org/10.1029/2022JD037773
https://doi.org/10.1007/s00376-017-6221-4
https://doi.org/10.1016/j.fmre.2022.02.001
https://doi.org/10.1038/srep22130
https://www.ncbi.nlm.nih.gov/pubmed/26924637
https://doi.org/10.1029/2021GL097540
https://www.ncbi.nlm.nih.gov/pubmed/35859934
https://doi.org/10.1002/2013JD021297
https://doi.org/10.1016/j.gloplacha.2010.10.014
https://doi.org/10.1016/j.scib.2021.05.017
https://doi.org/10.1002/jgrd.50332
https://doi.org/10.1111/gcb.16412
https://www.ncbi.nlm.nih.gov/pubmed/36324217
https://doi.org/10.1016/j.scitotenv.2017.06.018
https://www.ncbi.nlm.nih.gov/pubmed/28609846
https://doi.org/10.3390/atmos10070354
https://doi.org/10.3390/rs9101033
https://doi.org/10.1109/TGRS.2022.3172371

Remote Sens. 2023, 15, 5073 19 of 20

39.

40.

41.

42.

43.

44.

45.

46.
47.

48.

49.

50.

51.

52.

53.
54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

Liang, A.; Han, G.; Gong, W.; Yang, ].; Xiang, C. Comparison of Global XCO, Concentrations From OCO-2 With TCCON Data in
Terms of Latitude Zones. IEEE ]. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 2491-2498. [CrossRef]

Zhang, H.; Chen, B.; Xu, G.; Yan, J.; Che, M; Chen, J.; Fang, S.; Lin, X,; Sun, S. Comparing simulated atmospheric carbon dioxide
concentration with GOSAT retrievals. Sci. Bull. 2015, 60, 380-386. [CrossRef]

Crisp, D.; Pollock, H.R.; Rosenberg, R.; Chapsky, L.; Lee, R. A.M.; Oyafuso, F.A.; Frankenberg, C.; O’'Dell, C.W.; Bruegge, C.J.;
Doran, G.B.; et al. The on-orbit performance of the Orbiting Carbon Observatory-2 (OCO-2) instrument and its radiometrically
calibrated products. Atmos. Meas. Tech. 2017, 10, 59-81. [CrossRef]

Ran, Y,; Li, X. TanSat: A new star in global carbon monitoring from China. Sci. Bull. 2019, 64, 284-285. [CrossRef]

Liu, Y.; Wang, J.; Che, K,; Cai, Z.; Yang, D.; Wu, L. Satellite remote sensing of greenhouse gases: Progress and trends. J. Remote
Sens. 2021, 25, 53-64. [CrossRef]

Suto, H.; Kataoka, F.; Kikuchi, N.; Knuteson, R.O.; Butz, A.; Haun, M.; Buijs, H.; Shiomi, K.; Imai, H.; Kuze, A. Thermal and
near-infrared sensor for carbon observation Fourier transform spectrometer-2 (TANSO-FTS-2) on the Greenhouse gases Observing
SATellite-2 (GOSAT-2) during its first year in orbit. Atmos. Meas. Tech. 2021, 14, 2013-2039. [CrossRef]

O’Dell, C.; Osterman, G. Retrievals of Carbon Dioxide from GOSAT Using the Atmospheric CO, Observations from Space
(ACOS) Algorithm Level 2 Standard Product and Lite Data Product Data User’s Guide, v9. 2020. Available online: https:
/ /docserver.gesdisc.eosdis.nasa.gov/public/project/ OCO/ACOS_v9_DataUsersGuide.pdf (accessed on 6 August 2023).
Available online: https://disc.gsfc.nasa.gov/ (accessed on 6 August 2023).

Merrelli, A.; Bennartz, R.; O'Dell, C.W.,; Taylor, T.E. Estimating bias in the OCO-2 retrieval algorithm caused by 3-D radiation
scattering from unresolved boundary layer clouds. Atmos. Meas. Tech. 2015, 8, 1641-1656. [CrossRef]

Crisp, D.; Atlas, RM.; Breon, EM.; Brown, L.R.; Burrows, J.P.; Ciais, P.; Connor, B.].; Doney, S.C.; Fung, LY.; Jacob, D.J.; et al.
The orbiting carbon observatory (OCO) mission. In Trace Constituents in the Troposphere and Lower Stratosphere; Burrows, J.P.,
Thompson, A.M., Eds.; The Committee by Pergamon Press: New York, NY, USA, 2004; Volume 34, pp. 700-709.

Kong, YW.; Zheng, B.; Zhang, Q.; He, K.B. Global and regional carbon budget for 2015-2020 inferred from OCO-2 based on an
ensemble Kalman filter coupled with GEOS-Chem. Atmos. Chem. Phys. 2022, 22, 10769-10788. [CrossRef]

Crisp, D.; O'Dell, C.; Eldering, A. Level 2 Full Physics Retrieval Algorithm Theoretical Basis. 2021. Available online: https:
/ /docserver.gesdisc.eosdis.nasa.gov/public/project/OCO/OCO_L2_ATBD.pdf (accessed on 6 August 2023).

Eldering, A.; O’Dell, CW.; Wennberg, P.O.; Crisp, D.; Gunson, M.R.; Viatte, C.; Avis, C.; Braverman, A.; Castano, R.; Chang,
A.; et al. The Orbiting Carbon Observatory-2: First 18 months of science data products. Atmos. Meas. Tech. 2017, 10, 549-563.
[CrossRef]

Liu, Y,; Wang, J.; Yao, L.; Chen, X,; Cai, Z.; Yang, D.; Yin, Z.; Gu, S.; Tian, L.; Lu, N.; et al. The TanSat mission: Preliminary global
observations. Sci. Bull. 2018, 63, 1200-1207. [CrossRef] [PubMed]

Liu, Y;; Yao, L.; Wang, J.; Yang, D. Application status of Chinese carbon satellite data. Satell. Appl. 2022, 2022, 46-50.

Yang, D.; Liu, Y.; Boesch, H.; Yao, L.; Di Noia, A.; Cai, Z.; Lu, N.; Lyu, D.; Wang, M.; Wang, J.; et al. A New TanSat XCO, Global
Product towards Climate Studies. Adv. Atmos. Sci. 2020, 38, 8-11. [CrossRef]

Wunch, D.; Toon, G.C.; Blavier, ].EL.; Washenfelder, R.A.; Notholt, ].; Connor, B.J.; Griffith, D.W.T.; Sherlock, V.; Wennberg, P.O.
The Total Carbon Column Observing Network. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2011, 369, 2087-2112. [CrossRef]
Wunch, D.; Wennberg, P.O.; Toon, G.C.; Connor, B.J.; Fisher, B.; Osterman, G.B.; Frankenberg, C.; Mandrake, L.; O'Dell, C;
Ahonen, P; et al. A method for evaluating bias in global measurements of CO, total columns from space. Atmos. Chem. Phys.
2011, 11, 12317-12337. [CrossRef]

Goo, T.Y,; Oh, Y.S.; Velazco, V.A. TCCON Data from Anmyeondo, South Korea, Release GGG2020R0. In TCCON Data Archive;
CaltechDATA, California Institute of Technology: Pasadena, CA, USA, 2020.

Petri, C.; Deutscher, N.; Notholt, ].; Messerschmidt, J.; Weinzierl, C.; Warneke, T.; Grupe, P.; Katrynski, K. TCCON data from
Bialystok, Poland, Release GGG2020R0. In TCCON Data Archive; CaltechDATA, California Institute of Technology: Pasadena, CA,
USA, 2020.

Morino, I.; Velazco, V.A.; Hori, A.; Uchino, O.; Griffith, D.W.T. TCCON Data from Burgos, Philippines, Release GGG2020R0. In
TCCON Data Archive; CaltechDATA, California Institute of Technology: Pasadena, CA, USA, 2020. [CrossRef]

Wennberg, P.O.; Wunch, D.; Roehl, C.; Blavier, ].E; Toon, G.C.; Allen, N. TCCON Data from California Institute of Technology,
Pasadena, California, USA, Release GGG2020R0. In TCCON Data Archive; CaltechDATA, California Institute of Technology:
Pasadena, CA, USA, 2020. [CrossRef]

Deutscher, N.M.; Griffith, D.W.T.; Paton-Walsh, C.; Velazco, V.A.; Wennberg, P.O.; Blavier, ].F.; Washenfelder, R.A ; Yavin, Y,;
Keppel-Aleks, G.; Toon, G.C. TCCON Data from Darwin (AU), Release GGG2020.R0. In TCCON Data Archive; CaltechDATA,
California Institute of Technology: Pasadena, CA, USA, 2020. [CrossRef]

Iraci, L.; Podolske, J.; Roehl, C.; Wennberg, P.O.; Blavier, ].E; Allen, N.; Wunch, D.; Osterman, G. TCCON Data from Armstrong
Flight Research Center, Edwards, CA, USA, Release GGG2020R0. In TCCON Data Archive; CaltechDATA, California Institute of
Technology: Pasadena, CA, USA, 2020. [CrossRef]

Wunch, D.; Mendonca, J.; Colebatch, O.; Allen, N.; Blavier, ].EL.; Kunz, K.; Roche, S.; Hedelius, J.; Neufeld, G.; Springett, S.; et al.
TCCON Data from East Trout Lake, Canada, Release GGG2020R0. In TCCON Data Archive; CaltechDATA, California Institute of
Technology: Pasadena, CA, USA, 2020. [CrossRef]


https://doi.org/10.1109/JSTARS.2017.2650942
https://doi.org/10.1007/s11434-014-0676-9
https://doi.org/10.5194/amt-10-59-2017
https://doi.org/10.1016/j.scib.2019.01.019
https://doi.org/10.11834/jrs.20210081
https://doi.org/10.5194/amt-14-2013-2021
https://docserver.gesdisc.eosdis.nasa.gov/public/project/OCO/ACOS_v9_DataUsersGuide.pdf
https://docserver.gesdisc.eosdis.nasa.gov/public/project/OCO/ACOS_v9_DataUsersGuide.pdf
https://disc.gsfc.nasa.gov/
https://doi.org/10.5194/amt-8-1641-2015
https://doi.org/10.5194/acp-22-10769-2022
https://docserver.gesdisc.eosdis.nasa.gov/public/project/OCO/OCO_L2_ATBD.pdf
https://docserver.gesdisc.eosdis.nasa.gov/public/project/OCO/OCO_L2_ATBD.pdf
https://doi.org/10.5194/amt-10-549-2017
https://doi.org/10.1016/j.scib.2018.08.004
https://www.ncbi.nlm.nih.gov/pubmed/36751089
https://doi.org/10.1007/s00376-020-0297-y
https://doi.org/10.1098/rsta.2010.0240
https://doi.org/10.5194/acp-11-12317-2011
https://doi.org/10.14291/tccon.ggg2020.burgos01.R0
https://doi.org/10.14291/tccon.ggg2020.pasadena01.R0
https://doi.org/10.14291/tccon.ggg2020.darwin01.R0
https://doi.org/10.14291/tccon.ggg2020.edwards01.R0
https://doi.org/10.14291/tccon.ggg2020.easttroutlake01.R0

Remote Sens. 2023, 15, 5073 20 of 20

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

77.

78.

79.

80.

81.

82.

83.

84.

85.

86.

Strong, K.; Roche, S.; Franklin, J.E.; Mendonca, J.; Lutsch, E.; Weaver, D.; Fogal, PF; Drummond, J.R.; Batchelor, R.; Lindenmaier,
R. TCCON data from Eureka, Canada, Release GGG2020R0. In TCCON Data Archive; CaltechDATA, California Institute of
Technology: Pasadena, CA, USA, 2020. [CrossRef]

Sussmann, R.; Rettinger, M. TCCON data from Garmisch, Germany, Release GGG2020R0. In TCCON Data Archive; CaltechDATA,
California Institute of Technology: Pasadena, CA, USA, 2020. [CrossRef]

Cheng, L.; Wang, W.; Sun, Y. TCCON data from Hefei, China, Release GGG2020R0. In TCCON Data Archive; CaltechDATA,
California Institute of Technology: Pasadena, CA, USA, 2020. [CrossRef]

Blumenstock, T.; Hase, F.; Schneider, M.; Garca, O.E.; Sepulveda, E. TCCON Data from Izana, Tenerife, Spain, Release GGG2020R0.
In TCCON Data Archive; CaltechDATA, California Institute of Technology: Pasadena, CA, USA, 2020.

Wennberg, P.O.; Roehl, C.; Blavier, J.E; Wunch, D.; Landeros, J.; Allen, N. TCCON data from Jet Propulsion Laboratory, Pasadena,
California, USA, Release GGG2020R0. In TCCON Data Archive; CaltechDATA, California Institute of Technology: Pasadena, CA,
USA, 2020. [CrossRef]

Shiomi, K.; Kawakami, S.; Ohyama, H.; Arai, K.; Okumura, H.; Ikegami, H.; Usami, M. TCCON data from Saga, Japan, Release
GGG2020R0. In TCCON Data Archive; CaltechDATA, California Institute of Technology: Pasadena, CA, USA, 2020. [CrossRef]
Hase, F.; Blumenstock, T.; Dohe, S.; Grof, J.; Kiel, M. TCCON data from Karlsruhe, Germany, Release GGG2020R1. In TCCON
Data Archive; CaltechDATA, California Institute of Technology: Pasadena, CA, USA, 2020. [CrossRef]

Sherlock, V.; Connor, B.; Robinson, ]J.; Shiona, H.; Smale, D.; Pollard, D. TCCON data from Lauder, New Zealand, 125HR, Release
GGG2020R0. In TCCON Data Archive; CaltechDATA, California Institute of Technology: Pasadena, CA, USA, 2020. [CrossRef]
Buschmann, M.; Petri, C.; Palm, M.; Warneke, T.; Notholt, J.; Engineers, A.S. TCCON data from Ny-Alesund, Svalbard, Norway,
Release GGG2020R0. In TCCON Data Archive; CaltechDATA, California Institute of Technology: Pasadena, CA, USA, 2020.
[CrossRef]

Wennberg, P.O.; Wunch, D.; Roehl, C.; Blavier, ].E,; Toon, G.C.; Allen, N.; Dowell, P,; Teske, K.; Martin, C.; Martin, ]. TCCON data
from Lamont, Oklahoma, USA, Release GGG2020R0. In TCCON Data Archive; CaltechDATA, California Institute of Technology:
Pasadena, CA, USA, 2020. [CrossRef]

Warneke, T.; Messerschmidt, J.; Notholt, J.; Weinzierl, C.; Deutscher, N.; Petri, C.; Grupe, P.; Vuillemin, C.; Truong, F; Schmidt, M.;
et al. TCCON data from Orleans, France, Release GGG2020R0. In TCCON Data Archive; CaltechDATA, California Institute of
Technology: Pasadena, CA, USA, 2020. [CrossRef]

Wennberg, P.O.; Roehl, C.; Wunch, D.; Toon, G.C.; Blavier, ].E.; Washenfelder, R.; Keppel-Aleks, G.; Allen, N.; Ayers, ]. TCCON
data from Park Falls, Wisconsin, USA, Release GGG2020R1. In TCCON Data Archive; CaltechDATA, California Institute of
Technology: Pasadena, CA, USA, 2020.

Te, Y.; Jeseck, P,; Janssen, C. TCCON data from Paris, France, Release GGG2020R0. In TCCON Data Archive; CaltechDATA,
California Institute of Technology: Pasadena, CA, USA, 2020. [CrossRef]

De Maziere, M.; Sha, M.K,; Desmet, F.; Hermans, C.; Scolas, F.; Kumps, N.; Zhou, M.; Metzger, ]. M.; Duflot, V.; Cammas, J.P.
TCCON data from Reunion Island (La Reunion), France, Release GGG2020R0. In TCCON Data Archive; CaltechDATA, California
Institute of Technology: Pasadena, CA, USA, 2020. [CrossRef]

Morino, I.; Ohyama, H.; Hori, A.; Ikegami, H. TCCON data from Rikubetsu, Hokkaido, Japan, Release GGG2020R0. In TCCON
Data Archive; CaltechDATA, California Institute of Technology: Pasadena, CA, USA, 2020. [CrossRef]

Kivi, R.; Heikkinen, P.; Kyro, E. TCCON data from Sodankyla, Finland, Release GGG2020R0. In TCCON Data Archive; Caltech-
DATA, California Institute of Technology: Pasadena, CA, USA, 2020. [CrossRef]

Morino, I.; Ohyama, H.; Hori, A.; Ikegami, H. TCCON Data from Tsukuba, Ibaraki, Japan, 125HR, Release GGG2020R0. In
TCCON Data Archive; CaltechDATA, California Institute of Technology: Pasadena, CA, USA, 2020. [CrossRef]

Deutscher, N.M.; Griffith, D.W.T.; Paton-Walsh, C.; Jones, N.B.; Velazco, V.A. TCCON data from Wollongong (AU), Release
GGG2020R0. In TCCON Data Archive; CaltechDATA, California Institute of Technology: Pasadena, CA, USA, 2020. [CrossRef]
Sussmann, R.; Rettinger, M. TCCON data from Zugspitze, Germany, Release GGG2020R0. In TCCON Data Archive; CaltechDATA,
California Institute of Technology: Pasadena, CA, USA, 2020.

Zhong, J.; Zhang, X.; Guo, L.; Wang, D.; Miao, C.; Zhang, X. Ongoing CO, monitoring verify CO, emissions and sinks in China
during 2018-2021. Sci. Bull. 2023, in press. [CrossRef]

Kataoka, F,; Crisp, D.; Taylor, T.; O’Dell, C.; Kuze, A.; Shiomi, K.; Suto, H.; Bruegge, C.; Schwandner, F.; Rosenberg, R.; et al. The
Cross-Calibration of Spectral Radiances and Cross-Validation of CO, Estimates from GOSAT and OCO-2. Remote Sens. 2017, 9,
1158. [CrossRef]

Wunch, D.; Wennberg, P.O.; Osterman, G.; Fisher, B.; Naylor, B.; Roehl, C.M.; O'Dell, C.; Mandrake, L.; Viatte, C.; Kiel, M.; et al.
Comparisons of the Orbiting Carbon Observatory-2 (OCO-2) X-CO, measurements with TCCON. Atmos. Meas. Tech. 2017, 10,
2209-2238. [CrossRef]

Bao, Z.; Zhang, X.; Yue, T.; Zhang, L.; Wang, Z.; Jiao, Y.; Bai, W.; Meng, X. Retrieval and Validation of XCO, from TanSat Target
Mode Observations in Beijing. Remote Sens. 2020, 12, 3063. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.


https://doi.org/10.14291/tccon.ggg2020.eureka01.R0
https://doi.org/10.14291/tccon.ggg2020.garmisch01.R0
https://doi.org/10.14291/tccon.ggg2020.hefei01.R0
https://doi.org/10.14291/tccon.ggg2020.jpl02.R0
https://doi.org/10.14291/tccon.ggg2020.saga01.R0
https://doi.org/10.14291/tccon.ggg2020.karlsruhe01.R1
https://doi.org/10.14291/tccon.ggg2020.lauder02.R0
https://doi.org/10.14291/tccon.ggg2020.nyalesund01.R0
https://doi.org/10.14291/tccon.ggg2020.lamont01.R0
https://doi.org/10.14291/tccon.ggg2020.orleans01.R0
https://doi.org/10.14291/tccon.ggg2020.paris01.R0
https://doi.org/10.14291/tccon.ggg2020.reunion01.R0
https://doi.org/10.14291/tccon.ggg2020.rikubetsu01.R0
https://doi.org/10.14291/tccon.ggg2020.sodankyla01.R0
https://doi.org/10.14291/tccon.ggg2020.tsukuba02.R0
https://doi.org/10.14291/tccon.ggg2020.wollongong01.R0
https://doi.org/10.1016/j.scib.2023.08.039
https://doi.org/10.3390/rs9111158
https://doi.org/10.5194/amt-10-2209-2017
https://doi.org/10.3390/rs12183063

	Introduction 
	Materials and Methods 
	Datasats 
	Greenhouse Gases Observing Satellite (GOSAT) 
	Orbiting Carbon Observatory-2 (OCO-2) 
	China’s Carbon Dioxide Observation Satellite (TANSAT) 
	Total Carbon Column Observing Network (TCCON) 

	Methods 
	Data Screening Method for TCCON 
	Spatiotemporal Collocation Criterion for Intercomparison among Satellites 
	Matching Criteria for Satellites and TCCON 
	Disparity Assessment 


	Results 
	Spatial Coverage Characteristics of XCO2 from Satellites 
	The Intercomparison of XCO2 from Satellites 
	Comparison of XCO2: Seasonal, Spatial, and Latitudinal Aspects 
	Comparison of XCO2: Seasonal, Spatial, and Latitudinal Aspects 

	Evaluation of XCO2 between Satellites and TCCON 
	Evaluation of XCO2 at Annual Scale 
	Evaluation of XCO2 at Seasonal and Hemispheric Scales 


	Discussion and Conclusions 
	Discussion and Recommendation 
	Conclusions 

	References

