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Abstract: The efficiency and accuracy of grid-based computational fluid dynamics methods are
strongly dependent on the chosen cell size. The computational time increases exponentially with
decreasing cell size. Therefore, a grid coarsing technology without apparent precision loss is essential
for various numerical modeling methods. In this article, a physical adaption neural network (PANN)
is proposed to optimize coarse grid representation from a fine grid. A new convolutional neural
network is constructed to achieve a significant reduction in computational cost while maintaining
a relatively accurate solution. An application to numerical modeling of dynamic processes in
landslides is firstly carried out, and better results are obtained compared to the baseline method. More
applications in various flood scenarios in mountainous areas are then analyzed. It is demonstrated
that the proposed PANN downscaling method outperforms other currently widely used downscaling
methods. The code is publicly available and can be applied broadly. Computing by PANN is
hundreds of times more efficient, meaning that it is significant for the numerical modeling of various
complicated Earth-surface flows and their applications.

Keywords: physical adaption neural network; numerical modeling; downscaling; landslide; partial
differential equations; topography

1. Introduction

Computational fluid dynamics (CFD) is an effective way to explain natural phenomena;
such problems are usually solved numerically, since no closed-form solution is available
for most of them [1]. Classical numerical computational methods, such as finite difference,
finite volume, finite element, and pseudo-spectral methods [2–4] have been used to obtain
great achievements in the simulation of Earth-surface flows, such as landslides, floods,
debris flows, avalanches [5,6], etc. Generally, accuracy and efficiency are the two major
indicators in evaluating the performance of numerical models. These can be improved by
(1) adjusting different terms in the equations to explain the detailed behavior of physical
phenomena [7]; (2) adopting different orders of precision to restrict discretization inaccu-
racy on the premise of ensuring numerical stability [8]; and (3) optimizing the scale and
dimensionality of modeling for specific problems [9]. Accuracy and efficiency are often in
conflict with each other, and a compromise is commonly sought in practical applications.
Much work has been conducted by previous scholars to optimize this problem. In this
study, a physical adaption neural network (PANN) focuses on the third aspect above,
aiming to simplify the numerical model while preserving computational accuracy.

With rapid developments in surveying in recent decades, techniques such as Light
Detection and Ranging (LiDAR) and Interferometric Synthetic Aperture Radar (InSAR)
have been adopted to obtain high-resolution digital terrain models (DTMs) and digital
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elevation models (DEMs) [10,11]. While utilizing high-resolution digital elevation maps
can enhance the accuracy of numerical models, it also comes at the cost of increased com-
putational time. To address this challenge, various computational technologies have been
employed to improve solving efficiency. Paralleling skills such as Message Passing Interface
(MPI), Open Multi Processing (Open-MP), and Graphical Processing Units (GPUs) have
been largely applied to speed up numerical modelling [12,13]. Adaptive mesh refinement
(AMR) has also been used to change the grid size in different computational domains, and
high-precision solutions have been obtained [14]. In addition, Filelis-Papadopoulos [15]
adopted the multigrid (MG) method to effectively improve the convergence speed of an
iterative algorithm through conversion between a coarse mesh and a fine mesh. Further,
with the advent of the big data era [16], DL methods have also been employed to accelerate
CFD simulations. One general idea is to train a neural network to minimize the residual
of partial differential equations (PDEs) as a proxy model for solving PDEs [17–19]. How-
ever, due to the complexity of nonlinear systems, these DL methods face challenges in
generalizing beyond the training domain [20,21].

Grid downscaling is another effective method for accelerating CFD by spatially predict-
ing unknown values from high to low resolution. Traditional downscaling approaches, such
as those based on linear, polynomial, spline, and radial basis functions, have been widely
used for decades [22–24]. However, these fixed-parameter algorithms often result in severe
terrain distortion and inaccurate simulations in practical applications. Recently, convolu-
tional neural networks (CNNs) have stood out among the DL models due to their powerful
abilities of local perception, parameter sharing, and representational learning [25,26], but
most of the related research has only focused on image recognition, semantic segmentation,
or object detection [27]. An innovative and feasible attempt could be made to use CNNs
for terrain grid downscaling. Both images and terrain grids are structured data, which
inspired us to build a novel CNN model called PANN for terrain grid downscaling to
reduce the input error (terrain elevation) to accelerate CFD. Inspired by the ’s usage of
machine learning [28,29] for flood modeling, we built PANN to optimize coarse grid rep-
resentation from a fine grid to enable a significant reduction in computational cost, while
maintaining an accurate solution. This research demonstrates, for the first time, that PANN
learns to downscale effectively from PDEs and has the ability to perceive physical processes
in real cases.

2. The Proposed Method
2.1. Overview of the Computational Framework

In this study, we propose a novel downscaling technology, PANN, to learn and retain
the physical details from partial differential equations (PDEs) that fit the characteristics
of a dynamic process, as shown in Figure 1. Firstly, the input fine-grid terrain map is
downscaled to a coarse-grid terrain map by PANN. Next, identical randomly generated
initial and boundary conditions are applied to both terrains multiple times. The utilization
of boundary and initial conditions generated by random functions aims to restore the
movement and coverage of a variety of fluids in the real world as much as possible.
Moreover, this augmentation of datasets helps to mitigate the risk of model overfitting [30].
Then, the same numerical solver configuration is used to compute both solutions at the
same time steps. After that, the difference between the two solutions is calculated through
the grid. Finally, the PANN is optimized via back propagation to reduce the loss until the
model converges [31].

More specifically, the adopted numerical solver is the depth-integrated continuum
method (namely, Massflow) [32], which translates the three-dimensional Navier–Stokes
(N–S) equations into two-dimensional mass and momentum equations, realizing efficient
numerical modeling of the surface dynamic process. In fact, friction terms can also be
adjusted to suit different simulated disaster types, and the model can also learn different
sampling characteristics through this.
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2.2. Physical Adaption Neural Network (PANN)

It has been proved that the convolutional neural network (CNN) has excellent ability
in pattern recognition, feature extraction [33,34], etc. As depicted in Figure 1, the designed
PANN uses a standard convolutional structure with dilation [35] as its basic unit, and the
convolutional parameters are adjusted at different levels to control the output size.

The convolutional input of the PANN convolutional layers is composed of a digital
terrain elevation model, with a shape of a 1-channel matrix of size 2000 × 2000 with 1 m
resolution. In the first convolutional layer, a 7 × 7 convolutional kernel is employed
to achieve a larger receptive field, enabling the model to capture more morphological
information from the surrounding terrain. For the subsequent convolutional layers, fixed
3 × 3 convolutional kernels are used to progressively coarsen the grid. Additionally,
PANN incorporates average/max pooling in the output layer to fuse more original terrain
information. As a result, the final output is a 1-channel coarsened terrain model of size
125 × 125 with 16 m resolution, downsampled by a factor of 16.

The downscaling ratio can be adjusted according to the needs of the task. For example,
for R-dimensional modeling problems, limited by the Courant–Friedrichs–Lewy (CFL)
condition, an xR+1-times speedup can be obtained when using an x-times downs-sampling
ratio [36].

2.3. Numerical Solver with Gradients Retained

The N-S equations are a set of PDEs that can be used to describe the motion of viscous
fluid substances. When simulating surface dynamic processes, the N-S equations can be
depth-integrated to derive shallow-water equations (Equation (1)).

∂W
∂t

+
∂F
∂x

+
∂G
∂y

= S (1)

This is a hyperbolic, nonlinear system composed of mass and momentum conser-
vations PDEs, for which the matrix form can be written as Equation (2). In the formula,
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z represents the terrain height, h represents the fluid depth, and u and v represent the
velocity of fluid along the x and y axes, respectively.

W =

 h
hu
hv

, F =

 hu
hu2

huv

, G =

 hv
huv
hv2

, S =

 0
−kxgh ∂(z+h)

∂x − S f x

−kygh ∂(z+h)
∂y − S f y

 (2)

Here, S includes the pressure and bed gradients and friction. The friction term can
be chosen to suit the specific fluid properties. Two friction models are considered in this
article. For landslides, the Mohr–Coulomb model [37] has been widely adopted, as shown
in Equation (3), where δ, c, and ρ refer to the angle of internal friction, cohesion, and fluid
density, respectively.

S f = gh tan(δ) +
c
ρ

(3)

For floods, it is assumed that the basal resistance of the fluid is only controlled by the
surface roughness, and the Manning model is derived as shown in Equation (4), where n is
the Manning coefficient.

S f =
gn2(u2 + v2)

h1/3 (4)

Our proposed model, PANN, is named with reference to physical adaption because it
preserves gradients and optimizes them adaptively through partial derivatives in the solver.
In the numerical scheme, the finite difference method is used to approximate derivatives.
Due to the automatic derivation mechanism of the deep learning model, the derivate
information about terrain z can be learned by the convolutional filters in PANN, even after
thousands of time-step iterations.

2.4. Implementation Details and Optimization

To guarantee a dataset of quality and size suitable for landslide modeling, we chose
Gunnison Forest Park (106◦33′32.5′′W, 38◦41′24.2′′N; Colorado, USA) with a 1× 1 m resolu-
tion DEM as the training set. According to the landslide inventory provided by the United
States Geological Survey (https://www.usgs.gov/tools/us-landslide-inventory, accessed
on 1 January 2023), this study area is located in the Rocky Mountains, with high landslide
susceptibility, and the total coverage area is about 2000 km2.
(https://apps.nationalmap.gov/downloader/, accessed on 1 January 2023). (The optimal
experimental parameter configuration was determined through experiments, as detailed in
Supplementary Figure S3.)

Due to GPU memory constraints, we cropped the input raster of samples to 2 km × 2 km
for a total of 520 samples, using K-fold cross-validation (k = 3) [38] to guarantee model general-
ization, and randomly configured the initial and boundary conditions for them. Specifically,
they were divided into three types:

(1) Inflows and outflows of random rectangle boundaries;
(2) Random volume sources generated and moved inside the terrain;
(3) Point source flows generated inside a random upper quartile of the terrain elevation.

3. Results and Discussion
3.1. Model Verification

We used the pre-trained PANN for a case study and analyzed how it learned to
downsample adaptively from fine terrain to achieve excellent performance; the results
are shown in Figure 2. (A comparison with other methods is shown in Supplementary
Figures S1 and S2 and Supplementary Tables S1 and S2.)

https://www.usgs.gov/tools/us-landslide-inventory
https://apps.nationalmap.gov/downloader/
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It was assumed that fluid rushes in from the right boundary of the curved channel with
a significant elevation difference, as shown in Figure 2a. We utilized both nearest neighbor
interpolation as the baseline method and PANN to generate coarse terrain. Subsequently,
employing the same numerical scheme, we compared the two results with the fine solution,
and the differences are depicted in Figure 2b,c. Blue indicates fluid shallower in the coarse
grid, and red indicates fluid deeper in the coarse grid. In terms of error, it was thus
demonstrated that PANN outperformed the baseline method completely. In addition, in
order to analyze the causes of the differences, we cut a topographic section from Figure 2a
and displayed it in Figure 2d.

The a-b, c-d, e-f, g-h are the cross-sections of the channels in the fine grid. In the fine
grid (the target we aim to approach), the fluid rushes in from the g-h channel first, then
flows into the main channel c-d along the narrow e-f channel, and then flows into the
branch a–b due to the difference in gravitational potential energy. However, in the coarse
grid from the baseline method, the e–f channel is so narrow that the depth of its terrain was
erased in the process of coarsening (it can be seen from Figure 2d that it was lifted by the
surrounding terrain elevation by interpolation), causing the channel to behave like a plug,
so that most of the fluid could not rush into the c–d and a–b river channels; a large depth
error was thus generated. Both the Base and PANN methods exhibited minimal, median,
mean, and median sampling errors in the terrain height that did not exceed 2%. In terms of
standard deviation, the relative error for the Base method was 12.13%, while for PANN, it
was 1.93%. These findings indicate that the terrain distribution achieved by PANN is closer
to the fine grid, resulting in smaller terrain changes caused by sampling.

In the coarse grid obtained via the PANN method, PANN cleverly learned the physical
details from the characteristics of the dynamic process and selectively changed the depth
of channel terrain, so that the fluid could approach the same range and depth as in the fine
grid, while in the non-accumulation areas, its terrain was similar to that from the baseline
method. To explore its mechanism, we activated the gradient map of the feature layer [39],
as shown in Figure 2e. Brighter pixels in the terrain represent larger gradients, and the
model tended to prioritize optimization. It can be seen that the gradient information was
mainly retained in the region of fluid movements, where it was largest at the inflow g-h
channel, indicating that PANN was aware that the entire process was caused by upstream
influx. In the non-accumulation areas, the gradient information is close to zero, indicating
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that PANN was not interested in these areas; that is, modifying the terrain of these areas
would not improve the modeling accuracy. It stands to reason that PANN can approach
the fine solution infinitely and globally when we consider sufficient multiple conditions.

3.2. Model Application and Generalization

To assess the model robustness and generalization capacity, several validations using
real events were carried out. The Baige landslide was selected as a case study to verify the
model with Coulomb friction. Additionally, generalization of the model with Manning
friction in flood inundation modeling was examined to evaluate its applicability to different
scenarios.

(1) The Baige landslide with the Coulomb friction model

The Baige landslide (98◦42′17.98′′E, 31◦4′56.41′′N) occurred twice in total; the first
occurrence was on October 11, 2018, when about 24 × 106 m3 of material failed and rushed
into the river, inducing hazard chains [40–42]. After the incident, optical and SAR images
were merged to study the deformation characteristics before failure. At the same time,
emergency teams went to the site to obtain accurate terrain information based on UAV
aerial photogrammetry. Here, we used the resulting 1 m resolution accurate mesh solution
as the ground truth to validate the model. We took the terrain sampled by PANN as the
surface elevation, and the UAV-based DEMs were used to calculate the landslide volume
and simulate its propagation characteristics. Experiments were conducted on Massflow [43],
and the corresponding results are presented in Figure 3.
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Figure 3. (a) Snapshot of computed flow height contours of the first Baige landslide with fine terrain
regarded as ground truth to compare different downscaling models. (b) Difference thickness map of
the coarse solution downscaled by PANN. Blue indicates materials more deposited in the coarse grid,
and red indicates materials more deposited in the fine grid. (c) Difference category map of the coarse
solution downscaled by PANN. Green, yellow, and blue represent true positive, false positive, and
false negative, respectively.

It is reasonable to ask whether other downscaling technology can perform better than
the baseline but without requiring the heavy machine learning methods. In addition to
using the nearest neighbor method as the baseline, we used the two most widely used
resampling methods in the ArcMap toolbox for comparison, the Linear and Cubic methods,
as shown in Table 1. In the table, Loss represents the average deposit thickness error per
grid cell, Precision measures the proportion of true positive samples among the samples,
and Recall measures the ability of the model to correctly identify true positive samples, as
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shown in Equations (5) and (6). The larger TP, Precision, and Recall are, the better the results
are, and vice versa for FP, FN, and Loss (m). Bold font represents the best performance.

Table 1. Comparison of various resampling methods with PANN.

TP FP FN Loss (m) Precision Recall

Base 3859 1287 763 0.868593 0.7500 0.8350
Linear 3824 1264 751 0.864429 0.7516 0.8358
Cubic 3866 1227 784 0.850005 0.7591 0.8314
PANN 4043 1003 744 0.750840 0.8012 0.8446

It should be emphasized the computational time for the fine grid was 18 h 26 min 16 s,
while the 16-times coarse solution only took 17 s. Compared with the fine solution, which
had huge computational and time costs, the coarse scheme sampled by PANN achieved a
hit precision rate of more than 80% at a speedup of 3904 times. Compared with the baseline
method, the loss was reduced by 13.56%, and the Accuracy and Recall were improved by
6.83% and 1.15%, respectively. These results indicate that this technology enables rapid
and accurate assessment of similar disasters, which is crucial for disaster prevention and
post-disaster assistance.

Precision =
TP

TP + FP
(5)

Recall =
TP

TP + FN
(6)

(2) Flood Mapping with the Manning friction model

Compared with landslides, floods have a broader impact and higher frequency, with
1.81 billion people (23% of the world population) directly exposed to 1-in-100-year floods
all around the world [44,45]. Flood warning is an effective way to reduce their hazards [46].
For example, the Special Flood Hazard Area (SFHA) program carried out by the Federal
Emergency Management Agency (FEMA) realizes flood warning by implementing hydro-
dynamic inundation models on continental-scale land [47]. However, the vertical accuracy
and efficiency of large-scale terrain datasets remain the greatest barrier to obtaining accurate
flood inundation projections.

Our technology was used to test the performance of such tasks. The generalization
ability of the PANN model with Manning friction on various types of terrain was verified,
demonstrating the model’s robustness. This included three typical landforms with different
Manning coefficients, as referenced from the HEC-RAS manual. In each scenario, the inflow
was 100 m3/s steady flow, and the inflow width was set to 100 m. The inundation maps
after 1 h are compared in Figures 4–6.
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results right with a Manning coefficient of 0.15. (a,b) respectively represent the baseline results and
difference map, (c,d) respectively represent the PANN and difference map, and (e,f) respectively
represent the ground truth and RGB remote sensing images.
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robustness demonstrates the global optimization and strong generalization of PANN. 
Consequently, this technology can further promote the implementation of rapid flood in-
undation modeling at super-large spatial scales to realize accurate flood forecasting (a 

Figure 6. Wet land terrain in Jiuzhaigou, Sichuan, China. The inflow was set to the upper middle with
a Manning coefficient of 0.01. (a,b) respectively represent the baseline results and difference map,
(c,d) respectively represent the PANN results and difference map, and (e,f) respectively represent the
ground truth and RGB remote sensing images.

In Figure 4, the inundation extent of the river in the lower left corner was exaggerated
by the baseline method. In Figure 5, the walls outside the factory were smoothed out in the
baseline method, resulting in more flooding errors. In Figure 6, the baseline method was
unable to correctly represent the distorted river channel, while PANN retained the crucial
topographic information that satisfied the hydrological process. The above experiments
showed that PANN has better performance in a variety of terrain situations, which makes it
possible to generalize physical-process-based adaptive resampling methods on larger-scale
datasets in the future.
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3.3. Further Discussion

Traditional grid downscaling methods rely on statistical or fixed mathematical algo-
rithms, which do not allow for adaptive optimization as the sample data change [48]. The
above experiment proved that the proposed PANN can learn to sample from the physical
process, preserving the terrain details that meet the dynamic characteristics to achieve the
best performance. (In the cases of landslides and floods, the loss decreased by 13.56% and
59.88%, respectively.) Meanwhile, PANN is easy to deploy for different tasks exclusively.
For grids with meter-level resolution, it is recommended to utilize PANN with 16-times
downscaling because this rate strikes a favorable balance between efficiency and accuracy.
(A sensitivity analysis of the different parameters under various sampling rates can be
found in Supplementary Table S3.)

In addition, a robust model should possess continual learning ability. PANN incorpo-
rates multiple boundaries and initial conditions during the training process, demonstrating
excellent performance even in new scenarios not present in the training set. This robustness
demonstrates the global optimization and strong generalization of PANN. Consequently,
this technology can further promote the implementation of rapid flood inundation model-
ing at super-large spatial scales to realize accurate flood forecasting (a 4096-times theoretical
speedup with 16-times downscaling), which yields a step forward in our understanding of
flood risk management [49].

4. Summary and Conclusions

This research presented the introduction of PANN, a novel grid downscaling tech-
nology, aimed at reducing input errors in numerical modeling. PANN adopts a unique
approach that combines physics-guided and data-driven schemes for downscaling, surpass-
ing the performance of previous methods. The model’s robust generalization capabilities
enable accurate disaster modeling, even in new scenarios. Additionally, we verified the
effectiveness of PANN with the Coulomb and Manning models, demonstrating that the
proposed method can flexibly adjust its learning strategy and sampling rate based on
different equation forms, ensuring adherence to physical constraints. Overall, PANN repre-
sents a significant advancement in numerical model optimization and holds potential for
broader applications in diverse equation forms, which will make it possible to generalize
physical-process-based adaptive resampling methods on larger-scale datasets in the future.
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https://www.mdpi.com/article/10.3390/rs15205075/s1, Figure S1: The performance comparison be-
tween the Linear interpolation and PANN methods; Figure S2: The performance comparison between
the Cubic interpolation and PANN methods; Figure S3: The training process of PANN: Table S1: The
elevation analysis of cross-section using Linear and PANN methods.; Table S2: The elevation analysis
of cross-section using Cubic and PANN methods. Table S3: Sensitivity analysis results of different
parameters. Equations S1 to S3: Three different loss functions tested in this research.
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