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1. Figure S1 illustrates the performance comparison between the Linear interpolation 
and PANN methods in Section 3.1 of the main text. (a) corresponds to the cross-section 
shown in Figure 3 of the main text, while (b) and (c) compare the performance of the 
two methods. It is evident that the average deposit error of the PANN method is 95.13% 
lower than that of Linear interpolation, demonstrating a significant reduction in error. 
 

2. Table S1 presents an analysis of the numerical distribution of elevations in Figure S1 
(a). It is evident that when compared to the fine grid, both the Linear interpolation and 
PANN method exhibit minimal, median, mean, and median sampling errors in the 
terrain height that do not exceed 2%. In terms of standard deviation, the relative error 
for Linear interpolation is 11.77%, while for PANN, it is 1.93%. These findings indicate 
that the terrain distribution achieved by PANN is closer to the fine grid, resulting in 
smaller terrain changes caused by sampling. 
 
 

 

Figure S1. (a) is a topographic profile cut from Figure (3) in the main text. (b) and (c) 
are the comparison of Linear interpolation and PANN methods, respectively. 
 
Table S1. Elevation analysis of cross-section using Linear and PANN methods. Unit: meters 

(m). 

 
 Minimum Maxima Mean Median Standard Deviation 

Fine 39.110 43.751 41.763 42.245 1.402 

Linear 39.562 43.563 41.842 41.867 1.237 

PANN 38.523 43.275 41.559 41.626 1.429 



 

 
3. Figure S2 illustrates the performance comparison between the Cubic interpolation 
and PANN methods in Section 3.1 of the main text. (a) corresponds to the cross-section 
shown in Figure 3 of the main text, while (b) and (c) compare the performance of the 
two methods. It is evident that the average deposit error of the PANN method is 94.96% 
lower than that of Cubic interpolation, demonstrating a significant reduction in error. 
 
4. Table S2 presents an analysis of the numerical distribution of elevations in Figure S2 
(a). It is evident that when compared to the fine grid, both the Cubic interpolation and 
PANN method exhibit minimal, median, mean, and median sampling errors in the 
terrain height that do not exceed 2%. In terms of standard deviation, the relative error 
for Cubic interpolation is 9.77%, while for PANN, it is 1.93%. These findings indicate 
that the terrain distribution achieved by PANN is closer to the fine grid, resulting in 
smaller terrain changes caused by sampling. 
 

 
Figure S2. (a) is a topographic profile cut from Figure (3) in the main text. (b) and (c) 
are the comparison of Cubic interpolation and PANN methods, respectively. 
 
Table S2 Elevation analysis of cross-section using Cubic and PANN methods. Unit: meters (m). 

 
 Minimum Maxima Mean Median Standard Deviation 

Fine 39.110 43.751 41.763 42.245 1.402 

Cubic 39.245 43.445 41.822 41.889 1.265 

PANN 38.523 43.275 41.559 41.626 1.429 

 
 
 
 
 
 
 
 
 
 
 



 

5. Three different loss functions tested in the experiment are L1, L2, and Huber Loss. 

Among them, iy  represents the label value, and p
iy  represents the predicted value. 
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6. The parameter sensitivity experiment analyzed the changes in accuracy and 
efficiency under different sampling rates and loss function configurations, as shown in 
Table S3. It can be seen that when adopting the L2 loss function, PANN has the highest 
accuracy at all sampling rates. When the down-sampling rate is 16 times, the average 
deposit error of PANN is only 0.21m, with an acceleration ratio of 4096 times. By 
comparison, when the down-sampling rate of base method is 2 times, the average 
deposit error is 0.19 m, while the acceleration ratio is only 8 times. Therefore, it is 
recommended to use a 16 times down-sampling rate PANN model with L2 loss function 
in practical applications, which fully preserves accuracy and significantly improves 
efficiency. 
 

Table S3. Sensitivity analysis results of different parameters. 

 

 Average Deposit error (m) Time Speed Up  
 2x 4x 8x 16x 32x 2x 4x 8x 16x 32x 

Base 0.19 0.52 0.71 0.89 2.73 

8 64 512 4096 32768 

Linear 0.20 0.49 0.75 0.92 2.85 
Cubic 0.19 0.53 0.74 0.88 2.78 

PANN L1 0.05 0.14 0.20 0.27 1.61 
PANN L2 0.05 0.13 0.17 0.21 1.54 

PANN Huber 0.07 0.17 0.21 0.25 1.60 

 
 
 

 



 

7. Figure S3 shows the changes in loss of the model mentioned in section 2.4 of the 
main text, providing evidence that PANN continuously optimizes the sampling scheme 
during the learning process. To mitigate the impact of experimental uncertainty, a paired 
samples t-test was conducted to compare the performance of the baseline method and 
the PANN method. The calculated P-value was 2.339e-36. Therefore, the null 
hypothesis that there is no significant difference between the two models can be rejected, 
demonstrating the significant performance improvement of PANN. The experiment 
utilized 4 Tesla V100 GPUs with 32GB memory and PyTorch (version 1.7.1) for 
implementation. The optimization strategy was refined through experimentation, which 
involved using Group-norm instead of Batch-norm and employing the L2 loss function 
rather than smooth L1 or Huber loss. The use of the SGD optimizer was found to 
exaggerate terrain details and potentially lead to numerical instability. To address this, 
the Adam optimizer was adopted with an initial learning rate of 10e-2. Additionally, a 
cosine annealing optimization scheme was employed, spanning 50 epochs, with a batch 
size of 4. The NCCL-distributed data-parallel method, coupled with checkpoint 
technology, was utilized to accelerate the training process. 
 

 
Figure S3. The training process of PANN compared with the most widely used nearest 
neighbor interpolation method as Baseline. The horizontal axis represents the number 
of iterations, and the vertical axis represents the relative L2 loss. After about 4500 
iterations, the model tends to converge. 

 

 
 


