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Abstract: New England salt marshes provide many services to humans and the environment, but
these landscapes are threatened by drivers such as sea level rise. Mapping the distribution of salt
marsh plant species can help resource managers better monitor these ecosystems. Because salt
marsh species often have spatial distributions that change over horizontal distances of less than a
meter, accurately mapping this type of vegetation requires the use of high-spatial-resolution data.
Previous work has proven that unoccupied aerial vehicle (UAV)-acquired imagery can provide this
level of spatial resolution. However, despite many advances in remote sensing mapping methods
over the last few decades, limited research focuses on which spectral band, elevation layer, and
acquisition date combinations produce the most accurate species classification mappings from UAV
imagery within salt marsh landscapes. Thus, our work classified and assessed various combinations
of these characteristics of UAV imagery for mapping the distribution of plant species within these
ecosystems. The results revealed that red, green, and near-infrared camera image band compos-
ites produced more accurate image classifications than true-color camera-band composites. The
addition of an elevation layer within image composites further improved classification accuracies,
particularly between species with similar spectral characteristics, such as two forms of dominant
salt marsh cord grasses (Spartina alterniflora) that live at different elevations from each other. Finer
assessments of misclassifications between other plant species pairs provided us with additional
insights into the dynamics of why classification total accuracies differed between assessed image
composites. The results also suggest that seasonality can significantly affect classification accuracies.
The methods and findings utilized in this study may provide resource managers with increased
precision in detecting otherwise subtle changes in vegetation patterns over time that can inform future
management strategies.

Keywords: unmanned aerial vehicle (UAV); digital elevation model (DEM); remote sensing;
vegetation spectra; near infrared; salt marsh monitoring; image classification

1. Introduction

New England salt marshes are important environments that provide many services to
the surrounding landscapes and to humans [1–3]. Under the correct geographic, salinity
regime, and tidal amplitude conditions [4–6], these environments are known to support
strong biodiversity because they provide habitat and nurseries to many fish, crustacean,
bird, and mammal species [7–9]. The salt marsh functions of stabilizing soils, buffering
waves, and absorbing energy and flooding from storms and storm surges help to protect
the local ecosystem and terrestrial coastlines [10–13]. These ecosystems are also known for
their ability to trap sediments and filter pollutants, keeping coastal waters clear for plants
and animals to thrive [14,15]. Furthermore, salt marshes can be sinks in the global carbon
cycle because they generate peat [16].
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But, these environments and the services they provide are under an ongoing threat
because of many natural and anthropogenic drivers [12,17,18]. Over the past century,
from 1900 to 2010, it is estimated that global mean sea levels have risen between
0.17 and 0.21 m [19] and are expected to continue to increase by 0.09–0.18 m by 2030,
by 0.15–0.38 m by 2050, and from 0.3 to 1.3 m by 2100 [20]. As sea levels continue to
rise, shifts from less to more flood-tolerant plant species within salt marshes are being
recorded [18]. These shifts in plant species could eventually lead to the conversion of
these ecosystems to mudflats [21]. Though historical measures of loss have been difficult
to calculate because of changing definitions of what constitutes a salt marsh and a lack
of consistent baseline data [22], some losses have been correlated to coastal county pop-
ulation densities [23]. Additionally, the input of excess nitrogen loads from agriculture
upstream of salt marshes has been shown to create hypoxic regions downstream, called
“dead zones”, where all the plant and animal species die off [17,24]. Furthermore, the
creation of infrastructures, such as road crossings, dikes, dams, berms, or tidal gates, causes
tidal restrictions that convert upriver salt marshes to freshwater marshes [25–27], allow for
the invasion of common reed (Phragmites australis) monocultures [28], and bring about the
subsidence of marshes due to increased oxidation rates that lead to higher decomposition
rates [29]. These tidal restrictions can also acidify marsh soils, which can reduce primary
production [30] and reduce the creation of peat for wetland maintenance, thus putting
restricted marshes at higher risk of rises in sea level [31].

These drivers influence changes in water, soil, and light growing conditions across the
marshes, affecting the competitive advantages and disadvantages of the plant species that live
there. Different tolerances to variables, such as tidal flooding [32–35], saline conditions [36,37],
nitrogen deprivation [38,39], oxygen deprivation [40], and light deprivation [41], create vegetation
zones that support the growth of particular species while excluding others. For instance, the
spatial distributions of common native marsh plant species, such as saltmarsh cordgrass (Spartina
alterniflora), salt hay (Spartina patens), and blackgrass (Juncus gerardii), are influenced by their
susceptibilities to tidal flooding. [42–46]. The ability of Spartina patens to hold less oxygen in
its shoots and roots during flooding conditions contributes to why Spartina patens vs. Spartina
alterniflora does not grow well in regularly flooded low-marsh areas [40]. Instead, the existence of
hyper-saline conditions due to evaporation that is common to the middle of high-marsh areas
favors Spartina patens over other species that are less tolerant to these conditions [37]. Additionally,
the limited nitrogen environment of the high marsh makes it difficult for smooth cordgrass
(Spartina alterniflora) to colonize this area unless influxes of nitrogen occur [47]. Furthermore,
the introduction of the invasive species Phragmites australis within some salt marshes provides
an example of how tall salt marsh plants can deprive their competition of the light needed for
photosynthesis and growth [41].

Remote sensing provides a means to monitor and map vegetation species within salt
marshes, but there are many options available to implement this technology [22,48–53].
The remote sensing of salt marshes has typically been completed using satellite or aerial
platforms. However, low-spatial-resolution (30 m) Landsat satellite-derived imagery tends
to have pixel sizes that are too large to capture the fine detail of narrow vegetation patch
widths that are common in many salt marshes, leading to the misclassification of species
or the need to create broad vegetation classes [54–56]. Medium-spatial-resolution (10 m)
satellite images, such as those from the European Space Agency (ESA) Sentinel Satellite,
can map salt marsh vegetation at the species granularity (a measure of the level of class
resolution from individual species to groupings of species) but might need to be corrected
for tidal effects that introduce spectral noise to coastal pixels [57]. High-spatial-resolution
(<10 m) satellite imagery from commercial satellites, such as QuickBird, WorldView, and
Ikonos, can be used to map local salt marshes, but these images are not always available
and may be cost-prohibitive for some projects.

Modern aerial color-infrared photography, although of high spatial resolution
(<10 m) [44,45,58–60], usually requires their missions to be scheduled many days in advance,
leaving them susceptible to changes in weather conditions. Modern high-spatial-resolution
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(0.3 m) color-infrared aerial imagery has been shown to be useful for mapping salt marsh
vegetation species as part of the Coastal Change Analysis Program (C-CAP) [61]. With
spatial resolutions from 0.3 to 0.6 m, National Agriculture Imagery Program (NAIP) color-
infrared imagery may also be useful to map salt marsh vegetation types, but this imagery
is only collected once every one-to-three-year cycle [62]. Alternatively, very high-spatial-
resolution (<10 cm) multispectral imagery derived from unoccupied aerial vehicles (UAVs)
(also known as unmanned aerial vehicles) can be collected multiple times during a growing
season at the temporal discretion of the user [63,64]. This is important in coastal environ-
ments where complex factors, such as seasonal phenology, tidal cycles, and storm events,
may influence the spectra of the targets being imaged [65–67].

To date, multispectral UAV-derived imagery has been used to complement satellite
imagery and aerial photography to characterize vegetation types in coastal salt marsh
landscapes [68–70]. Some researchers have also utilized multispectral and hyperspectral
UAV imagery independent of satellite or aerial imagery to map the distribution of salt marsh
plant species [67,71,72] and other characteristics of coastal salt marshes, such as vegetation
biomass [67,73], geomorphology [74], or coastal processes [53]. However, despite these
recent advances in remote-sensing applications, limited research focuses on how spectral,
elevation, and temporal characteristics of UAV imagery affect vegetation classification
accuracies within these landscapes.

Thus, the innovative goal of our research was to test how various combinations of
spectral, elevation, and temporal characteristics of UAV-derived remotely sensed imagery
affect the accuracy of plant species classifications within a salt marsh. In doing so, we sought
to build upon previous research to guide our work. Schmidt and Skidmore (2003) [58] and
Belluco et al. (2006) [49], when assessing in-field hyperspectral measurements and a series
of varying-resolution remotely sensed satellite image products, concluded that improving
spatial resolution is more important than improving spectral resolution for classifying salt
marsh plant species. These findings suggest the potential of UAV-derived imagery for
classifying salt marsh species accurately because UAV-borne cameras can capture their
data at a very high spatial resolution (<10 cm) [75,76]. Also, because Artigas and Yang
(2006) [77] showed that salt marsh species are distinct in the near-infrared region of the
electromagnetic spectrum by assessing in-field hyperspectral measurements, we looked
to test if UAV remotely sensed imagery inclusive of a near-infrared band would improve
the imagery’s classification accuracies. Additionally, as Lee and Shan (2003) [78] showed
that adding an elevation data layer to 3 m spatial-resolution Ikonos satellite imagery
increased the accuracy of vegetation classes that had similar spectral characteristics, we
looked to test if adding an elevation layer to centimeter-level spatial-resolution UAV
imagery would increase its classification accuracies as well. Because UAV imagery can
be processed with a photogrammetry technique called “Structure from Motion” (SfM)
to generate X-, Y-, and Z-coordinate point clouds and subsequently interpolated digital
elevation models (DEMs) [74,79], we looked to complete this processing within our study
to establish an elevation layer needed for testing. Furthermore, as Gilmore et al. (2010) [59]
have shown evidence that the spectral reflectance of marsh plant species varies seasonally
within hyperspectral in-field samples and Artigas and Yang (2006) [77] provided empirical
observations that marsh plant species are most distinctive to the human eye during the fall
season, we looked to assess if the classification accuracy of UAV imagery in late summer
and early fall seasons will vary within our study areas as well. Previous studies have
already established that UAVs can capture single- or multi-date imagery [63,64]. Accuracy
assessments of classified imagery have historically been completed by first collecting
observations at ground reference points and comparing those observations to spatially and
temporally concurrent classifications. Plant species reference observations have historically
been collected through in-person ground-truth species identification or remote air-truth
species identification within high-spatial-resolution imagery [68,80].

The objectives of our work were the following: First, both Red, Green, Blue (RGB)
camera and Red, Green, Near-Infrared (RGN) camera salt marsh image classifications
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would be created and assessed to determine how their accuracies differed. Second, salt
marsh image composites with and without an additional elevation layer would be created
and assessed to determine if the new layer altered the accuracies of the classifications.
Third, all these classifications would be created and their accuracy assessed over a time
series of unique dates during late summer and early fall to determine how they differed
seasonally from each other.

Thus, based on the findings of previous research literature, our project goal, and the
intended objectives of this study, we hypothesized that:

1. Using UAV imagery inclusive of a near-infrared band would improve vegetation
classification total accuracies over those of true-color imagery alone within our
study areas;

2. Adding a DEM layer to UAV-derived imagery band combinations over our study
areas would improve the imagery’s classification total accuracies;

3. UAV-derived vegetation classification total accuracies would vary during the late
summer and early fall within our study areas.

2. Materials and Methods
2.1. Study Areas

This work was conducted within a coastal salt marsh near the Odiorne Point State
Park in Rye, New Hampshire, USA. Two study areas within this marsh were chosen to
help to verify and compare the results between two separate locations. Study area 1 is a
1.9 hectare (4.7 acre) site with a vertical elevation range of 1.2 m (3.9 ft) located at
70◦43′0.47′′W by 43◦2′25.93′′N. The study area is flanked on the northeast and south-
west by additional marsh habitat, on the northwest by mixed forests, and on the southeast
by a large natural pool that separates most of the study area from the New Hampshire
Route 1a state highway. This pool is regularly inundated by tidal flooding and is approxi-
mately one meter above the NAV88 tidal datum. It is hydrologically connected via a tidal
creek to the southwest that extends approximately 1 km from its mouth, where it intersects
the Piscataqua River. Other non-contiguous, smaller pools and pannes are also scattered
across the landscape (Figure 1). Study area #2 is a 2.1 hectare (5.2 acre) site with a vertical
elevation range of 1.45 m (4.8 ft) located at 70◦43′31′′W by 43◦2′55′′N. This study area
directly abuts the New Hampshire Route 1a state highway to the north and west, where
the road has been raised to meet a bridge crossing. The study area is also flanked to the
east by an outcrop of mixed forest and other marsh habitat and to the south by the mouth
of the creek that feeds the marsh. Other non-contiguous, smaller pools and pannes are also
scattered across the landscape (Figure 1). Relative to study areas 1 and 2, the closest water
level NOAA gauging station is at Fort Point, NH. This gauging station is approximately
5 km (3.1 mi) from study area 1 and 4 km (2.48 mi) from study area 2. The Fort Point
gauging station reports a mean high water (MHW) level of 1.3 m (4.27 ft) and a mean tidal
range of 2.63 m (8.62 ft) [81].

Within these study areas, low-marsh areas are dominated by smooth cordgrass
(Spartina alterniflora), and high-marsh areas are dominated by a mix of salt hay (Spartina
patens), spike grass (Distichlis spicata), blackgrass (Juncus gerardii), and the short form of
smooth cordgrass (Spartina alterniflora short form) (Table 1). In addition, two less-prevalent
forb species, common glasswort (Salicornia europaea, A.K.A. Salicornia depressa) and seaside
goldenrod (Solidago sempervirens), also occur within the study areas (Table 1). These seven
species will be assessed within this research and will be referred heretofore by their lettered
abbreviation codes, as listed in Table 1.

2.2. Methods and Materials
2.2.1. Spectral Assessment

In 2017 and 2018, multiple vegetation samples of the seven vegetation species assessed
within this study were collected at a set of dispersed representative species patch locations
across the marsh and then analyzed using an ASD Fieldspec 4 Hi-Res high-resolution
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spectroradiometer (Boulder, CO, USA) [82]. The spectroradiometer was optimized and
calibrated to a standard white ceramic plate in a controlled laboratory environment under
full-spectrum light conditions. Dense vegetation samples were split in half, laid crosswise
over each other, and scanned with the spectroradiometer ten times each from four sides
and then averaged to construct a spectral signature to smooth inconsistencies brought
on by shadows and texture. This analysis was completed every two weeks to create a
series of spectral vegetation data signature curves over the growing season. Reflectance
measurements were calculated using the ASD to capture reflectance values from 350 µm
to 2500 µm [82]. The curves were then assessed visually to review if and how the spectral
characteristics of the vegetation species varied.
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Table 1. Table of assessed plant species and abbreviations.

Plant Species Abbreviations

Distichlis spicata DiSp

Juncus gerardii JuGe

Salicornia europaea (A.K.A. Salicornia depressa) SaEu

Spartina alterniflora (tall form) SpAl

Spartina alterniflora (short form) SpAl-SF

Spartina patens SpPa

Solidago sempervirens SoSv

2.2.2. UAV Assessment

Approximately 200 UAV-derived high-resolution camera images were first captured
over study areas 1 and 2 on 13 April 2018 and 1 May 2022, respectively, before any
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new seasonal growth occurred and when each year’s previous aboveground biomass
was still matted down from the effects of the previous winter’s snowpack. Early spring
was chosen for these flights to capture images that best represented bare earth elevation
conditions [83–86]. The flights used a DJI Phantom 4 Pro UAV (Shenzhen, China) [87],
equipped with a DJI, 20 MP normal true-color, 84◦ field-of-view (FOV) Red, Green, and
Blue (R, G, B) camera (Table 2), flying at an altitude of approximately 60 m (200 ft) and
with front and side overlaps of approximately 80%. Image acquisition times on-site were
limited to approximately one hour per study area per date, and images were acquired
under low-tide conditions and within two hours of solar noon. The captured images were
processed using Structure-from-Motion (SfM) photogrammetry techniques within Agisoft
photogrammetric software, version 1.6 [88] to create a digital elevation model (DEM) for
both study areas. The resulting models were then rectified to ground control points of fixed
landmarks around the marsh using ArcGIS Pro software, version 2.6 [89]. Fixed landmarks
included the bottom of fence posts and signposts, as well as manually placed wood stakes
around the study areas. At the time of image collection, one-meter-diameter X-shaped
ground targets were centered at the location of the fixed landmarks. Any surrounding
vegetation was regularly cleared-back at each ground control point to allow for the acquisi-
tion of the target at ground level. All the ground control locations were chosen or placed
at approximately the corners, perimeters, and centers of each study area to best aid in
image rectification.

Table 2. Specifications for the Phantom 4 Pro and MapIR Survey3 cameras.

Camera Specifications Phantom 4 Pro Camera MapIR Survey3 Camera

Sensor 1′′ CMOS Sony Exmor R IMX117

Resolution 20 MP 12 MP

Field of View FOV 84◦ FOV 87◦

Blue Green (Centered at 550 nm)
Spectral Bands Green Red (Centered at 650 nm)

Red NIR (Centered at 850 nm)

In study areas 1 and 2, sixty-four and fifty randomly sampled elevation points
were collected, respectively, with a Trimble TSC3 data logger and a high-resolution, sub-
centimeter vertical- and horizontal-accuracy Trimble R10 RTK GPS receiver (Westminster,
CO, USA) [90]. A two-meter measuring pole equipped with a flat foot was also used for the
RTK point collection to compensate for the varying spongy nature of the different marsh
substrates across the study area. Accuracy checkpoints were distributed within all the
vegetation classes across the whole marsh. Next, the UAV-derived DEM of study area
1 was shifted vertically to match the datum of the collected RTK points, resulting in a
4.60 cm (1.81 in) root-mean-square (RMS) accuracy for the model. In study area 2, the
vertical datum shift resulted in a 10.68 cm (4.2 in) RMS accuracy between the spatially
coincident points of the DEM and the sub-centimeter-accuracy RTK dataset.

In subsequent months after the spring images were acquired, approximately
200 additional UAV-derived high-resolution camera images were captured over each study
area periodically during the late summer and early fall seasons (31 August, 17 September,
1 October, and 12 October 2018 for study area 1 and 14 September, 30 September, and
14 October for study area 2). These times of the year were chosen for UAV data collection
because the ASD spectrometer assessments of 2017 and 2018 vegetation samples collected
by us from June through October showed late summer and early fall to exhibit the largest
spectral differences between vegetation species. Individual flight dates were prioritized
based on an approximate two-week cycle, low-tide conditions, and local weather appropri-
ate for staying within the operating parameters of the UAV. Note that only three flight dates
were booked for study area 2 as opposed to four flights within study area 1 because of poor
weather conditions and technical difficulties with the UAV when on site in late-August
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2022. All the flights also carried a co-mounted MapIR, Survey3, 12 MP false-color, 87◦

FOV camera (San Diego, CA, USA) on the UAV [91] (Table 2). This camera is designed for
vegetation mapping and captures spectral information in Red, Green, and Near Infrared (R,
G, N) parts of the electromagnetic spectrum centered at 660 nm, 550 nm, and 850 nm, respec-
tively. The images taken with this camera required an additional radiometric calibration
using a calibration target with a known albedo and post-processing completed with MapIR
Camera Control software, version 20221111. Heretofore, these spectral bands (layers) and
the digital elevation model layer will be called “bands” and referred to by their single-letter
codes, as listed in this and the previous paragraph. The DJI-derived band codes will not
be underlined, the MapIR band codes will be underlined, and the digital elevation layer
will be doubly underlined to distinguish them from each other (Table 3). Because this work

used multi-date imagery, the capture of imagery was always completed within about two
hours of solar noon to maintain as much consistency as possible with regard to lighting and
shadow conditions between the dates. The images were captured with approximately 80%
front and side overlaps with an effective 1.67 cm ground resolution for the DJI true-color
camera and at an effective 2.61 cm ground resolution for the MAPIR false-color camera.
Flight planning and control was completed with Drone Deploy software, version 4.109.0.

Table 3. Project band composites and abbreviations. Composite band codes: R = red; G = green;
B = blue; N = near infrared; D = digital elevation model. Non-underlined codes represent bands from
a DJI Phantom 4 Pro red, green, and blue imaging camera. Underlined codes represent bands from a
MapIR red, green, and near-infrared camera. Doubly underlined codes represent a structure from

motion-derived digital elevation model.

Band Composite Abbreviation

Red, Green, Blue RGB

Red, Green, Blue, DEM RGBD

Red, Green, Near Infrared RGN

Red, Green, Near Infrared, DEM RGND

All the collected RGB and RGN images were processed into collection-date-specific,
common-spatial-resolution orthomosaics using Agisoft Metashape photogrammetry
software [88] and a Universal Transverse Mercator Zone 19 projection. The mosaics were
rectified to ground coordinates using ArcGIS Pro 2.6 software [89] and then clipped to a
common study-area polygon. The pool, panne, and ditch water areas were masked out of
the resulting mosaics so that only the vegetation areas would be assessed within this study.
Additionally, the digital elevation models were clipped, masked, resampled, and rescaled
to match their spectral mosaic counterparts’ spatial extents and spectral pixel value ranges.
The rescaling of the elevation pixel value ranges was completed to match the overall upper
and lower ranges of the spectral band values of each of the RGB and RGN composites,
respectively, per study area. By completing the rescaling of the elevation pixel values this
way, we provided a standardized elevation layer for a common analysis per composite type,
per study area. Each RGB and RGN mosaic was then composited with their corresponding
clipped digital elevation model D band to form RGBD and RGND composites for each
sampling date for further assessment (Table 3).

Maximum likelihood supervised classifications were completed on each band compos-
ite using ArcGIS software, version 10.5.1 [92] for each study area. Study areas 1 and 2 used
196 and 60 training polygons, respectively, to delineate SpAl, SpAl-SF, SpPa, DiSp, JuGe,
SaEu, and SoSv vegetation types. All the resulting classifications were then run through an
eight-pixel neighborhood majority filter to reduce the speckling brought on by the effects
of small shadows caused by inconsistent textures across the landscape.
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Next, we completed an accuracy assessment on each of the resulting classifications.
Within our study, over 2600 common stratified randomly sampled assessment points were
created to assess the accuracy of our image classifications. A 50 point-per-class minimum
was utilized where possible within this analysis based on Congalton’s (1991) [93] sampling
rule of thumb. Ground truth classes were observed and recorded per point based on
the air-truthing of the project’s high-resolution RGB imagery. In-person GPS-derived
ground observation values collected during the 2018 and 2022 seasons and follow-up
in-person verification of class patches were also used to inform further the air-truthing of
the classifications.

Confusion matrices were created for each image band composite (RGB, RGN, RGBD,
and RGND) and collection-date combination for the two study areas (31 August,
17 September, 1 October, and 12 October 2018 for study area 1 and 14 September,
30 September, and October 14 for study area 2. Confusion matrix tables [92] are used
to compare and quantify the number of cross-class matches (Cross-Class Accuracy: CCA)
and mismatches (Cross-Class Confusion: CCC) between the observed and classified data
(Table 4). The reproportioning of these quantities was then completed via a procedure
called MARGFIT [94]. MARGFIT is an iterative fitting procedure that forces the sums
of values from each row and column to equal 1, thus allowing for each cell value to be
proportionally comparable to each other [92]. Within this work, we defined no confusion
between class pairs to have a CCC of 0%, low confusion between classes to have a CCC of
>0% but ≤10%, medium confusion between class pairs to have CCC of >10% but ≤20%,
and high confusion between class pairs to have CCC of >20%.

Table 4. Table of classification accuracy terms and abbreviations.

Term Abbreviation

Cross Class Accuracy CCA

Cross Class Confusion CCC

Producer Accuracy PA

User Accuracy UA

Total Accuracy TA

Individual class and full-matrix accuracies were assessed through the calculation of
user accuracies (UAs), producer accuracies (PAs), and total accuracies (TAs) (Table 4). UAs
are calculated from the percentage of matches relative to all the observations within a class
from a user’s perspective. PAs are calculated from the percentages of matches relative to
all the observations within a class from the producer’s perspective. TAs are calculated
from the percentage of all the matches relative to all the observations within the matrix.
A Kappa statistic, KHAT, was also calculated as a measure of the total correspondence
between observed and classified data, but this statistic does not assume independence
between the classes, as does the TA measure [92,95]. Furthermore, all the classifications
were tested and confirmed to be significantly different from each other using a test statistic
that considers the Kappa and variance of Kappa statistics for each matrix [92].

Lastly, a salt marsh elevation profile was created for the vegetation base (ground-
level) elevations at each study area (1 and 2). This was completed by calculating the
zonal mean and standard deviation statistics on each digital-elevation-model layer per
vegetation zone of the classification with the best TA. The results were ordered by mean
elevation and vegetation class. Finally, non-parametric Welch post hoc pairwise comparison
and Games–Howell test values were calculated for 350 stratified random samples (50 per
class) to check the statistical difference between the base elevations for each possible pair
of vegetation types. These tests were utilized because the data did not meet the equal
variances assumption of an ANOVA test.
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3. Results
3.1. Spectral Analysis

Visual inspection of the ASD spectroradiometer reflectance curves created over the
growing season for each vegetation species assessed within this study showed that each
species reached its peak distinction (separation from other curves) at different times from
each other. For instance, Juncus gerardii (JuGe) begins to show strong spectral distinctions
from all the other vegetation types by mid-August, with significantly less reflectance than
the other species in the visual and NIR parts of the spectrum (Figure 2a). Other species’
spectral curves show that their times of most spectral distinction occur in late summer and
early fall. Notably, the SpAl and SpAl-SF spectra separate from each other more in the visual
and NIR parts of the spectrum for the 1 October samples than for the 14 September samples
(Figure 2b). However, SpPa and DiSp separate from each other in both the visual and NIR
parts of the spectrum for both the 14 September and the 1 October samples (Figure 2b,c).
The SaEu curve, though spectrally distinct within the NIR part of the spectrum in August
(Figure 2a), becomes spectrally distinct in both the visible and NIR parts of the spectrum
for the 1 October samples (Figure 2c). The SoSv sample, though spectrally distinct within
both the visual and NIR parts of the spectrum in the 14 September curve (Figure 2b), loses
its distinction in the visual part of the spectrum by 1 October (Figure 2c). Also, although
not specific to the spectral ranges of the cameras carried on the UAV within this study,
SpAl vs. SpAl-SF, SpPa vs. DiSp, and JuGe also show strong distinctions in dryness to each
other in the 1 October curve’s water absorption bands centered around 1450 and 1950 nm
(Figure 2c). SoSv, however, shows the most distinction within this range of the curve for the
14 September samples (Figure 2b), but SaEu remains succulent, with low water-absorption
band values through the whole of the season (Figure 2a–c). An unexplained anomaly also
occurs between 1800 and 1900 nm in the 1 October curves (Figure 2c), showing a peak in
this reflectance range that does not occur at any other time of the season.
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Figure 2. (a–c) Example spectral signature curves for New Hampshire salt marsh vegetation species
for the dates of 20 August (a), 14 September (b), and 1 October 2018 (c). (Abbreviations: SpAl: Spartina
alterniflora; SpAl-SF: Short form Spartina alterniflora; JuGe: Juncus gerardii; DiSp: Distichlis spicata;
SaEu: Salicornia europaea; SpPa: Spartina patens; SoSv: Solidago sempervirens). Note that no SoSv:
Solidago sempervirens data was recorded for 20 August 2018.

3.2. UAV Analysis for Study Area 1

This research examined how band composites (RGB, RGN, RGBD, and RGND) and
collection dates (31 August, 17 September, 1 October, and 12 October) affected classification
accuracies within the project’s study area 1. Completing this analysis included the creation
of sixteen statistically different (α = 0.05) maximum likelihood image classifications for
each composite per collection date (Figure 3a–d) and sixteen corresponding MARGFIT
confusion matrices (Tables A1a–d, A2a–d, A3a–d and A4a–d).

The confusion matrices for the four RGB composite classifications yielded TAs ranging
from 47.0% to 64.3% (Table 5a). The confusion matrices for the four RGN composite classi-
fications revealed higher TAs than their four RGB composite classification counterparts,
with percentages ranging from 55.5% to 74.2% (Table 5a). The confusion matrices for the
four RGBD composite classifications revealed higher TAs than their four RGB composite
classification counterparts, ranging from 65.6% to 75.9% (Table 5a), and the confusion
matrices for the four RGND composite classifications revealed higher TAs than their four
RGN composite classification counterparts, ranging from 65.0% to 88.1% (Table 5a).

CCCs varied across each composite type, although some trends were observable.
The most frequent occurrence of high (>20%) CCC species pairs occurred within the RGB
(Table A1a–d) and RGN (Table A2a–d) composites, and the least frequent occurrences
of high (>20%) CCC species pairs occurred within the RGBD (Table A3a–d) and RGND
(Table A4a–d) composites. The CCCs between SpPa and DiSp vs. JuGe and SpAl-SF were
noticeably higher than those within the RGB and RGBD composites relative to their RGN
and RGND counterparts, with a few exceptions, mostly within the 31 August composite.
Also, the RGBD composite classifications had reduced CCCs between SpAl and SpAl-SF
classes relative to their RGB counterparts (Table A3a–d).

UAs and PAs also varied across each composite type, although some notable findings
were discovered. The confusion matrices for the four RGN composite classifications showed
increased UAs and PAs in many classes (Table A2a–d) relative to their RGB counterparts.
The confusion matrices for the four RGND composite classifications revealed improvements
in UAs and PAs in most vegetation classes relative to their RGN counterparts, with notably
large increases in UAs and PAs for SpAl and SoSv (Table A4a–d). Furthermore, the RGBD
composites (Table A3a–d) showed improved UAs and PAs for SoSv relative to their RGB
counterparts (Table A1a–d) but had less success at reducing CCCs between SpPa and DiSp,
JuGe and DiSp, and JuGe and SpAl-SF.



Remote Sens. 2023, 15, 5076 11 of 37

Table 5. (a) Table of confusion matrix Total Accuracies for RGB, RGN, RGBD, and RGND composite
classifications created from UAV imagery acquired on 31 August, 17 September, 1 October, and
12 October 2018 at the Odiorne Point Salt Marsh in Rye, New Hampshire, USA. (Composite
band codes: R = red; G = green; B = blue; N = near infrared; D = digital elevation model.
Non-underlined codes represent bands from a DJI Phantom 4 Pro red, green, and blue imag-
ing camera. Underlined codes represent bands from a MapIR red, green, and near-infrared cam-
era. Doubly underlined codes represent a structure from motion-derived digital elevation model).

(b) Table of confusion matrix Kappa coefficients for RGB, RGN, RGBD, and RGND composite classi-
fications created from UAV imagery acquired on 31 August, 17 September, 1 October, and 12 October
2018 at the Odiorne Point Salt Marsh in Rye, New Hampshire, USA. (Composite band codes: R = red;
G = green; B = blue; N = near infrared; D = digital elevation model. Non-underlined codes represent
bands from a DJI Phantom 4 Pro red, green, and blue imaging camera. Underlined codes represent
bands from a MapIR red, green, and near-infrared camera. Doubly underlined codes represent a

structure from motion-derived digital elevation model).

(a)

Composites Aug. 31 Sep. 17 Oct. 01 Oct. 12

RGB 47.00% 55.00% 64.30% 56.40%

RGN 55.50% 63.02% 74.08% 69.40%

RGBD 65.60% 71.70% 75.90% 71.80%

RGND 65.00% 71.80% 88.10% 78.10%

(b)

Composites Aug. 31 Sep. 17 Oct. 01 Oct. 12

RGB 0.342 0.442 0.557 0.459

RGN 0.442 0.548 0.688 0.619

RGBD 0.579 0.653 0.703 0.654

RGND 0.572 0.655 0.854 0.723
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Figure 3. (a–d) Example maps of 1 October 2018 UAV image RGB (a), RGN (b), RGBD (c), and
RGND (d) composite classifications for study area 1 at the Odiorne Point Salt Marsh in Rye, New
Hampshire, USA. (Composite band codes: R = red; G = green; B = blue; N = near infrared; D = digital
elevation model. Non-underlined codes represent bands from a DJI Phantom 4 Pro red, green, and
blue imaging camera. Underlined codes represent bands from a MapIR Survey3 red, green, and
near-infrared camera. Doubly underlined codes represent a structure from a motion-derived digital

elevation model.) (Abbreviations: JuGe = Juncus gerardii, SpPa = Spartina patens, SaEu = Salicornia
europaea, SpAl = Spartina alterniflora, SoSv = Solidago sempervirens, DiSp = Distichlis spicata, and SpAl-SF
= Spartina alterniflora—short form).

A review of the confusion matrices by the acquisition date showed TAs ranging
from 47.0% to 65.6% for the 31 August composite, 55.0% to 71.8% for the 17 September
composites, 64.3% to 88.1% for the 1 October composite, and 56.4% to 78.1% for the
12 October composites (Tables A1a–d, A2a–d, A3a–d and A4a–d). In general, the 31 August
composite classifications created the lowest UAs and PAs, and the 1 October composite
classifications created the highest, with some slight variations created by the 17 September
and 12 October composite classifications (Tables A1a–d, A2a–d, A3a–d and A4a–d). Overall,
the 1 October classifications revealed the highest TAs, with the 1 October RGND composite
classification having the highest TA of all the classifications, at 88.1% (Table 5a), and a
Kappa coefficient of 0.854 (Table 5b).

Structure-from-motion (SfM) photogrammetry techniques allowed for the creation of a
digital elevation model (base ground level elevations) for study area 1 (Figure 4a). The data
were evaluated with Welch (α = 0.05) and Games–Howell post hoc pairwise comparison
tests for vegetation-type pairs. The output of this test specifies different letters that indicate
significant differences in the mean ground (base) elevations among the vegetation types.
Quantitative analysis showed us that the base elevation values of SpAl (A) and SaEu (B)
were significantly different (α = 0.05) from those of all the other vegetation classes but the
base elevation values of SpAl-SF, SpPa, DiSp, and SoSv vegetation classes (C) and DiSp,
JuGe, and SoSv (D) vegetation classes did not differ significantly from each other (Figure 5).
A list of p-values for the vegetation-type pairs can be found in Appendix B Table A9.
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Figure 5. Chart of vegetation types vs. mean base-level elevations above tidal datum (with standard
deviation bars) within study area 1 at the Odiorne Point Salt Marsh study area in Rye, New Hampshire,
USA. Data were evaluated with Welch (α = 0.05) and Games–Howell post hoc pairwise comparison
tests for vegetation-type pairs. Different letters indicate significant differences in mean ground
elevations among vegetation types. (List of p-values for vegetation-type pairs can be found in
Appendix B, Table A9). Abbreviations: JuGe = Juncus gerardii, SpPa = Spartina patens, SaEu = Salicornia
europaea, SpAl = Spartina alterniflora, SoSv = Solidago sempervirens, DiSp = Distichlis spicata, and SpAl-SF
= Spartina alterniflora—short form).

3.3. UAV Analysis of Study Area 2

This analysis examined how band composites (RGB, RGN, RGBD, and RGND) and
collection dates (14 September, 30 September, and 14 October) affected the classification
accuracies within the project’s study area 2. Completing this analysis included the creation
of three statistically different (α = 0.05) maximum likelihood image classifications for each
of the four composite collection dates (Figure 6a–d) and twelve corresponding MARGFIT
confusion matrices (Tables A5a–c, A6a–c, A7a–c and A8a–c).
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Figure 6. (a–d) Example maps of 30 September 2022 UAV image RGB (a), RGN (b), RGBD (c), and
RGND (d) composite classifications for study area 2 at the Odiorne Point Salt Marsh in Rye, New
Hampshire, USA. (Composite band codes: R = red; G = green; B = blue; N = near infrared; D = digital
elevation model. Non-underlined codes represent bands from a DJI Phantom 4 Pro red, green, and
blue imaging camera. Underlined codes represent bands from a MapIR Survey3 red, green, and
near-infrared camera. Doubly underlined codes represent a structure from motion-derived digital

elevation model.) (Abbreviations: JuGe = Juncus gerardii, SpPa = Spartina patens, SaEu = Salicornia
europaea, SpAl = Spartina alterniflora, SoSv = Solidago sempervirens, DiSp = Distichlis spicata, and SpAl-SF
= Spartina alterniflora—short form).

The confusion matrices for the three RGB composite classifications yielded TAs ranging
from 51.9% to 60.3% (Table 6a). The confusion matrices for the three RGN composite
classifications revealed higher TAs than those of their three RGB composite classification
counterparts, with percentages ranging from 61.3% to 71.1% (Table 6a). The confusion
matrices for the three RGBD composite classifications revealed higher TAs than those
of their three RGB composite classification counterparts, ranging from 60.0% to 65.9%
(Table 6a), and the confusion matrices for the three RGND composite classifications revealed
higher TAs than those of their three RGN composite classification counterparts, ranging
from 65.0% to 85.1% (Table 6a).
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Table 6. (a) Table of confusion matrix Total Accuracies for RGB, RGN, RGBD, and RGND com-
posite classifications created from UAV imagery acquired over study area 2 on 14 September,
30 September, and 14 October 2022 at the Odiorne Point Salt Marsh in Rye, New Hampshire, USA.
(Composite band codes: R = red; G = green; B = blue; N = near infrared; D = digital elevation
model. Non-underlined codes represent bands from a DJI Phantom 4 Pro red, green, and blue
imaging camera. Underlined codes represent bands from a MapIR red, green, and near-infrared cam-
era. Doubly underlined codes represent a structure from a motion-derived digital elevation model.)

(b) Table of confusion matrix Kappa coefficients for RGB, RGN, RGBD, and RGND composite classi-
fications created from UAV imagery acquired over study area 2 on 14 September, 30 September, and
14 October 2022 at the Odiorne Point Salt Marsh in Rye, New Hampshire, USA. (Composite
band codes: R = red; G = green; B = blue; N = near infrared; D = digital elevation model.
Non-underlined codes represent bands from a DJI Phantom 4 Pro red, green, and blue imaging
camera. Underlined codes represent bands from a MapIR red, green, and near-infrared camera.
Doubly underlined codes represent a structure from motion-derived digital elevation model).

(a)

Composites Sep. 14 Sep. 30 Oct. 14

RGB 59.0% 60.3% 51.9%

RGN 65.2% 71.1% 61.3%

RGBD 63.7% 65.9% 60.0%

RGND 68.0% 85.1% 65.0%

(b)

Composites Sep. 14 Sep. 30 Oct. 14

RGB 0.41 0.44 0.30

RGN 0.51 0.59 0.47

RGBD 0.50 0.53 0.45

RGND 0.56 0.80 0.53

CCCs varied across each composite type, although some trends were observable.
The most frequent occurrence of high (>20%)-CCC species pairs occurred within the RGB
(Table A5a–c) and RGN (Table A6a–c) composites, and the least frequent occurrences
of high (>20%)-CCC species pairs occurred within the RGBD (Table A7a–c) and RGND
(Table A8a–c) composites. All the RGBD and RGND composite classifications had reduced
CCCs between the SpAl vs. SpAl-SF classes and SpAl vs. SoSv classes relative to their
RGB and RGN counterparts, with only a few exceptions within the 15 October composite.
(Table A7a–c). All the RGN and RGND composite classifications had reduced CCCs
between the JuGe and SpAl-SF classes relative to their RGB and RGBD counterparts, except
within the 14 September image (Table A7a–c). Unlike in study area 1, in study area 2 the
RGN and RGND composite classifications did not show a consistent reduction in CCCs
between the SpPa and DiSp classes and their RGB and RGBD counterparts (Table A7a–c).
UAs and PAs also varied across each composite type, although some notable findings were
discovered. The RGN and RGND composite classifications showed increased UAs and
PAs (Table A6a–c) relative to their RGB and RGN counterparts, with only a few exceptions
occurring mostly within the SoSv and SaEu classes.

A review of the confusion matrices by the acquisition date showed TAs ranging from
59.0% to 68.0% for the 14 September composites, 60.3% to 85.1% for the 30 September
composite, and 51.9% to 65.0% for the October 14 composites (Tables A5a–c, A6a–c, A7a–c
and A8a–c). In general, the 14 September and 14 October composite classifications created
the lowest UAs and PAs, and the 30 September composite classifications created the highest
(Tables A5a–c, A6a–c, A7a–c and A8a–c). Overall, the 30 September classifications revealed
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the highest TAs, with the 30 September RGND composite classification having the highest
TA of all the classifications, at 85.1% (Table 6a), and a Kappa coefficient of 0.80 (Table 6b).

Structure-from-motion (SfM) photogrammetry techniques allowed for the creation
of a digital elevation model (base-level ground elevations) for study area 2 (Figure 7a).
The data were evaluated with Welch (α = 0.05) and Games–Howell post hoc pairwise
comparison tests for vegetation-type pairs. The output of this test specifies different
letters that indicate significant differences in the mean ground (base) elevations among
the vegetation types. Quantitative analysis showed us that the base elevation values of
SpAl (A) were significantly different (α = 0.05) from those of all the other vegetation classes
but the the base elevation values of SaEu and SoSv (B); SpAl-SF, DiSp, and JuGe (C); and
SpAl-SF, SpPa, and JuGe (D) did not differ significantly from each other(Figure 8). A list of
p-values for the vegetation-type pairs can be found in Appendix B, Table A10.
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4. Discussion
4.1. Classification Total Accuracies

Within our research, we utilized a UAV to acquire aerial imagery for classifying and
mapping the locations of plant species across a salt marsh environment. The use of <3 cm
very high-spatial-resolution imagery enabled us to map the fine detail of narrow vegetation
patch widths that are common within salt marshes. Our results showed that the 1 October
RGND composite created from our UAV-derived imagery yielded the best total accuracy of
88.1% when classifying seven vegetation types across New Hampshire salt marsh study
area 1 and 85.13% in study area 2.

4.1.1. Total Accuracies Relative to Other UAV Salt Marsh Vegetation Classification Studies

Of the identified studies where independent UAV imagery has been used for the
classification of salt marsh plant species to date, our total accuracies do differ [67,71,72].
One study in Wadden Sea National Park, on Hallig Nordstrandischmoor Island, along
the German coast of the North Sea [71], achieved between 92.9% and 95.0% accuracies.
However, the Wadden Sea National Park study utilized object-based image analysis as
opposed to pixel-based analysis, as was used within our study. The Wadden Sea National
Park study also classified three vegetation and five non-vegetation classes, while our study
classified seven vegetation classes. Although we did not compare object versus pixel-based
analysis and various vegetation class granularities, we believe that this area of study could
be fruitful within our study area. A second study that took place in the Cadiz Bay wetland
in southern Spain achieved a 96% accuracy [72]. However, the Cadiz Bay wetland study
used a hyperspectral camera to map four salt marsh species and one macroalga species
within their study area vs. our seven vegetation species classes. Within a third study
a multispectral camera and NDVI-derived layers were used for mapping the locations
and seasonality of high and low salt marsh classes on Poplar Island in Maryland [67],
USA. However, within the Nardin study, no confusion matrix classification accuracies
were reported. Instead, the Nardin study correlated UAV-imagery-derived normalized-
difference vegetation index (NDVI) measures with vegetation characteristics collected in
the field [67].

4.1.2. Total Accuracies Relative to Other UAV Non-Salt Marsh Vegetation Classification Studies

Outside of salt marsh environments, UAVs have been shown to map species class
granularities with total accuracies similar to those in our work. Lu and He (2017) [96]
utilized UAV-acquired blue, green, and near-infrared (BGN) composite imagery to map
species within temperate grasslands in Southern Ontario, Canada, to an approximately 85%
accuracy using an object-based classification approach. Schiefer et al. (2020) [97] mapped
forest tree species in the Southern Black Forest region of Germany with approximately 88%
accuracy using UAV-acquired RGB imagery and neural networks. Neural networks rely on
a training database that connects inputs to corresponding outputs that allow for the cre-
ation of complex functional relationships that are not easily envisioned by researchers [98].
Furthermore, other studies that utilized the sub-pixel analysis of lower-resolution hyper-
spectral imagery and hybrid-analysis-method techniques have been shown to have 85%
and 93% TAs when classifying plant species at a class-level granularity [99,100]. These
studies differ from our work in that they used various image processing techniques in place
of a simple maximum likelihood classification technique to achieve similar classification
accuracies at a species granularity level. Our technique, however, utilized the addition of
near-infrared (NIR) layers, digital elevation model (DEM) layers, and classification date
comparisons to achieve our highest total accuracies. We speculate that a hybrid approach
for utilizing NIR and DEM layers and date comparisons in conjunction with either object-
based, neural-network, or subpixel-analysis techniques could provide future methods that
achieve higher classification accuracies of UAV imagery for mapping salt marsh species in
New Hampshire.



Remote Sens. 2023, 15, 5076 18 of 37

4.1.3. Total Accuracies Relative to Other Non-UAV Wetland Vegetation Classification Studies

With regard to non-UAV imagery, the TAs of our research approximately align with
the TAs of salt marsh and other wetland classification studies that utilized lower-spatial-
resolution Landsat imagery [50,51,54]. However, in previous studies, the Landsat imagery
that was used was only able to classify broad land-cover or vegetation classes [50,51,54].
For instance, Sun et al. (2018) [50] classified low-marsh, high-marsh, upper-high-marsh,
and tidal-flat group classes using an NDVI time-series approach based on Landsat data
within the Virginia Coast Reserve, USA, to achieve approximately 90% total accuracies.
Harvey and Hill (2001) [54] classified three broad tropical wetland vegetation groups using
unsupervised classifications of Landsat data for an area in northern Australia to achieve
from 86% to 90% total accuracies. And, Wang et al. (2019) [51] classified eight broad
land cover classes from Landsat data using random forest, support vector machine, and
k-nearest neighbor machine learning algorithms for an estuary wetland in Lianyungang,
China, to produce approximately 87%, 80%, and 77% total accuracies respectively. These
uses of broad classifications of Landsat data speak to the findings of Belluco et al. (2006) [49]
that emphasize the importance of higher-resolution imagery for the classification of salt
marsh vegetation at the species granularity level. We believe that high-resolution UAV
imagery, as used in our study in place of the lower-resolution Landsat imagery as utilized
in previous salt marsh studies, allowed for similar classification accuracies to be achieved
within our work but at a finer species class granularity in place of broad vegetation classes.
The creation of these species class granularities can help to better contribute to a finer-scale
understanding of where individual species live within salt marshes and how they are
changing over time. The downside to the use of UAV imagery over Landsat imagery,
however, is that UAV imagery has much smaller footprints relative to Landsat imagery,
thus making the process for collecting UAV imagery a more time-consuming endeavor for
large-area analysis.

4.2. A Finer Discussion of CCCs, UAs, and PAs
4.2.1. A Finer Discussion of RGB Composite Classifications

Although the total accuracies (TAs) between image classification types and dates can
provide an overall assessment of which image classifications are best and worst to use
to monitor salt marsh species, finer assessments of cross-class confusions (CCCs), user
accuracies (UAs), and producer accuracies (PAs) can provide insights into the dynamics of
why classification total accuracies differ from each other. The RGB composite classifications
created for study area 1 and study area 2 displayed notable instances of where SpAl and
SpAl-SF had relatively high CCC percentages (Tables A1a–d and A5a–c). These high
confusions might be explained by the fact that these two vegetation types are variants of
the same species but are usually found in different parts of a salt marsh. SpAl usually
resides within a wide tidal range in the low-marsh region below the mean high-tide line.
Conversely, SpAl-SF resides within a shallow tidal range in low depressions across the high
marsh [33]. The vegetation base elevation profiles created for each study area corroborate
this explanation. In study area 1, SpAl had a mean base elevation of 1.12 m with a
0.076 m standard deviation, and SpAl-SF had a significantly different mean base elevation
of 1.35 m with a 0.051 m standard deviation (Figure 5). In study area 2, SpAl had a mean
base elevation of 1.27 m with a 0.13 m standard deviation, and SpAl-SF had a significantly
different mean base elevation of 1.47 m with a 0.11 m standard deviation (Figure 8). In study
area 1, the mapping of the 1 October RGB composite classification next to the 1 October
RGND (the most accurate classification created for study area 1) provided a visual example
of the large amounts of misclassified SpAl in the high marsh and misclassified SpAl-SF in
the low marsh within the RGB classification (Figure 3a,d). Likewise, in study area 2, the
mapping of the 30 September RGB composite classification next to the 30 September RGND
(the most accurate classification created for study area 2) provided a visual example of
the large amounts of misclassified SpAl-SF in the low marsh within the RGB classification
(Figure 6a,d).
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4.2.2. A Finer Discussion of RGN Composite Classifications

The RGN composite classifications created for study areas 1 and 2 yielded higher
TAs than their RGB classification counterparts (Tables 5a and 6a). This result was not
unexpected because Artigas and Yang (2006) [77] showed how near-infrared segments
of the electromagnetic spectrum in hyperspectral lab measurements could be useful to
discriminate between prominent salt marsh species. In study area 1, the mapping of
the 1 October RGB and RGN composite classifications next to the 1 October RGND (the
most accurate classification created for study area 1) provided a visual example of how
the RGN composite, inclusive of a near-infrared band, helped to reduce the number of
misclassifications between classes, such as SpPa vs. DiSp and JuGe vs. SpAl-SF, in the high
marsh relative to the RGB classification (Figure 3a,b,d). This example corresponds to a
reduced CCC between the high-marsh classes, SpPa vs. DiSp and JuGe vs. SpAl-SF, within
the RGN classification confusion matrices, relative to their RGB counterparts. In study area
2, the mapping of the 30 September RGB and RGN composite classifications next to the
30 September RGND (the most accurate classification created for study area 2) provided
a similar visual example of how the RGN composite, inclusive of a near-infrared band,
helped to reduce the number of misclassifications between classes, such as JuGe vs. SpPa
and JuGe vs. SpAl-SF, in the high marsh relative to the RGB classification (Figure 6a,b,d).
This example corresponds to a reduced CCC between the high-marsh classes, JuGe vs.
SpPa and JuGe vs. SpAl-SF, within the 30 September and 14 October instances of the RGN
classification confusion matrices, relative to their RGB counterparts. Within both study
areas, the higher TAs, the visual improvements in high-marsh species accuracies, and the
reduction in CCC between the high-marsh classes within the RGN composite classifications
over their RGB counterparts support hypothesis 1 of this research, which states that using
imagery inclusive of a near-infrared band can help to improve vegetation classification
accuracies over true-color imagery alone.

This assertion of hypothesis 1 for salt marshes diverges from the findings of Lisein
(2015) [101] and Grybas and Congalton (2021) [76] when they mapped tree species. Their
work showed that true-color RGB camera imagery could be more effective when mapping
tree species than multispectral imagery inclusive of a near-infrared band. However, these
two studies differ from our study in that their work created single classifications with
imagery from multiple dates, taking advantage of the changing phenology over time to
classify tree species. Within our study, we have shown that imagery inclusive of a near-
infrared band favored higher total accuracies than true-color imagery alone when mapping
salt marsh species per individual date. We attribute the higher accuracies obtained with
the MapIR RGN camera imagery over the accuracies obtained with the DJI RGB camera
imagery because the former imagery tended to be more effective for classifying differences
between the high-marsh species, SpPa vs. DiSp and JuGe vs. SpAl-SF, all of which
comprised most of the vegetation cover across study area 1.

4.2.3. A Finer Discussion of RGBD Composite Classifications

The addition of an elevation layer, D, to the RGB composites in study areas 1 and
2 also yielded higher TAs than just their RGB composites alone (Tables 5a and 6a). In
both study areas, the creation of the RGBD composite classifications (Tables A3a–d and
A7a–c) revealed reduced CCC percentages between SpAl and SpAl-SF relative to their
RGB counterparts (Tables A1a–d and A5a–c). This reduction in CCC between these two
spectrally similar classes is consistent with Lee and Shan’s (2003) [78] findings that the
inclusion of a digital elevation data layer within coastal IKONOS imagery can help to
increase the classification accuracies of classes with similar spectral characteristics.

In study area 1, the RGBD composites (Table A3a–d) also yielded improved UAs
and PAs for SoSv relative to their RGB counterparts (Table A1a–d) but had less success
at reducing CCCs between SpPa and DiSp, JuGe and DiSp, and JuGe and SpAl-SF. The
addition of the digital elevation band, D, to an RGB composite did more to increase
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accuracies in the low-marsh and terrestrial-border species of SpAl and SoSv but was not as
effective at increasing accuracies between high-marsh species, such as SpAl-SF, SpPa, DiSp,
and JuGe. The assessment of the vegetation base elevation marsh profile for study area
1 reveals that this might be the case because SpAl-SF, SpPa, and JuGe all reside at similar
vertical base elevation ranges across the landscape, whereas SpAl resides at the statistically
lower end of the base elevation profile (Figure 5). These observations are consistent with the
results of our Welch and Games–Howell test statistical analyses for study area 1 in that the
base elevation of SpAl was statistically different from those of all the other vegetation types
(Figure 5). Furthermore, although the base elevation of SoSv is considered as statistically
similar to those of all the high-marsh vegetation types in study area 1 (SpAl-SF, SpPa,
DiSp, and JuGe), it was almost statistically different from that of SpAl-SF (p-value 0.0772)
(Table A9), a class that the non-elevation-added RGN classification confuses with SoSv
(Figure 3b,d). In study area 1, the mapping of the 1 October RGB and RGBD composite
classifications relative to the 1 October RGND (the most accurate classification created for
study area 1) provided a visual example of how the inclusion of the digital elevation model
(DEM) improved the classification accuracies of SpAl and SoSv at the extreme ends of the
salt marsh base elevation range. However, the addition of a DEM did less to improve the
classification accuracies between species within the narrow elevation range of the high
marsh, except for SpAl-SF, where it was confused with the spectrally similar species of
SpAl and SoSv (Figure 3a,c,d).

In study area 2, the creation of the RGBD composite classifications (Table A7a–c) also
revealed some notable instances of reduced CCC percentages between SpAl vs. SoSv
relative to their RGB counterparts (Table A5a–c). For study area 2, the mapping of the
30 September RGB and RGBD composite classifications relative to the 30 September RGND
(the most accurate classification created for study area 2) provides a visual example of how
the inclusion of the digital elevation model (DEM) improved the classification accuracies
of SpAl and SoSv at the extreme ends of the salt marsh elevation range (Figure 6a,c,d).
However, this mapping also provided a visual example of how the creation of the RGBD
classification improved the accuracies of SpPa and DiSp within the high marsh. This
finding is inconsistent with that for study area 1, where the addition of a DEM to the RGB
composite improved classification accuracies more within the low and terrestrial border
species than on the high marsh. However, this observation is consistent with the marsh
profile that we created for study area 2. The results of the Welch and Games–Howell test
statistical analyses for study area 2 showed that the base elevation of SpPa was statistically
different than that of DiSp (Figure 8).

4.2.4. A Finer Discussion of RGND Composite Classifications

The RGND composite classifications created for study areas 1 and 2 revealed im-
provements in TAs relative to their RGN counterparts (Tables 5a and 6a). In study area
1, the RGND composite classifications (Table A4a–d) also revealed improvements in both
UAs and PAs in most vegetation classes relative to their RGN counterparts (Table A2a–d),
with notably large increases in the SpAl and SoSv classes. These increases in UAs and
PAs for SpAl and SoSv might also be attributed to their extreme lower and upper base
elevation ranges across this project’s salt marsh elevation profile (Figure 5). In study area
2, although there were some decreases in CCCs for SpAl vs. SpAl-SF and SpAl vs. SoSv,
as was observed in study area 1, there were also some CCC decreases observed in DiSp
vs. SpPa between the RGN and RGND composite classifications that were less prevalent
in study area 1. These observations are also consistent with the results of the Welch and
Games–Howell test statistical analyses for study area 2, which showed that the base ele-
vation of SpAl was statistically different from those of SpAl-SF and SoSv and that SpPa
was statistically different than DiSp (Figure 8). The mapping of the 1 October (study area
1) and 30 September (study area 2) RGND composite classifications (the most accurate
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classifications created for each study area) relative to the 1 October (study area 1) and
30 September (study area 2) RGB, RGN, and RGBD classifications provided a visual
example of how the inclusion of a near-infrared band and a digital elevation model
improved the classification accuracy of species both at the extreme ends of the salt marsh
elevation profile and within the more consistent elevation range of the high marsh
(Figures 3a–d and 6a–d). The higher TAs of the RGBD and RGND composite classifi-
cations over their RGB and RGN counterparts and the visual and CCC improvements in
the accuracy of the specific species classes in the RGBD and RGND classifications support
hypothesis 2 of this research, providing evidence that the addition of a DEM layer to UAV-
derived imagery band combinations can improve the imagery’s classification accuracy.

4.2.5. A Finer Discussion of the Salt Marsh Vegetation Elevation Profile

The salt marsh vegetation base elevation profile that we created for study area 1
(Figure 5) and utilized within our RGBD and RGND classifications shows roughly the
same elevation order of plant species as a base elevation profile created for salt marshes
within the nearby Great Bay Estuary region of New Hampshire, approximately 24 km
(15 mi) up the Piscataqua River from our sampling locations [61]. The differences between
the Great Bay Estuary regional study and our study are that the Great Bay Estuary re-
gion study included low-marsh, SpAl-SF, high-marsh SpPa/DiSp, high-marsh-mix, JuGe,
brackish-marsh, Phragmites australis, and terrestrial-border-species class base elevations;
whereas within our study, we parsed out the differences between the base elevations of
SpAl, SaEu, SpAl-SF, SpPa, DiSp, JuGe, and SoSv from each other. With regard to the
mean base elevations of species, our study area 1 species types showed upwards shifts of
approximately 0.8 m (2.62 ft) in the low marsh, from 0.14 (0.45 ft) to 0.18 m (0.59 ft) in the
high marsh, and 0.1 m (0.32 ft) at the terrestrial border compared to those in the Great Bay
Stevens study. We suspect that the large difference between the low-marsh (SpAl) species’
mean base elevations in these two studies could be owing to an approximately 0.67 m
(2.2 ft) difference in the height of the mean high tides between our study area and those at
the far end of Great Bay where the Stevens study took place [102].

The salt marsh vegetation base elevation profile that we created for study area 2
(Figure 8) and utilized within our RGBD and RGND classifications did not fully follow the
same elevation order of plant species as the base elevation profile created for study area
1 (Figure 5) or that of salt marshes study within the nearby Great Bay Estuary region of
New Hampshire, approximately 24 km (15 mi) up the Piscataqua River from our sampling
locations [61]. Although SpAl and SoSv were found at the extreme ends of the marsh
profile as in study area 1, SaEu, SpAl-SF, SpPa, DiSp, and JuGe were ordered by mean
base elevation differently from their counterparts in study area 1. We speculate that this
is due to human-made changes in the elevation of the marsh caused by the creation of Rt.
1A, which contains the upper marsh border of this study area. These changes in the base
elevation might have altered the freshwater inputs to the marsh, thus having effects on
growing zones within the study area, but this speculation needs further study. However,
alterations to fresh water inputs into coastal marsh lands have previously been shown to
play a role in levels of plant stress and seed generation and growth [103], factors that can
alter plant cover. We also speculate that the Rt. 1A bridge adjacent to study area 2 may
be the source of a tidal restriction that forces water to build up behind it during large ebb
tides. This, in turn, may be altering the normal base elevations of growing zones within
this area, but this speculation also needs further study. However, our current data show
that SaEu, a plant that often can live along low-lying shallow salt pans, resided at a much
higher base elevation relative to its neighboring vegetation types in study area 2 than in
study area 1 (Figure 8). Furthermore, the nearly double UAV SfM-derived DEM vertical
RMS accuracy of 10.68 cm (4.2 in) in study area 2 vs. 4.60 cm (1.81 in) in study area 1 likely
further confounded the study area 2 RGBD and RGND classifications, resulting in their
lower classification accuracies (Tables 5a and 6a). We suspect that the differing vertical RMS
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results of the two study areas are due to study area 2 having a more complex landscape
with more varying and steeper drop-offs at the water line and more deep holes and ditches
over the landscape as compared to study area 1. The more complex ground features of
study area 2, as captured from our nadir-acquired imagery, were likely harder for SfM to
resolve into an accurate DEM than our less complex study area 1 ground features. Previous
research shows that the capture of more complex landscapes can be better resolved, with
the inclusion of both nadir and off-nadir-acquired imagery, into SfM processing [104]. We
also acknowledge that the use of an RTK positioning-enabled drone may also help to
increase the RMS accuracies of the collection of future elevation layers [105].

Despite variations in the ordering of species’ base elevations between study areas 1
and 2, they both support the influence that regular tidal flooding and the mean-high-tide
(MHT) line may have on the break line between the low-marsh growing zone, dominated
nearly exclusively by the species SpAl, and the high-marsh growing zone that contains
the other species we studied within our research. Study area 2 has an SpAl base elevation
of 1.27 m, which is 0.03 m lower than the 1.3 m MHT line recorded 4 km away at the Fort
Point NOAA gauging station [86]. Study area 1 has an SpAl base elevation of 1.12 m, which
is 0.18 m lower than the 1.3 MHT line [86] recorded 5 km away at the Fort Point NOAA
gauging station [86]. We speculate that the lower SpAl base elevation in study area 1 vs.
study area 2 may be due to their differences in distance from the NOAA gauging station
and the additional tidal damping effects that study area 1 may experience because it is
1 km deeper into the marsh than study area 2. However, further research also needs to be
completed to test these speculations.

4.2.6. A Finer Discussion of Confusion Matrices by Acquisition Date

A review of the study area 1 and 2 confusion matrices by the acquisition date also
revealed interesting findings (Appendix A). Though UAs and PAs varied by date, in study
area 1, in general, the lowest UAs and PAs were created by the 31 August classifications
(Tables A1a, A2a, A3a and A4a), and the highest were created by the 1 October clas-
sifications (Tables A1c, A2c, A3c and A4c), with some slight variations created in the
17 September and 12 October classifications (Tables A1b,d, A2b,d, A3b,d and A4b,d).
In study area 2, in general, the lowest UAs and PAs were created by the 14 September
(Tables A5a, A6a, A7a and A8a) and October 14 (Tables A5c, A6c, A7c and A8c)
classifications, and the highest were created by the 30 September classifications
(Tables A5b, A6b, A7b and A8b). For instance, though the UAs and PAs of SaEu var-
ied by composite type, they peaked in study area 1 within the 1 October classification
(Tables A1c, A2c, A3c and A4c) and within the 30 September classification for study area 2
(Tables A5b, A6b, A7b and A8b). These peaks in accuracy for SaEu correspond with visual
observations of when the plants’ spectral reflectance transitions in color from green to
bright red within our study areas, displaying similar color characteristics as those described
by Bertness (1992) [36]. Additionally, though the UAs and PAs for SoSv were relatively poor
for the RGB (Tables A1a–d and A5a–c) and RGN (Tables A2a–d and A6a–c) composites
across all the dates, these accuracies increased within the RGBD (Tables A3a–d and A7a–c)
and RGND (Tables A4a–d and A8a–c) classifications across all the dates. These findings
were not unexpected, as the addition of the digital elevation model likely helped to better
classify SoSv at its higher base elevation than other species in our study area. Furthermore,
it is notable that the UAs and PAs for SpPa and DiSp peaked in the study area 1 (1 October)
and study area 2 (30 September) RGND (Tables A1c, A2c, A3c, A4c and A8a–c) classifica-
tions. These findings correspond with in-field observations that revealed that SpPa gained
a slight orange hue and DiSp gained a slight purple hue across the landscape around the
beginning of October. This phenomenon was the most evident in larger homogeneous
patches of the two species. These findings help to support that the spectral reflectance of the
marsh species assessed within our study varies through late summer and early fall. These
are in line with the in-field hyperspectral analysis findings of Gilmore et al. (2010) [59]
but vary somewhat from the findings of Nardin et al. (2021) [67], which showed seasonal
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color variability within low-marsh species in the fall but persistent green foliage in the
high-marsh species, SpPa (also known as Sporobolus pumilus in their study), at the same
time of the year in Maryland, USA. With this said, relatively high CCC percentages between
our SpPa and DiSp classes for the 1 October (study area 1) and 30 September (study area
2) RGND composite (Tables A4c and A8b) reveal the difficulty in accurately classifying
these species, even at this time of the year, within our study areas. Although Artigas and
Yang (2006) [77] showed that hyperspectral lab measurements of SpPa and DiSp were more
successfully discriminated with the use of near-infrared bands than blue and green bands,
we believe that the interwoven co-habitation of these two species in parts of the study area
probably confused the maximum likelihood classifier. The calculation of varying TAs, UAs,
and PAs occurring across the time period of our study supports hypothesis 3 of this research
that UAV-derived vegetation classification total accuracies within our study areas will vary
over late summer and early fall. Closer assessments also show that there are variations
in user, producer, and CCC accuracies between the classification dates. Furthermore, the
variations in the separation of our species spectral curves over late summer and early fall
(Figure 2a–c) imply that our project’s classifier capability to render accurate classifications
will vary as well, further providing support for hypothesis 3 of this research.

4.3. Methodological Limitations and Next Steps

Within this research, our methodologies utilized a low-cost consumer-grade DJI Phan-
tom 4 Pro UAV equipped with a fixed DJI, red, green, and blue (RGB) camera and a low-cost
MapIR, red, green, and near-infrared (RGN) Survey 3 camera for imagery capture. This
equipment was used to stay within our project budget and assess the potential of these
low-cost sensors for producing accurate classifications. However, this methodology did
introduce limitations to our study. For instance, the DJI and MapIR cameras utilized differ-
ent focal lengths and, thus, produced different pixel sizes. Additionally, although the DJI
camera does not have published spectral ranges for its bands, it is possible that its red and
green bands do not have the same spectral range as those of the same bands of the MapIR
camera. These differences in the characteristics of the two cameras may have influenced
the outcomes of our classifications and our accuracy assessments. Thus, they might be
a commentary on the cameras’ effectiveness and not just the broad spectral bands they
measured. However, with the MapIR camera composite classifications outperforming the
DJI camera composite classifications, it is clear that classification accuracies can be signifi-
cantly improved for only a $400 MapIR camera upgrade. More expensive alternatives to
our two-camera approach may include multispectral sensors that capture blue, green, red,
and near-infrared bands within the same camera, such as MicaSense cameras ranging from
~$5000 to $12,000. These cameras also provide a downwelling light sensor to compensate
for changes in light conditions during a mission, a capacity we could not take advantage of
within our study. Furthermore, although not used within our assessment, spectral indices,
such as the normalized difference vegetation index (NDVI), could have been created from
in situ bands for further testing. However, for this study, we looked to maintain band
independence between the layers within our composites so that we could compare how the
use of only the basic spectral bands affected composite classification accuracies. However,
we do recognize that the assessment of such indices for salt marsh classification accuracies
may be fruitful for future research.

Another limitation of our work is that we only utilized two small patch areas within
a single salt marsh along the New Hampshire seacoast. This begs the question of how
scalable our results are relative to the larger New Hampshire salt marsh system. Although
our work only assessed seven dominant plant species within our study areas, our research
has demonstrated the ability of our spectral band, elevation layer, and collection date
combinations to distinguish specific species from one another. For instance, the use of a
DEM layer allowed SpAl vs. SpAl-SF and SpAl vs. SoSv to be more easily distinguished
from each other. The use of a NIR layer also allowed for better distinctions between
high-marsh species, such as SpPa, DiSp, and JuGe, vs. the low-marsh species SpAl. As
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these species are prominent throughout many New Hampshire seacoast salt marshes, our
research provides a strong foundation for the applicability of our results to other New
Hampshire salt marshes. However, varying levels of spectral separability, due to the
introduction and mixture of other species within other salt marshes, may alter salt marsh
vegetation classification accuracies.

Additionally, although we did not compare object- versus pixel-based analysis and
various vegetation class granularities within our research, we believe that these areas of
study could be fruitful within our study area and warrant future investigations. Further-
more, because tidal and precipitation effects highly influence our study areas, future work
is needed to better compensate for the varying effects of moisture within these landscapes.

5. Conclusions

In conclusion, this research has built upon previous remote sensing and field method
research to assess how the spectral, elevation, and temporal characteristics of the UAV-
derived imagery of salt marshes can affect the accuracy of their vegetation classifications.
We found that the use of a red, green, and near-infrared (RGN) UAV-derived image com-
posite helped to improve classification accuracies over those of red, green, and blue (RGB)
true-color imagery composites alone. Finer assessments of cross-class confusions (CCCs),
user accuracies (UAs), and producer accuracies (PAs) provided us with additional insights
into the dynamics of why classification total accuracies differed from each other. We
also found that adding a digital elevation model (DEM) layer to UAV-derived imagery
improved the imagery’s classification total accuracies. Closer inspection of the marsh
elevations over our two study areas provided further understanding of how species dis-
tributions may be affected by variations in the base profile of a marsh. Furthermore, we
found that UAV-derived vegetation classification total accuracies did vary over the late
summer and early fall in our two study areas, peaking at around the beginning of October.
Although these methods were assessed within our two study areas ranging over a series of
dates and two growing seasons, we recognize that our findings are influenced by marsh
species compositions, base elevation profiles, and seasonal phenological conditions that
may vary in other study areas for other growing seasons. Owing to these facts, we attest to
the classification accuracies found within our study areas for the time periods that were
assessed but believe that the results provided herein can help other researchers to find the
best dates and composite layers to help accurately classify plant species within other salt
marsh landscapes for time periods of their choosing. These assessments may, in turn, help
to provide insights and knowledge into what drivers are affecting change within these
environments. Armed with this knowledge, decision-makers can be better equipped to set
policy with regard to these important coastal ecosystems.
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Appendix A

MARGFIT normalized cross-class confusion matrices by composite type and date (cross-
class key: Black: >20% , Gray: from >10% to ≤ 20% , and Light Gray: from 0% to ≤ 10%
cross-class % confusion (non-matches) and White: cross-class % accuracy (matches)) (composite
band codes: R = red; G = green; N = near infrared; D = digital elevation model. Non-underlined
codes represent bands from a DJI Phantom 4 Pro true color camera. Underlined codes represent
bands from a MapIR red, green, and near-infrared camera. Doubly underlined codes represent

a structure from motion-derived digital elevation model.) (Abbreviations: JuGe = Juncus gerardii,
SpPa = Spartina patens, SaEu = Salicornia europa, SpAl = Spartina alterniflora, SoSv = Solidago
sempervirens, DiSp = Distichlis spicata, SpAl-SF = Spartina alterniflora-short form, PA = producer
accuracy, UA = user accuracy, and Kappa C = Kappa coefficient). Note that there were no
late-August 2022 data collected within our study for inclusion in Tables A5–A8.

Table A1. (a) Study Area 1—31 August 2018—RGB composite MARGFIT normalized confusion
matrix. (b) Study Area 1—17 September 2018—RGB composite MARGFIT normalized confusion
matrix. (c) Study Area 1—1 October 2018—RGB composite MARGFIT normalized confusion matrix.
(d) Study Area 1—12 October 2018—RGB composite MARGFIT normalized confusion matrix.

(a)

Class JuGe SpPa SaEu SpAl SoSv DiSp SpAl-SF UA Kappa C
JuGe 50.1% 2.0% 20.8% 6.7% 0.5% 11.7% 8.1% 52.9%
SpPa 0.8% 46.2% 3.1% 12.7% 16.6% 15.3% 5.4% 54.8%
SaEu 27.7% 0.9% 59.3% 4.8% 1.1% 3.9% 2.6% 37.3%
SpAl 8.1% 6.3% 13.2% 29.8% 7.8% 6.4% 28.5% 35.6%
SoSv 0.7% 28.8% 1.6% 10.6% 41.2% 14.4% 2.6% 16.4%
DiSp 8.3% 10.9% 0.8% 8.8% 21.7% 37.2% 12.3% 55.8%
SpAl-SF 4.5% 5.0% 1.2% 26.7% 11.1% 11.0% 40.6% 33.0%
PA 64.8% 53.5% 7.0% 51.5% 2.3% 54.0% 24.8% 47.0%

Kappa C. 0.3423

(b)

Class JuGe SpPa SaEu SpAl SoSv DiSp SpAl-SF UA Kappa C
JuGe 69.4% 1.9% 10.6% 3.6% 1.0% 9.6% 4.0% 63.8%
SpPa 1.1% 60.9% 1.4% 9.1% 9.2% 14.5% 3.8% 57.5%
SaEu 9.3% 1.7% 82.0% 1.5% 2.7% 1.1% 1.8% 81.4%
SpAl 8.6% 6.9% 3.7% 38.2% 5.2% 9.6% 27.9% 40.7%
SoSv 0.9% 2.2% 1.5% 12.3% 73.7% 4.7% 4.8% 67.6%
DiSp 9.7% 17.4% 0.3% 11.5% 2.4% 51.1% 7.6% 61.6%
SpAl-SF 1.1% 9.0% 0.6% 23.8% 5.8% 9.4% 50.2% 46.4%
PA 73.9% 58.6% 31.5% 55.5% 25.0% 60.9% 33.0% 55.0%

Kappa C. 0.4419

(c)

Class JuGe SpPa SaEu SpAl SoSv DiSp SpAl-SF UA Kappa C
JuGe 70.4% 3.3% 3.3% 3.1% 4.3% 7.3% 8.4% 63.0%
SpPa 3.1% 67.0% 1.0% 3.4% 3.0% 19.2% 3.5% 66.2%
SaEu 3.2% 0.7% 91.9% 0.1% 0.5% 0.8% 3.0% 93.8%
SpAl 9.6% 2.7% 2.7% 35.0% 24.6% 2.5% 22.9% 59.5%
SoSv 1.3% 8.8% 1.0% 47.4% 28.3% 9.8% 3.6% 6.6%
DiSp 8.8% 16.3% 0.1% 1.6% 11.6% 57.1% 4.5% 69.8%
SpAl-SF 3.7% 1.3% 0.2% 9.4% 27.8% 3.5% 54.2% 55.6%
PA 74.1% 59.3% 64.6% 67.4% 0.8% 74.2% 54.7% 64.3%

Kappa C 0.5572
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Table A1. Cont.

(d)

Class JuGe SpPa SaEu SpAl SoSv DiSp SpAl-SF UA Kappa C
JuGe 62.5% 5.2% 7.1% 6.8% 1.5% 9.1% 7.9% 53.5%
SpPa 5.8% 65.8% 2.3% 3.1% 0.1% 17.8% 5.0% 62.0%
SaEu 4.5% 2.8% 79.3% 3.9% 0.4% 1.5% 7.7% 74.8%
SpAl 7.8% 4.4% 9.4% 41.2% 5.9% 2.9% 28.5% 50.1%
SoSv 0.8% 1.8% 0.8% 20.6% 62.3% 9.1% 4.6% 48.6%
DiSp 13.1% 18.1% 0.4% 5.0% 3.7% 54.5% 5.2% 66.4%
SpAl-SF 5.5% 2.1% 0.8% 19.4% 26.1% 5.1% 41.1% 40.1%
PA 68.7% 58.7% 24.8% 59.6% 7.0% 68.2% 35.8% 56.4%

Kappa C 0.4585

Table A2. (a) Study Area 1—31 August 2018—RGN composite MARGFIT normalized confusion
matrix. (b) Study Area 1—17 September 2018—RGN composite MARGFIT normalized confusion
matrix. (c) Study Area 1—1 October 2018—RGN composite MARGFIT normalized confusion matrix.
(d) Study Area 1—12 October 2018—RGN composite MARGFIT normalized confusion matrix.

(a)

Class JuGe SpPa SaEu SpAl SoSv DiSp SpAl-SF UA Kappa C
JuGe 59.6% 0.3% 23.1% 0.5% 0.5% 6.7% 9.4% 67.1%
SpPa 0.5% 56.5% 1.4% 7.9% 1.0% 27.4% 5.3% 54.0%
SaEu 6.2% 7.6% 3.8% 12.2% 64.0% 4.2% 1.8% 0.0%
SpAl 4.0% 4.9% 1.9% 62.7% 0.1% 8.3% 18.2% 63.0%
SoSv 5.2% 9.0% 42.0% 1.8% 27.6% 8.2% 6.2% 47.9%
DiSp 15.6% 17.9% 4.7% 6.8% 5.7% 40.3% 9.0% 55.2%
SpAl-SF 8.9% 3.8% 23.1% 8.2% 1.2% 4.8% 50.1% 44.1%
PA 60.3% 52.7% 0.0% 73.6% 28.2% 49.6% 65.4% 55.5%

Kappa C 0.4522

(b)

Class JuGe SpPa SaEu SpAl SoSv DiSp SpAl-SF UA Kappa C
JuGe 74.5% 0.2% 5.1% 0.7% 1.1% 10.9% 7.5% 75.8%
SpPa 0.4% 60.4% 0.5% 5.8% 9.0% 19.2% 4.8% 55.6%
SaEu 4.8% 1.3% 72.9% 9.9% 8.9% 1.8% 0.6% 77.3%
SpAl 4.0% 2.7% 0.1% 71.8% 0.7% 8.7% 12.1% 73.9%
SoSv 1.1% 12.2% 14.8% 0.9% 58.2% 4.8% 8.0% 40.0%
DiSp 10.6% 17.5% 1.3% 4.1% 12.8% 49.7% 4.0% 63.7%
SpAl-SF 4.6% 5.7% 5.5% 6.8% 9.5% 4.9% 63.1% 53.4%
PA 66.3% 66.1% 23.0% 75.5% 19.0% 57.5% 76.9% 63.2%

Kappa C. 0.5478

(c)

Class JuGe SpPa SaEu SpAl SoSv DiSp SpAl-SF UA Kappa C
JuGe 83.1% 0.8% 3.2% 2.5% 1.4% 5.0% 4.0% 80.8%
SpPa 0.2% 78.0% 1.7% 1.3% 4.7% 12.9% 1.1% 75.8%
SaEu 1.1% 3.5% 86.7% 0.5% 2.5% 0.3% 5.5% 86.0%
SpAl 4.6% 0.6% 0.1% 73.4% 1.5% 2.6% 17.4% 80.6%
SoSv 2.0% 7.4% 6.3% 7.3% 50.8% 8.1% 18.1% 28.1%
DiSp 2.5% 9.1% 0.1% 4.5% 10.0% 70.6% 3.1% 77.1%
SpAl-SF 6.4% 0.7% 2.0% 10.5% 29.1% 0.5% 50.8% 60.4%
PA 85.7% 82.9% 70.7% 67.2% 12.8% 83.4% 65.9% 74.8%

Kappa C 0.6884
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Table A2. Cont.

(d)

Class JuGe SpPa SaEu SpAl SoSv DiSp SpAl-SF UA Kappa C
JuGe 78.2% 0.5% 8.0% 0.8% 2.1% 7.2% 3.4% 70.2%
SpPa 1.1% 72.3% 5.4% 0.3% 1.8% 14.2% 4.8% 77.0%
SaEu 1.2% 6.2% 69.6% 0.8% 0.6% 3.9% 17.8% 51.4%
SpAl 2.3% 0.3% 0.1% 79.0% 3.3% 2.7% 12.3% 85.7%
SoSv 0.6% 5.4% 0.7% 9.7% 55.4% 7.8% 20.5% 29.7%
DiSp 10.6% 14.0% 0.2% 4.8% 4.9% 61.8% 3.8% 68.5%
SpAl-SF 6.0% 1.4% 16.1% 4.7% 31.9% 2.4% 37.5% 52.2%
PA 81.9% 64.4% 16.0% 77.7% 6.8% 78.7% 65.6% 69.4%

Kappa C 0.6190

Table A3. (a) Study Area 1—31 August 2018—RGBD composite MARGFIT normalized confusion
matrix. (b) Study Area 1—17 September 2018—RGBD composite MARGFIT normalized confusion
matrix. (c) Study Area 1—1 October 2018—RGBD composite MARGFIT normalized confusion matrix.
(d) Study Area 1—12 October 2018—RGBD composite MARGFIT normalized confusion matrix.

(a)

Class JuGe SpPa SaEu SpAl SoSv DiSp SpAl-SF UA Kappa C
JuGe 57.2% 2.2% 12.4% 0.2% 3.9% 14.7% 9.4% 57.5%
SpPa 1.4% 60.3% 4.2% 1.4% 7.9% 15.5% 9.5% 61.8%
SaEu 26.5% 2.6% 62.0% 1.7% 0.2% 5.6% 1.5% 39.8%
SpAl 0.3% 0.6% 6.6% 90.4% 0.0% 1.7% 0.3% 93.0%
SoSv 0.1% 8.0% 0.2% 0.1% 85.9% 2.3% 3.5% 79.5%
DiSp 9.3% 16.9% 2.1% 4.2% 1.5% 49.8% 16.3% 63.8%
SpAl-SF 5.4% 9.5% 12.5% 2.1% 0.5% 10.5% 59.6% 52.0%
PA 75.0% 57.7% 19.4% 92.1% 63.4% 54.7% 65.3% 65.6%

Kappa C 0.5785

(b)

Class JuGe SpPa SaEu SpAl SoSv DiSp SpAl-SF UA Kappa C
JuGe 70.8% 1.4% 8.0% 0.0% 3.4% 10.4% 6.0% 66.7%
SpPa 1.2% 66.3% 3.2% 1.4% 4.9% 16.1% 7.0% 64.6%
SaEu 11.1% 1.6% 80.5% 1.1% 0.1% 3.5% 2.1% 67.5%
SpAl 0.1% 1.1% 3.1% 92.7% 0.1% 2.2% 0.6% 94.8%
SoSv 0.6% 4.0% 0.2% 0.1% 89.2% 2.5% 3.5% 84.5%
DiSp 11.5% 16.9% 1.3% 2.7% 2.0% 55.0% 10.6% 67.3%
SpAl-SF 4.7% 8.7% 3.7% 2.0% 0.4% 10.3% 70.2% 63.6%
PA 78.5% 63.6% 57.0% 91.9% 69.8% 62.3% 71.1% 71.7%

Kappa C 0.6528

(c)

Class JuGe SpPa SaEu SpAl SoSv DiSp SpAl-SF UA Kappa C
JuGe 73.0% 3.0% 2.6% 0.1% 6.5% 7.4% 7.6% 67.0%
SpPa 3.6% 69.9% 0.8% 1.7% 1.5% 18.7% 3.7% 68.1%
SaEu 4.8% 0.3% 92.0% 0.1% 0.2% 0.8% 1.7% 92.5%
SpAl 2.4% 0.7% 2.8% 91.5% 0.1% 1.7% 0.7% 92.5%
SoSv 1.3% 4.5% 0.1% 0.1% 88.0% 2.3% 3.9% 79.7%
DiSp 8.0% 18.6% 0.4% 3.2% 2.0% 63.6% 4.1% 72.3%
SpAl-SF 6.8% 3.1% 1.2% 3.4% 1.8% 5.5% 78.3% 77.1%
PA 80.8% 61.8% 69.4% 91.7% 69.0% 72.8% 76.4% 75.9%

Kappa C 0.7030
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Table A3. Cont.

(d)

Class JuGe SpPa SaEu SpAl SoSv DiSp SpAl-SF UA Kappa C
JuGe 61.5% 5.2% 8.2% 0.1% 3.4% 11.3% 10.3% 56.7%
SpPa 6.0% 66.4% 3.3% 0.8% 0.3% 17.3% 5.9% 64.3%
SaEu 11.7% 1.4% 80.2% 0.8% 0.2% 1.8% 4.0% 71.1%
SpAl 1.0% 0.9% 4.1% 91.6% 0.1% 1.8% 0.6% 93.6%
SoSv 0.9% 2.4% 0.1% 0.1% 93.4% 1.9% 1.4% 87.8%
DiSp 12.2% 18.2% 0.7% 3.0% 2.2% 59.6% 4.2% 69.8%
SpAl-SF 6.8% 5.7% 3.4% 3.7% 0.5% 6.3% 73.6% 72.6%
PA 72.3% 60.2% 50.5% 91.9% 83.2% 67.5% 69.8% 71.8%

Kappa C 0.6536

Table A4. (a) Study Area 1—31 August 2018—RGND composite MARGFIT normalized confusion
matrix. (b) Study Area 1—17 September 2018—RGND composite normalized confusion matrix.
(c) Study Area 1—1 October 2018—RGND composite MARGFIT normalized confusion matrix.
(d) Study Area 1—12 October 2018—RGND composite MARGFIT normalized confusion matrix.

(a)

Class JuGe SpPa SaEu SpAl SoSv DiSp SpAl-SF UA Kappa C
JuGe 61.9% 1.3% 7.0% 0.1% 6.0% 11.0% 12.8% 66.7%
SpPa 0.6% 63.0% 0.3% 0.7% 3.2% 26.0% 6.2% 57.2%
SaEu 15.2% 0.9% 72.1% 0.9% 0.9% 4.7% 5.3% 57.9%
SpAl 0.8% 0.9% 0.8% 93.6% 0.1% 2.6% 1.2% 93.0%
SoSv 1.5% 5.7% 0.1% 0.0% 86.0% 2.8% 3.9% 67.5%
DiSp 12.4% 21.2% 3.8% 2.6% 3.8% 45.4% 10.9% 60.7%
SpAl-SF 7.7% 7.0% 15.9% 2.0% 0.1% 7.5% 59.8% 50.0%
PA 62.9% 53.9% 14.0% 93.5% 83.1% 54.0% 74.2% 65.0%

Kappa C 0.5722

(b)

Class JuGe SpPa SaEu SpAl SoSv DiSp SpAl-SF UA Kappa C
JuGe 74.1% 0.4% 3.8% 0.0% 3.6% 11.0% 7.0% 75.7%
SpPa 0.8% 65.2% 0.3% 1.3% 6.6% 21.0% 5.0% 61.4%
SaEu 6.1% 4.3% 84.6% 1.1% 0.4% 2.2% 1.3% 78.8%
SpAl 0.7% 0.7% 0.6% 93.4% 0.1% 2.5% 2.1% 93.9%
SoSv 1.1% 4.6% 0.1% 0.0% 86.1% 3.2% 5.0% 68.8%
DiSp 12.2% 18.0% 2.8% 2.9% 2.3% 54.3% 7.6% 66.1%
SpAl-SF 5.0% 7.0% 7.8% 1.3% 1.0% 5.9% 72.1% 64.4%
PA 69.6% 63.2% 48.6% 92.8% 81.4% 63.0% 78.3% 71.8%

Kappa C 0.6545

(c)

Class JuGe SpPa SaEu SpAl SoSv DiSp SpAl-SF UA Kappa C
JuGe 85.2% 0.4% 3.2% 0.1% 2.5% 4.2% 4.5% 85.7%
SpPa 0.1% 86.4% 2.0% 0.2% 2.1% 8.4% 0.9% 85.2%
SaEu 2.5% 0.9% 94.4% 0.8% 0.2% 0.4% 1.0% 90.6%
SpAl 4.0% 0.4% 0.1% 94.2% 0.1% 0.4% 0.8% 95.2%
SoSv 1.8% 3.0% 0.1% 0.0% 92.0% 1.1% 2.2% 81.8%
DiSp 0.9% 7.4% 0.0% 3.2% 2.2% 83.8% 2.6% 86.0%
SpAl-SF 5.6% 1.6% 0.3% 1.6% 1.1% 1.8% 88.1% 91.6%
PA 89.1% 86.6% 86.9% 92.9% 86.2% 89.6% 80.6% 88.1%

Kappa C 0.8541
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Table A4. Cont.

(d)

Class JuGe SpPa SaEu SpAl SoSv DiSp SpAl-SF UA Kappa C
JuGe 75.1% 0.5% 6.1% 0.1% 3.0% 10.3% 5.0% 71.8%
SpPa 0.9% 76.4% 4.9% 0.1% 0.1% 12.4% 5.2% 77.5%
SaEu 8.1% 1.5% 82.3% 1.6% 0.1% 2.5% 3.9% 68.1%
SpAl 0.5% 0.7% 0.6% 94.3% 0.1% 1.7% 2.1% 96.1%
SoSv 1.5% 1.4% 0.1% 0.1% 92.2% 1.1% 3.7% 84.8%
DiSp 7.7% 16.7% 0.3% 2.8% 1.8% 66.4% 4.4% 71.1%
SpAl-SF 6.3% 2.8% 5.7% 1.0% 2.8% 5.7% 75.8% 80.2%
PA 81.1% 65.8% 68.7% 91.9% 84.1% 78.2% 71.6% 78.1%

Kappa C 0.7295

Table A5. (a) Study Area 2—14 September, 2022—RGB composite MARGFIT normalized confusion
matrix. (b) Study Area 2—30 September, 2022—RGB composite MARGFIT normalized confusion
matrix. (c) Study Area 2—14 October 2022—RGB composite MARGFIT normalized confusion matrix.

(a)

Class JuGe SpPa SaEu SpAl SoSv DiSp SpAl-SF UA Kappa C
JuGe 49.0% 5.3% 17.7% 0.4% 0.4% 13.9% 13.4% 50.4%
SpPa 8.8% 48.1% 0.3% 3.1% 8.2% 17.6% 14.0% 63.7%
SaEu 10.6% 5.3% 33.1% 9.1% 10.4% 26.0% 5.5% 0.0%
SpAl 3.2% 9.5% 1.4% 64.1% 0.5% 3.4% 17.8% 56.7%
SoSv 1.3% 18.1% 3.9% 1.1% 69.4% 3.1% 3.2% 63.6%
DiSp 10.6% 5.3% 33.1% 9.1% 10.4% 26.0% 5.5% 0.0%
SpAl-SF 16.6% 8.4% 10.4% 13.1% 0.8% 10.1% 40.7% 58.4%
PA 46.6% 70.8% 0.0% 33.5% 33.7% 0.0% 71.7% 59.0%

Kappa C 0.4140

(b)

Class JuGe SpPa SaEu SpAl SoSv DiSp SpAl-SF UA Kappa C
JuGe 52.2% 9.9% 11.9% 2.9% 0.1% 9.7% 13.3% 48.2%
SpPa 8.2% 49.3% 0.1% 7.4% 2.1% 22.2% 10.7% 63.8%
SaEu 6.9% 0.8% 80.7% 1.7% 3.6% 2.7% 3.7% 78.3%
SpAl 0.8% 5.2% 1.3% 60.9% 16.2% 1.6% 14.1% 49.2%
SoSv 1.0% 16.5% 1.5% 1.2% 74.3% 1.9% 3.6% 71.7%
DiSp 16.8% 7.0% 3.8% 2.9% 2.1% 61.0% 6.4% 46.2%
SpAl-SF 14.2% 11.4% 0.7% 23.1% 1.5% 1.0% 48.2% 62.1%
PA 53.9% 67.2% 36.0% 13.0% 51.8% 6.1% 75.9% 60.3%

Kappa C 0.4360

(c)

Class JuGe SpPa SaEu SpAl SoSv DiSp SpAl-SF UA Kappa C
JuGe 52.4% 21.3% 2.8% 5.3% 0.4% 1.4% 16.4% 38.9%
SpPa 12.4% 40.4% 0.3% 5.8% 1.4% 21.2% 18.5% 58.7%
SaEu 3.8% 1.7% 80.2% 2.0% 1.5% 2.0% 9.0% 55.6%
SpAl 3.5% 15.9% 1.5% 39.8% 27.7% 0.8% 10.8% 23.1%
SoSv 0.9% 5.0% 2.6% 20.9% 65.8% 1.4% 3.3% 66.7%
DiSp 8.1% 7.6% 2.7% 1.4% 1.0% 71.8% 7.4% 55.6%
SpAl-SF 18.9% 8.1% 9.8% 24.7% 2.3% 1.5% 34.7% 52.0%
PA 22.6% 54.0% 20.0% 10.0% 38.6% 25.5% 76.5% 51.9%

Kappa C 0.3000
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Table A6. (a) Study Area 2—14 September, 2022—RGN composite MARGFIT normalized confusion
matrix. (b) Study Area 2—30 September, 2022—RGN composite MARGFIT normalized confusion
matrix. (c) Study Area 2—14 October 2022—RGN composite MARGFIT normalized confusion matrix.

(a)

Class JuGe SpPa SaEu SpAl SoSv DiSp SpAl-SF UA Kappa C
JuGe 60.8% 11.2% 2.6% 1.6% 0.8% 7.0% 16.0% 62.5%
SpPa 6.0% 47.9% 0.3% 5.3% 8.9% 20.8% 10.7% 62.7%
SaEu 7.0% 5.8% 35.5% 9.2% 10.9% 25.9% 5.7% 0.0%
SpAl 6.1% 4.8% 0.8% 69.4% 0.3% 6.7% 11.9% 65.6%
SoSv 3.5% 16.5% 5.9% 1.5% 67.3% 4.3% 1.0% 66.7%
DiSp 7.0% 5.8% 35.5% 9.2% 10.9% 25.9% 5.7% 0.0%
SpAl-SF 9.6% 8.0% 19.5% 3.7% 0.9% 9.3% 49.0% 67.7%
PA 46.7% 75.6% 0.0% 66.9% 21.7% 0.0% 76.9% 65.2%

Kappa C 0.5060

(b)

Class JuGe SpPa SaEu SpAl SoSv DiSp SpAl-SF UA Kappa C
JuGe 66.0% 5.0% 0.2% 1.1% 0.2% 23.1% 4.5% 76.7%
SpPa 7.9% 52.8% 0.1% 4.1% 7.3% 17.4% 10.4% 65.3%
SaEu 1.6% 1.3% 86.7% 2.5% 1.9% 5.0% 1.2% 100.0%
SpAl 3.3% 3.8% 0.2% 84.7% 0.2% 2.0% 5.7% 77.5%
SoSv 1.3% 2.9% 2.2% 1.9% 87.0% 3.8% 0.9% 96.8%
DiSp 13.5% 18.9% 4.7% 4.2% 3.1% 41.4% 14.3% 18.2%
SpAl-SF 6.4% 15.3% 6.0% 1.6% 0.5% 7.3% 62.9% 71.5%
PA 63.3% 67.8% 30.0% 86.6% 36.6% 2.0% 84.4% 71.1%

Kappa C 0.5930

(c)

Class JuGe SpPa SaEu SpAl SoSv DiSp SpAl-SF UA Kappa C
JuGe 60.0% 14.5% 0.9% 9.9% 0.6% 1.1% 13.0% 51.0%
SpPa 9.0% 43.3% 0.6% 1.3% 5.9% 27.2% 12.7% 63.6%
SaEu 7.0% 3.9% 46.2% 8.0% 11.1% 19.9% 4.1% 0.0%
SpAl 8.0% 4.6% 1.2% 68.6% 4.3% 0.5% 12.7% 59.8%
SoSv 0.5% 14.1% 3.3% 6.3% 72.4% 1.4% 2.0% 57.7%
DiSp 8.1% 10.5% 18.0% 3.1% 4.3% 38.7% 17.3% 18.2%
SpAl-SF 7.4% 9.2% 29.9% 2.9% 1.4% 11.1% 38.2% 64.9%
PA 59.4% 56.4% 0.0% 70.3% 54.9% 2.0% 72.9% 61.3%

Kappa C 0.4650

Table A7. (a) Study Area 2—14 September, 2022—RGBD composite MARGFIT normalized con-
fusion matrix. (b) Study Area 2—30 September, 2022—RGBD composite MARGFIT normalized
confusion matrix. (d) Study Area 2—14 October 2022—RGBD composite MARGFIT normalized
confusion matrix.

(a)

Class JuGe SpPa SaEu SpAl SoSv DiSp SpAl-SF UA Kappa C
JuGe 52.0% 4.6% 30.2% 1.2% 0.6% 1.8% 9.7% 55.7%
SpPa 11.9% 54.0% 0.6% 4.4% 4.7% 8.1% 16.3% 67.4%
SaEu 10.2% 4.3% 46.7% 8.4% 10.1% 15.7% 4.6% 0.0%
SpAl 4.2% 4.2% 1.5% 77.1% 0.3% 0.5% 12.1% 69.9%
SoSv 0.7% 10.9% 3.1% 0.6% 83.5% 1.0% 0.3% 76.5%
DiSp 4.3% 13.3% 2.2% 0.4% 0.5% 66.7% 12.7% 40.5%
SpAl-SF 16.8% 8.8% 15.9% 7.9% 0.2% 6.2% 44.3% 64.1%
PA 52.9% 65.7% 0.0% 60.3% 74.7% 45.9% 71.2% 63.7%

Kappa C 0.4990
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Table A7. Cont.

(b)

Class JuGe SpPa SaEu SpAl SoSv DiSp SpAl-SF UA Kappa C
JuGe 65.5% 11.5% 4.2% 3.2% 0.4% 3.6% 11.5% 57.1%
SpPa 11.7% 55.1% 0.2% 5.4% 4.3% 10.0% 13.2% 67.4%
SaEu 1.6% 0.9% 92.8% 0.5% 1.5% 1.4% 1.4% 91.1%
SpAl 2.1% 4.0% 0.9% 78.0% 1.2% 1.1% 12.7% 72.9%
SoSv 1.6% 6.5% 0.5% 0.6% 89.9% 0.6% 0.4% 70.3%
DiSp 2.9% 9.9% 0.5% 0.2% 0.6% 80.6% 5.3% 50.7%
SpAl-SF 14.5% 12.1% 1.0% 12.1% 2.1% 2.7% 55.5% 67.3%
PA 55.0% 61.5% 82.0% 42.7% 85.5% 70.4% 75.9% 65.9%

Kappa C 0.5310

(c)

Class JuGe SpPa SaEu SpAl SoSv DiSp SpAl-SF UA Kappa C
JuGe 54.8% 16.6% 0.8% 7.6% 7.0% 1.6% 11.6% 47.3%
SpPa 15.7% 48.8% 0.4% 4.2% 1.9% 10.9% 18.1% 62.6%
SaEu 3.5% 0.2% 89.7% 0.5% 1.0% 1.0% 4.3% 71.7%
SpAl 4.9% 6.1% 0.9% 74.5% 0.6% 0.6% 12.3% 62.3%
SoSv 1.3% 9.3% 0.9% 1.0% 86.6% 0.7% 0.2% 64.7%
DiSp 1.2% 7.5% 0.8% 0.3% 0.6% 83.1% 6.6% 55.9%
SpAl-SF 18.6% 11.5% 6.6% 12.0% 2.3% 2.1% 47.1% 60.5%
PA 32.9% 53.7% 66.0% 49.8% 79.5% 72.4% 74.2% 60.0%

Kappa C 0.4450

Table A8. (a) Study Area 2—14 September, 2022—RGND composite normalized confusion matrix.
(b) Study Area 2—30 September, 2022—RGND composite MARGFIT normalized confusion matrix.
(c) Study Area 2—14 October 2022—RGND composite MARGFIT normalized confusion matrix.

(a)

Class JuGe SpPa SaEu SpAl SoSv DiSp SpAl-SF UA Kappa C
JuGe 64.7% 11.9% 4.5% 1.4% 0.4% 3.3% 13.7% 64.2%
SpPa 7.2% 54.7% 0.6% 8.8% 7.6% 9.7% 11.4% 66.7%
SaEu 13.4% 1.5% 53.4% 3.4% 5.0% 5.6% 17.6% 10.0%
SpAl 3.6% 3.7% 1.2% 81.7% 0.3% 1.9% 7.5% 70.6%
SoSv 1.4% 8.9% 2.5% 0.5% 85.8% 0.8% 0.2% 73.2%
DiSp 1.9% 12.6% 2.5% 0.5% 0.7% 74.1% 7.8% 47.5%
SpAl-SF 7.9% 6.7% 35.3% 3.6% 0.1% 4.7% 41.8% 71.5%
PA 52.9% 71.5% 2.0% 72.4% 72.3% 48.0% 74.7% 68.0%

Kappa C 0.5590

(b)

Class JuGe SpPa SaEu SpAl SoSv DiSp SpAl-SF UA Kappa C
JuGe 85.7% 3.1% 0.4% 1.9% 0.3% 3.8% 4.9% 87.2%
SpPa 4.8% 79.9% 0.3% 3.2% 3.2% 1.4% 7.4% 88.3%
SaEu 0.4% 0.3% 95.7% 0.8% 0.8% 0.9% 1.2% 97.7%
SpAl 2.2% 1.6% 0.3% 90.3% 0.2% 0.7% 4.8% 83.5%
SoSv 0.4% 3.1% 0.9% 0.7% 93.9% 0.7% 0.3% 92.0%
DiSp 1.5% 5.4% 0.7% 0.5% 0.5% 90.5% 0.8% 82.1%
SpAl-SF 5.1% 6.7% 1.8% 2.7% 1.1% 2.0% 80.6% 82.2%
PA 77.1% 79.8% 86.0% 89.1% 83.1% 79.6% 91.9% 85.1%

Kappa C 0.7960
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Table A8. Cont.

(c)

Class JuGe SpPa SaEu SpAl SoSv DiSp SpAl-SF UA Kappa C
JuGe 65.0% 11.6% 0.3% 8.4% 2.8% 0.3% 11.8% 52.8%
SpPa 14.0% 52.5% 0.3% 3.2% 4.9% 10.1% 15.1% 68.2%
SaEu 1.3% 0.6% 87.8% 1.7% 3.0% 2.5% 3.1% 89.5%
SpAl 5.4% 3.4% 0.3% 81.1% 0.4% 0.3% 9.0% 65.7%
SoSv 1.9% 8.6% 0.5% 0.4% 87.4% 0.5% 0.9% 62.8%
DiSp 2.1% 12.4% 0.8% 0.6% 1.0% 76.3% 6.9% 47.5%
SpAl-SF 10.5% 11.0% 10.0% 4.7% 0.5% 10.1% 53.2% 69.7%
PA 63.9% 54.6% 34.0% 77.8% 85.5% 48.0% 71.7% 65.0%

Kappa C 0.5280

Appendix B

Table A9. Post hoc pairwise comparison Games–Howell tests for vegetation-type pairs (α = 0.05)
measuring statistical differences of vegetation types vs. elevations in study area 1.

Level - Level Difference Std. Err. Dif. DF LCL UCL p-Value

SoSv SpAl 0.367 0.032 52.792 0.215 0.519 <0.0001

JuGe SpAl 0.285 0.009 97.978 0.245 0.325 <0.0001

DiSp SpAl 0.258 0.011 90.140 0.209 0.307 <0.0001

SpPa SpAl 0.244 0.009 97.680 0.205 0.284 <0.0001

SpAl-SF SpAl 0.235 0.008 96.434 0.197 0.274 <0.0001

SoSv SaEu 0.230 0.032 49.265 0.080 0.380 <0.0001

JuGe SaEu 0.149 0.006 56.010 0.119 0.178 <0.0001

SaEu SpAl 0.136 0.006 55.806 0.106 0.167 <0.0001

SoSv SpAl-SF 0.131 0.032 51.937 −0.020 0.283 0.0772

SoSv SpPa 0.122 0.032 52.383 −0.030 0.274 0.1237

DiSp SaEu 0.123 0.009 52.716 0.081 0.162 <0.0001

SoSv DiSp 0.109 0.033 55.946 −0.046 0.263 0.2436

SpPa SaEu 0.108 0.006 56.623 0.080 0.137 <0.0001

SpAl-SF SaEu 0.099 0.006 57.766 0.072 0.126 <0.0001

SoSv JuGe 0.082 0.032 52.681 −0.071 0.234 0.5629

JuGe SpAl-SF 0.050 0.009 96.770 0.0119 0.088 0.0009

JuGe SpPa 0.041 0.009 97.825 0.001 0.080 0.0177

JuGe DiSp 0.027 0.011 89.466 −0.021 0.075 0.5333

DiSp SpAl-SF 0.023 0.010 84.050 −0.024 0.069 0.6829

DiSp SpPa 0.014 0.010 87.487 −0.034 0.061 0.9659

SpPa SpAl-SF 0.009 0.008 97.512 −0.029 0.046 0.9837
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Table A10. Post hoc pairwise comparison Games–Howell tests for vegetation-type pairs (α = 0.05)
measuring statistical differences of vegetation types vs. elevations in study area 2.

Level - Level Difference Std. Err. Dif. DF LCL UCL p-Value

SoSv SpAl 0.390 0.016 62.378 0.316 0.464 <0.0001

SaEu SpAl 0.360 0.014 49.080 0.292 0.428 <0.0001

DiSp SpAl 0.258 0.015 50.521 0.190 0.327 <0.0001

JuGe SpAl 0.224 0.020 97.970 0.131 0.317 <0.0001

SoSv SpPa 0.223 0.013 61.927 0.160 0.286 <0.0001

SpAl-SF SpAl 0.216 0.018 89.630 0.134 0.299 <0.0001

SaEu SpPa 0.193 0.012 47.115 0.137 0.249 <0.0001

SoSv SpAl-SF 0.174 0.012 63.487 0.116 0.231 <0.0001

SpPa SpAl 0.167 0.019 93.256 0.081 0.253 <0.0001

SoSv JuGe 0.166 0.016 62.597 0.093 0.239 <0.0001

SaEu SpAl-SF 0.144 0.0105 49.152 0.094 0.193 <0.0001

SaEu JuGe 0.136 0.014 49.084 0.069 0.203 <0.0001

SoSv DiSp 0.132 0.007 17.398 0.097 0.167 <0.0001

SaEu DiSp 0.102 0.002 54.195 0.093 0.111 <0.0001

DiSp SpPa 0.091 0.012 49.155 0.034 0.148 <0.0001

JuGe SpPa 0.057 0.018 93.755 −0.028 0.142 0.3098

SpAl-SF SpPa 0.049 0.016 94.121 −0.024 0.122 0.3052

DiSp SpAl-SF 0.042 0.011 51.859 −0.008 0.092 0.0999

DiSp JuGe 0.034 0.014 50.575 −0.033 0.101 0.6319

SoSv SaEu 0.030 0.006 15.125 −0.004 0.064 0.0586

JuGe SpAl-SF 0.008 0.018 90.406 −0.073 0.089 0.9999
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