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Abstract: The water conservation function (WCF), as one of the most critical ecosystem services,
has an important impact on the ecological sustainability of a region. Accurately characterizing the
spatiotemporal heterogeneity of WCF and further exploring its driving factors are of great significance
for river basin management. Here, the WCF of the upper Yangtze River basin (UYRB) from 1991 to
2020 was calculated using the water yield module in the Integrated Valuation of Ecosystem Service
and Tradeoffs (InVEST) model. Also, we innovatively applied emerging hot spot analysis (EHSA),
which could describe the location and pattern of historical changes more accurately, to investigate
the spatiotemporal heterogeneity and evolution of WCF. Based on the Geographical Detector Model
(GDM), the main driving factors of WCF and their interactions were revealed. The results showed the
following: (1) the WCF in the UYRB experienced a temporal increase at a growth rate of 1.48 mm/a,
while remarkable differences were observed across the change rates of sub-watersheds. (2) The
spatial variation of the WCF showed a gradual increase from northwest to southeast. Interestingly,
the Jinshajing River upstream (JSJU) source area with a low WCF showed an increasing trend (with
diminishing cold spots). On the contrary, the downstream regions of the JSJU watershed (with
intensifying cold spots) underwent a weakening WCF. (3) Among all driving factors, precipitation
(q = 0.701) exhibited the most remarkable prominent impact on the spatial heterogeneity of the WCF.
Additionally, the interaction of factors exhibited more explanatory power than each factor alone, such
as precipitation and saturated soil hydraulic conductivity (q = 0.840). This research study is beneficial
to water resource management and provides a theoretical basis for ecological restoration.

Keywords: water conservation function; spatiotemporal heterogeneity; driving factors; emerging hot
spot analysis; geographical detector model

1. Introduction

Ecosystem services supply life-support services for humans [1] and play a crucial role
in harmonizing human and environmental development [2]. As the water cycle process is
deeply interconnected with human activities and ecological processes, the water conservation
function (WCF) occupies a central position in ecosystem service functions [3–5]. WCF refers
to the ability to reduce flooding, replenish runoff, and stabilize water supplies [4,6]. However,
under the combined threat of anthropogenic activities and climate change, global disasters
are frequent [7] and WCF is becoming increasingly vulnerable [8], particularly with respect
to water scarcity [9]. Considering the balance of ecological security and socioeconomic
development, exploring WCF has become a crucial scientific issue [4,10]. Therefore, it is
essential to clarify the evolutionary features and primary driving factors of the WCF in order
to provide a scientific basis for reasonable regional water resource allocation.
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Identifying the spatiotemporal heterogeneity of the WCF is beneficial for regional
water resource management. However, accurately simulating WCF has proven challenging
due to various factors, such as vegetation types, soil properties, meteorological conditions,
and anthropogenic activities [11]. In earlier studies, scholars usually used simple statistical
methods, such as the water balance method [12], the annual runoff method, and the
comprehensive water storage method [13]. With further research, models based on water
cycle processes have become effective tools for assessing WCF [11], such as the Soil and
Water Assessment Tool (SWAT) [14,15], SCS model [16], and the Integrated Valuation of
Ecosystem Service and Tradeoffs (InVEST) model [3,4,17]. As the emerging ecosystem
service model, the InVEST model has been verified in various watersheds and multiple
ecosystems. For instance, in the Tibetan Plateau, the average annual WCF was detected
as an increasing trend during 1961–2017 and showed an increasing trend from northwest
to southeast [4]. In the Qilian Mountain ecological barrier region, researchers observed
increasing spatial variations from northwest to southeast [18]. Many similar studies have
been conducted in different regions, including the Yellow River Basin in China [17], the
Upper Upatoi Watershed in the USA [19], and the semi-arid forested watershed in Iran [20].
However, the limitations of these previous studies are using the mean values (multi-
year averages are used in describing spatial variation, and spatial averages are used in
describing temporal variation), and failing to include all WCFs in each timestep and spatial-
grid observation [21]. To address these limitations, emerging hot spot analysis (EHSA) is
an effective method that can deal with these limitations, and it has been used to investigate
spatiotemporal variations in multiple fields, including hydrological drought risk [22],
surface evapotranspiration ratios [21], fire occurrences [23], and surface deformation [24].
The EHSA integrates temporal and spatial patterns and could present the spatial non-
stationarity of the WCF, describe the location and pattern of historical changes more
accurately, and identify different patterns through trend significance [22]. Thus, it is used
to detect the spatial heterogeneity of the WCF.

In addition to assessing WCF, it is also important to identify the dominant driving
factors. WCF could be affected jointly by several driving factors, such as climate condi-
tions, underlying surface properties, ecosystem evolution, and human activities [13,25,26].
Numerous studies analyzed the driving factors of WCF. The participation of climate ele-
ments in water cycle processes and ecological processes, such as precipitation and evapo-
transpiration, directly influences the WCF [27]. The underlying surface properties are a
non-negligible driving factor. In steep mountainous areas, the high velocity of water flow
and the thin soil layer result in low water conservation capacity. On the contrary, the WCF
is significantly higher due to the high infiltration rate in plain areas [3]. Human activities,
mainly land use/cover change, are particularly important for changes in WCFs. Grasslands
are considered the land-use type with the highest WCF because they directly store precipi-
tation in the vegetable layer and soil layer [18]. In addition, different ecosystem structures
and policies also result in WCFs [28]. Scholars have carried out studies on the detection of
the driving factors of WCF. Principal component analysis [29], Pearson correlation analy-
sis [3,4], and random forest regression models [17] have been widely used. Previous studies
have concentrated more on probing a single driving factor; however, interactions between
driving factors tend to have stronger explanatory power than single-factor analyses and
can analyze the causes of change at a potential level. To address this gap, the Geographical
Detector Model (GDM), a new spatial statistical method developed by Wang et al. [30],
could be utilized to explore the interactive effects of multiple driving factors on WCF. Up
until now, GDM has been applied to many fields, such as PM2.5 [31], energy efficiency [32],
and ecological land degradation [33].

The Yangtze River, which holds an extremely important status as it comprises 40% of
the country’s freshwater reserves, is the longest river in China [34]. The UYRB is situated
on the eastern edge of the Tibetan Plateau, which serves as the water tower of Asia. Water
security for the entire river basin is largely dependent on the stable WCF of the UYRB.
However, due to human activities and climate change, its stability is weakening, leading
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to an increase in ecological vulnerability. In this study, we calculated the WCF using the
InVEST model, and then EHSA and GDM were adopted to analyze the spatiotemporal
heterogeneity and driving factors of the WCF in the UYRB, attempting to accomplish the
following objectives: (1) to evaluate the WCF from 1991 to 2020 by applying the InVEST
model; (2) to explore characteristics and patterns of historical changes (spatiotemporal
heterogeneity) in WCF based on EHSA; (3) to analyze the key driving factors and their
interactions with WCF using GDM. This study provides a novel perspective on WCF and
is greatly beneficial for preparing differentiated management measures.

2. Materials and Methods
2.1. Study Area

The UYRB covers the region from the source to Yichang in Hubei province, which
is nearly 1.00 million km2 [35,36] (Figure 1). The UYRB is characterized by a complex
topography with varying slopes and a gradual decrease in elevation from west to east. Due
to diverse landscapes and the obstructive effect of the plateau on the monsoon, a variety
of climates have developed in the study area, including subtropical and humid climates
in the east, arid climates in the northwest, and subtropical monsoon climates in the south.
Precipitation is unevenly distributed during the year and concentrated in summer, with a
gradual increase from northwest to southeast [35].
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Figure 1. The overview of the UYRB.

The spatial distribution of meteorological stations in the UYRB is shown in Figure 1.
Yichang hydrological station, at the outlet of the UYRB, is located approximately 40 km
downstream of the Three Gorges Dam [35]. The UYRB is divided into six sub-watersheds
(Figure 1), including the Jinshajing River upstream (JSJU), the Jinshajiang River downstream
(JSJD), the MinTuojiang River (MTJ), the Jialingjiang River (JLJ), the Wujiang River (WJ),
and the Main River (MR).

2.2. Data Sources

The necessary data of the InVEST model include precipitation (PRE), potential evapo-
transpiration (PET), land use/cover, digital elevation model (DEM), plant available water
capacity (PAWC), soil data, and biophysical tables. Runoff observations from the Yichang
hydrological station were used to calibrate the water yield module. In addition, the nor-
malized difference vegetation index (NDVI), the annual average temperature (TMP), and
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the relative humidity (RHU) were collected to analyze the potential driving factors of WCF.
The details are shown in Table 1.

Table 1. Datasets description, processing, and sources.

Type Date Description Processing and Sources

meteorological

precipitation 1 km (1991–2020) bilinear interpolation, clipping,
http://www.geodata.cn/, accessed on 29 July 2022.

temperature 1 km (1991–2020) bilinear interpolation, clipping,
http://www.geodata.cn/, accessed on 31 July 2022.

potential
evapotranspiration 1 km (1991–2020) calculated by the modified Hargreaves equation, clipping,

http://www.geodata.cn/, accessed on 28 July 2022.

relative humidity 1 km (1991–2020) statistical and spatial interpolation (thin plate spline), clipping,
http://www.geodata.cn/, accessed on 20 July 2022.

hydrological runoff observations Yichang station
(1991–2009) hydrological yearbook

remote sensing
DEM digital elevation model, 1 km clipping, https://www.resdc.cn/, accessed on 1 August 2022.

land use/land cover 1 km (1990, 1995, 2000, 2005,
2010, 2015, 2020) clipping, https://www.resdc.cn/, accessed on 7 August 2022.

NDVI 5 km (1991–2020) clipping, http://www.geodata.cn/, accessed on 27 July 2022.

soil
soil data 1 km

Clipping, http://vdb3.soil.csdb.cn/, including soil depth (SD)
and soil texture (sand%, silt%, clay%, organic%), accessed on 3

August 2022.
saturated soil hydraulic

conductivity (Ksat) 1 km Clipping, https://doi.org/10.5281/znodo.3934853 [37],
accessed on 5 August 2022.

plant available water
capacity 1 km

PAWC = 54.509 – 0.132sand% – 0.003(sand%)2

–0.055silt% – 0.006(silt%)2 – 0.738(clay%)2

+0.007(clay%)2 – 2.688OM% + 0.501(OM%)2 [38]

2.3. Methods

The flowchart of the investigation is shown in Figure 2. It consists of three parts,
including calculation of WCF, spatiotemporal heterogeneity analysis, and driving factors
analysis. The specific methods are presented below in detail.
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2.3.1. The InVEST Water Yield Model

The InVEST is a collection of models used to evaluate multiple ecosystem services [19,39].
The water yield model is an important module of the InVEST model, which utilizes a raster cell
and is founded on the Budyko hydrothermal coupling equilibrium. Water yield is calculated
using input data such as precipitation, evapotranspiration, plant water availability content,
soil depth, and land use/ land cover. The formula is as follows:

Y(x) =
(

1− AET(x)
P(x)

)
× P(x) (1)

http://www.geodata.cn/
http://www.geodata.cn/
http://www.geodata.cn/
http://www.geodata.cn/
https://www.resdc.cn/
https://www.resdc.cn/
http://www.geodata.cn/
http://vdb3.soil.csdb.cn/
https://doi.org/10.5281/znodo.3934853
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where Y(x) (mm) denotes the annual water yield for pixel x; AET(x) (mm) denotes the an-
nual actual evapotranspiration for pixel x, and P(x) (mm) denotes the annual precipitation
on pixel x. AET(x)

P(x) is based on the expression of the Budyko curve proposed by Fu [40] and
Zhang et al. [41]:

AET(x)
P(x)

= 1 +
PET(x)

P(x)
−
[

1 +
(

PET(x)
P(x)

)ω]1/ω

(2)

where PET(x) (mm) denotes the potential evapotranspiration, and ω(x) denotes a non-
physical parameter that characterizes the natural climate–soil properties. Furthermore, the
details are shown as follows:

PET(x) = Kc × ET0(x) (3)

where ET0(x) (mm) denotes the reference evapotranspiration, and Kc denotes the plant
(vegetation) evapotranspiration coefficient associated with LULC x:

ET0(x) = 0.0023× Ra × (Tmean + 17.8)×
√

Tmax − Tmin (4)

where Ra [MJ/(m2·d)] denotes radiation at the top of the atmosphere, Tmean (◦C) denotes
the mean temperature, Tmax (◦C) denotes the maximum temperature, and Tmin (◦C) denotes
the minimum temperature [42]:

ω(x) = Z× AWC(x)
P(x)

+ 1.25 (5)

where Z (1–30), known as the “seasonality factor”, denotes the synthesis of hydrogeological
features and regional precipitation characteristics [3,4]. AWC(x) denotes the plant’s available
water content (mm) for pixel x and is obtained by calculating the PAWC, the vegetation
rooting depth (root.depth), and root restricting layer depth (rest.layer.depth). The equation is
as follows:

AWC(x) = Min(root.depth.rest, rest.layer.depth)× PAWC (6)

The biophysical coefficients used in the InVEST model are shown in Table 2.

Table 2. Biophysical parameters table.

Description Lucode Usle_c Usle_p Load_p Eff_p Crit_len_p Root_depth Kc LULC_veg

Farmland 1 0.412 1 3.57 0.48 15 1000 0.650 1
Woodland 2 0.025 1 1.36 0.67 20 3500 1.008 1
Grassland 3 0.034 1 0.93 0.60 30 2000 0.860 1

Water 4 0.000 1 0.00 0.40 15 1 1.000 0
Residential area 5 0.990 1 2.10 0.26 15 1 0.300 0

Unused land 6 1.000 1 0.79 0.26 15 200 0.500 1
No data 0 0.000 0 0.00 0.00 0 0 0.000 0

The accuracy of the model was assessed using the root mean square error (RMSE) and
Nash–Sutcliffe efficiency (NSE) [4,43]. Generally, 0.75 < NSE ≤ 1.00 indicates very good
results; 0.65 < NSE ≤ 0.75 indicates good results [43].

2.3.2. Calculation of WCF

Water yields can be obtained through the water yield module in the InVEST model,
and then WCF (Retention) is calculated based on the topographic index (TI), the velocity
coefficient (Velocity), and the saturated soil hydraulic conductivity (Ksat). The important
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grades of WCF were assessed based on the natural break method [44]. The WCF is defined
as follows:

Retention = min
(

1,
249

Velocity

)
×min

(
1,

0.9× TI
3

)
×min

(
1,

Ksat
300

)
×Yield (7)

2.3.3. Emerging Hot Spot Analysis (EHSA)

EHSA is a geospatial tool, which integrates temporal column information into general
hot spot analysis [21,45], that could identify the spatial and temporal heterogeneity of
WCF more accurately and comprehensively. EHSA requires a space–time cube, which is a
netCDF file containing x, y, and z (time) dimensions. The yearly data in each geographic
grid were combined to generate a space–time cube that is used to operate EHSA. Then,
the neighborhood distance and timestep parameters were set to the desired values, and
Getis–Ord Gi* statistics were computed for each bar. The geographic resolution of the
supplied data determines the neighborhood distance, and the timestep is shown for each
year. Finally, the hot (or cold) spot trends were determined using the Mann–Kendall trend
test [46]. Via EHSA, the spatiotemporal trends are displayed as hot (cold) spots. Up to
17 patterns are further summarized to distinguish whether the hot (cold) spots are new,
persistent, sporadic, intensifying, consecutive, diminishing, oscillating, historical, or no
pattern detected. EHSA is helpful for clarifying the aggregation patterns of WCF, and it is
performed using ArcGIS Pro 2.5.

2.3.4. Geographical Detector Model (GDM)

The GDM is a novel spatial variation analysis method for discovering spatially strati-
fied heterogeneity and detecting potential driving factors [30,47]. The fundamental theoret-
ical assumption of its theory is that if independent variables have a substantial impact on
the dependent variable, they ought to have a comparable geographical distribution. GDM
was applied to detect the driving factors of the WCF in UYRB. Factor detection is used
to rank the explanatory degree of individual factors. Furthermore, interaction detection
identifies the joint effect of different factors.

The factor detector is evaluated according to the q statistic:

q = 1−

L
∑

h=1
Nhσ2

h

Nσ2 (8)

where h = 1, · · · , L denotes the strata of variable Y or factor X; Nh refers to the numbers
of units in strata h; N refers to the numbers of units in the entire region; σ2

h denotes the
variance in Y for strata h; σ2 denotes the variance in Y for the entire region. The value range
of q is [0, 1], and the explanatory power of X for Y increases with the value of q [48].

The interaction detector makes it possible to identify whether driving factors X1 and
X2 function jointly to increase the explanatory degree of dependent variable Y or whether
their effects on Y are independent of one another [32]. The interaction categories and
relationships of the two factors are shown in Table 3.

Table 3. Interaction categories of two factors and the interaction relationship.

Judgment Basis Interaction

q(X1∩X2) < Min(q(X1), q(X2)) Nonlinear attenuation; bivariate
Min(q(X1), q(X2)) < q(X1∩X2) < Max(q(X1), q(X2)) Nonlinear attenuation; univariate

q(X1∩X2) > Max(q(X1), q(X2)) Bilinear enhancement; bivariate
q(X1∩X2) = q(X1) + q(X2) Independent
q(X1∩X2) > q(X1) + q(X2) Nonlinear enhancement; bivariate

Note: Min(q(X1), q(X2)) represents the minimum value among q(X1) and q(X2); Max(q(X1), q(X2)) represents the
maximum value among q(X1) and q(X2); q(X1) + q(X2) is the sum of q(X1) and q(X2); and q(X1∩X2) represents
interaction of q(X1) and q(X2).
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3. Results
3.1. Simulation and Validation of the InVEST

When the calculated water yield and observed runoff fit together the best and the
model’s simulation effect was at its best (NSE = 0.76, RMSE = 2.51), the Z value was
calibrated to 1.10 (Figure 3). Based on the criteria, the validity and suitability of the InVEST
model for this investigation were confirmed.
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3.2. Spatial Patterns of Multi-Year Average WCF

The geographical patterns of WCF and multi-year average water yield from 1991
to 2020 were similar. A decreasing tendency from the southeast to the northwest was
visible in the average annual WCF during the 1991–2020 period, and the difference between
the maximum value and the minimum value is 1326.22 mm (Figure 4b). The average
annual (1991–2020) water yield, precipitation, and actual evapotranspiration (AET) had
highly variable regional distribution patterns that were comparable to the WCF, indicating
an inclination to increase from the northwest to the southeast (Figure 4a,c,d). The MR
watershed, WJ watershed, and downstream of the MTJ watershed contained most of the
high-value regions, where rainfall was abundant, and the agricultural acreage was relatively
wide, resulting in the easy formation of runoff. The median-value areas were located in
the middle of the sub-watershed, with higher forest coverage. Lower water production
is the result of precipitation being intercepted by the forest canopy, deadfall layer, and
soil layer. The source section of the sub-watershed was where the low-value regions
were concentrated, with a small amount of precipitation (the minimum precipitation was
229.18 mm) and steep terrain.

Figure 5 presents the regional distribution and area proportion of the WCF’s important
grades. The largest proportion is grade II and grade III, 30.63% and 28.12%, respectively.
The center of the study area is where the intermediate-grade regions are located. The
smallest proportion, 7.98%, of grade IV is located downstream of the study area. For a
more detailed understanding, the distribution within each sub-watershed was analyzed.
The majority of areas within the JSJU watershed were grade I and grade II. In the MR and
WJ watersheds, grade IV and grade V were dominant. The JSJD, MTJ, and JLJ watersheds,
which make up the study area’s central region, were primarily dominated by grade II
and grade III. However, the fact that the lower portions of the MTJ watershed include a
sizable percentage of grade V cannot be ignored. The regions with low water conservation
importance grades provide important water resources for economic and social development,
which should be protected with emphasis.
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3.3. Inter-Annual Variation of WCF

Figure 6 exhibits the average annual WCF of the UYRB and six sub-watersheds from
1991 to 2020. The average annual WCF of the UYRB displays an increasing trend. The
average annual increase rate was 1.48 mm, with the highest value of 454.27 mm (1998)
and the lowest value of 280.65 mm (2006). There was an elevated trend in all watersheds,
except for the JSJD watershed. The JLJ watershed showed the fastest increase with a rate of
3.99 mm/a, while the JSJD watershed was the only sub-watershed that showed a declining
trend, decreasing at a rate of 0.45 mm/a. In addition, the inter-annual variation in the WCF
of each watershed was significant. The high values frequently occurred in 1993, 1998, 2008,
and 2015, while the low values were in 2006, 2011, and 2019.
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The temporal trends of WCF from 1991 to 2020 were analyzed using the inter-annual
variation slope (Figure 7). In the downstream of JLJ and MTJ watersheds, the slope reached
over 3 mm/a, which indicates a considerable increase in WCF in this region during the
previous 30 years. Despite the fact that the WCF in the majority of the UYRB exhibited
an upward trend, there were variations in the increased amplitude of certain watersheds
and even a drop in certain watersheds, especially in the JSJD watershed. In addition, at the
Yangtze River’s source area, the WCF showed a relatively obvious trend of increase. This
may be ascribed to the Three-River Headwater Region’s ecological protection effort (e.g.,
returning pasture to grass, returning farmland to forest, and ecological transplantation).
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Figure 7. Slope of WCF from 1991 to 2020.

The coefficient of variation (Cv) values of the WCF are shown in Figure 8. The Cv
values of the MTJ and MR watersheds were relatively low, which indicated that these
regions experienced slight variations during the past 30 years. In contrast, the high Cv
values (>2) occurred in the source area of the Yangtze River, which represented a greater
degree of fluctuation. Interestingly, both the high-value area of Cv and slope occurred in
the Yangtze River’s source area. This showed that the WCF was significantly influenced by
human activities, such as ecological restoration projects. In addition, since the Cv value
is characterized as the standard deviation to mean ratio, it is inevitably affected by the
average WCF. Therefore, Cv exhibited its maximum value at the source of the UYRB, where
the average WCF was low. At the sub-watershed scale, the JSJU watershed had the largest
Cv value. The JSJD and JLJ watersheds exhibited Cv values that fell in the middle. The large
areas with small Cv values existed in MTJ, MR, and WJ watersheds. It can be demonstrated
that the spatial distribution of Cv values was similar to that of WCF, which indicates that
the average WCF has a non-negligible influence on the Cv value.
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3.4. Spatiotemporal Heterogeneity of WCF

In the EHSA, low WCF values are aggregated as a cold spot, while high WCF values
are aggregated as a hot spot. The spatial patterns and statistical analysis results for each
pattern are depicted in Figures 9 and 10. The distribution of cold spots and hot spots is
relatively independent. The hot spots were primarily located in the east, while the cold
spots were mostly located in the west. In addition, the upper reaches of the MTJ and JLJ
watersheds also exhibited cold spot aggregations (Figure 9). We detected a total of 16 EHSA
patterns, except for “New Hot Spot”.
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Figure 10. Spatial distribution and proportion of 16 EHSA patterns.

Among the hot spot patterns, “Persistent Hot Spot” (125.13‰) and “Sporadic Hot
Spot” (104.86‰) accounted for the majority. The MR, WJ, and lower MTJ watersheds
were characterized by a “Persistent Hot Spot”, which showed statistically significant lower
WCFs. The adjacent areas of the JLJ, MTJ, and MR watersheds showed an “Intensifying
Hot Spot” (28.39‰), which indicated that the high WCF gradually increased. A “Sporadic
Hot Spot” was distributed in the eastern region of the research area dispersedly. Cold spot
patterns were located in the western region, including “Intensifying Cold Spot”, “Persistent
Cold Spot”, “Diminishing Cold Spot”, “Sporadic Cold Spot”, and “Oscillating Cold Spot”
patterns. The upper reaches of the three watersheds (JSJU, MTJ, and JLJ) were covered by a
“Persistent Cold Spot” (124.06‰). In the center sections of the Jinshajiang River basin, a
“Sporadic Cold Spot” (170.06‰) indicated weak WCF but was not statistically significant.
However, an “Intensifying Cold Spot” (32.51‰) represented the yearly decline in the WCF.
The lower JSJD watershed was characterized by an “Oscillating Cold Spot” (30.12‰),
indicating that these areas were the lower-value regions in the UYRB despite having some
higher-value periods. The source area of the JSJU watershed was covered by a large number
of “Diminishing Cold Spots” (38.24‰), meaning that the WCF of this area, although weak,
had been slowly increasing during the 1991–2020 period. Approximately one-third of the
study area was detected as “No Pattern Detected” (341.92‰), indicating the absence of any
statistically significant changes. The WCF of the UYRB exhibited strong spatiotemporal
heterogeneity, with cold spot patterns (395.07‰) accounting for more than the hot spot
patterns (263.02‰). Hence, it is worthwhile to conduct further attribution analysis.

3.5. Analysis of Driving Factors on WCF

The inter-annual trend of driving factors is shown in Figure 11. With an overall
fluctuating increasing tendency and an average rate of 2.23 mm/a, the multi-year average
precipitation was 829.84 mm. The average mean temperature of the UYRB ranged between
6.85 ◦C and 8.08 ◦C, increasing significantly at a rate of 0.28 ◦C/10a (1991–2020). The
average relative humidity was 68.97, representing a clear increasing trend. The potential
evapotranspiration and actual evapotranspiration exhibited increasing trends at rates of
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1.16 mm/a and 0.38 mm/a, respectively. In detail, the ratio of actual evapotranspiration to
precipitation was approximately 0.46, indicating that nearly half of the area’s precipitation
was directly returned to the atmosphere via evapotranspiration. For NDVI, the increasing
trend was the most pronounced, with annual averages between 0.56 and 0.69, indicating
that the UYRB is becoming “greener” year by year.
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Figure 11. Inter-annual variations of annual (a) precipitation, (b) temperature, (c) relative humidity,
(d) potential evapotranspiration, (e) actual evapotranspiration, and (f) NDVI.

In general, the agglomeration pattern of WCF is driven by a combination of many
driving factors. GDM was employed to identify the driving factors and their explanatory
power relative to WCF. Since the driver factors applied in GDM must be categorical
variables, the natural breaks classification method was used to transform the original
dependent variables (including PRE, RHU, DEM, TMP, PET, AET, NDVI, SD, PAWC, Ksat,
and TI) from numerical variables to categorical variables. Figure 12 shows the q-values of
driving factors for the WCF in the UYRB from 1991 to 2020. The rank of q-statistic values
was as follows: PRE (0.701) > RHU (0.527) > DEM (0.409) > TMP (0.387) > PET (0.311) >
AET (0.254) > NDVI (0.250) > SD (0.132) > PAWC (0.106) > Ksat (0.086) > TI (0.061), with
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q-values significant at the 1% level (p < 0.01). The WCF was overwhelmingly determined
by PRE, RHU, and DEM.
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Furthermore, the interaction detection results for the WCF of UYRB in 1991–2020
are illustrated in Figure 13. As we summarized from the graph, every detection factor
was not independent. Further information showed that the q-values of double factors
were larger than those of individual factors, which suggested that each pair of factors
contributes to the WCF in an interactive way [39]. When Ksat was analyzed in combination
with additional driving factors, the q-value was more than the sum of the two single
factors’ q-values, representing nonlinear enhancements. The q-value of each pair of factor
interactions for other driving factors was higher than the q-value of any single factor,
but it was lower than the total of the q-values of the two single factors. Therefore, the
interaction relationships of these driving factors exhibited bivariate enhanced properties
when affecting the WCF. In detail, the interaction effect of PRE and Ksat, q(PRE∩Ksat),
exhibited the maximum value (q = 0.84), indicating that the combined force is the strongest,
followed by the combination of PRE and AET, q(PRE∩AET) = 0.78, and the combination of
PRE and TMP, q(PRE∩TMP) = 0.75. Hence, the interactions between PRE and other factors
were the strongest, indicating that PRE was the most crucial driving factor. In conclusion,
the interaction effect of two driving factors played a more crucial role in influencing WCF
than the single factor separately.
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4. Discussion
4.1. Spatiotemporal Heterogeneity of the WCF in the UYRB

WCF provides water resources for the ecosystem internally and externally by storing
precipitation in the forest canopy, deadfall, and soil layer at a specific spatiotemporal
scale [4]. In the UYRB, the WCF shows low patterns in the northwest and high patterns in
the southeast, with an increasing trend from 1991 to 2020. It is worth noting that the research
region is mountainous in the west, and the “Sichuan basin” is located in the east, which
also contributes to the spatial distribution of WCF. The excellent hydrothermal conditions
at low-elevation areas allow for lush and well-rooted vegetation, which complements
the relatively gentle terrain and will benefit water conservation [4]. However, the fragile
ecological structure and cold climate at high altitudes make surface water highly susceptible
to loss and low water conservation potential [49]. The areas with a high WCF, including the
WJ watershed, MR watershed, and downstream of the MTJ watershed and JLJ watershed,
were characterized by relatively higher proportions of vegetation cover and abundant
precipitation [50]. Moreover, high-value regions are characterized by the presence of
extensive forests and grasslands with greater soil depths, as well as vegetation and deadfall
layers that effectively intercept and store precipitation [51]. On the contrary, the regions
with low WCF had poor precipitation and vegetation cover conditions and shallow soil
depths, resulting in a weak ability to conserve water. In mountainous areas with shallow soil
depths and sparse vegetation, precipitation easily forms runoffs rather than be stored [52].
In areas with limited precipitation and cold temperatures, where alpine meadows are the
predominant community, the WCF is weaker. High-elevation soils have shallower soils
and a poorer ability to retain water due to the low temperature that restricts plant growth
and soil formation [5]. This has also resulted in low WCF in the western part of the UYRB.

Our analysis revealed that the WCF of the Three-River Headwater Region, situated in
the research area’s source region, showed the most significant change (Figures 7 and 8) and
exhibited an increasing trend [18]. This suggests that the national policy may potentially
encourage an increase in WCF. The Overall Planning of Ecological Protection and Construc-
tion of the Three-River Headwaters Nature Reserve in Qinghai Province, approved in 2005,
involves various plans, such as returning pasture to grass [18], returning farmland to forest,
and ecological transplantation. The WCF has substantially improved since the Three-River
Headwater source’s ecological preservation initiative was put into action, which is in
accordance with the findings of previous investigations [49,53]. On the other hand, the
worsening warming of the climate has led to an increase in glacier meltwater [54], and the
implementation of measures such as artificial rainfall has also increased precipitation [55].
After 2005, the climatic characteristics of the source area have tended to be warmer and
more humid [56]. Here, the amplifying effects [57] of climate change and human activi-
ties contribute to the improvements in WCF. Therefore, the improvements in WCF in the
western region require more attention. Rigorous forest protection and light anthropogenic
disturbance (e.g., cultivation of cropland and overgrazing) will help improve WCF [58].
Additionally, the suitable plant type and rational ecological design (selecting logging and
thinning) could improve the ability of ecosystems to combat climate change [57] and thus
improve the stability of WCF.

4.2. Main Driving Factors of WCF Change

WCF refers to storing water resources [13] and, at the same time, replenishing ground-
water and runoff during dry periods [4]. Therefore, WCF involves multiple water cycle
processes and is influenced by multiple drivers. The most significantly correlated drivers
were PRE, RHU, DEM, and TMP [3,4]. Generally, compared to single-factor analysis, multi-
factor analysis is typically more logical and scientific. Via interaction detection analysis, it
was observed that PRE and Ksat had the greatest effect on WCF when they affected WCF
together (Figure 13). Apparently, higher precipitation in conjunction with a higher Ksat
leads to greater infiltration of water into the soil, resulting in increased water storage [59].
Moreover, the combination of PRE and evapotranspiration also had a prominent impact on
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WCF. Due to the participation in terrestrial water cycle processes, strong evapotranspiration
can lead to less efficient conversion of precipitation into water. Both PRE and evapotran-
spiration significantly affected the WCF according to the water balance [60], which was
verified in this study (Figure 12). On the other hand, TMP also affects WCF by influencing
multiple processes (e.g., water cycle and plant growth). Good hydrothermal conditions
contribute to the growth of vegetation [61,62]. Studies have revealed that climatic warming
hastens the breakdown of soil organic and lengthens the vegetative growth cycle [62].
Meanwhile, the increase in TMP accelerated the thawing of glaciers [63] and the melting of
ground ice [28] in the study region, leading to enhanced recharge, which is beneficial to the
improvement of WCF. However, anomalous atmospheric warming can lead to catastrophic
debris flow that disrupt overall ecosystem services [7]. NDVI, as a reflection of vegetation
condition, also influences WCF along with other driving factors. Regions covered with
vegetation, such as grasslands and forests, can intercept more water due to the presence of
branches and roots [17]. Long-term vegetative cover also facilitates soil evolution, which
in turn benefits water absorption and storage [64]. Hence, PRE, TMP, and NDVI have
comprehensive effects on the WCF. In addition, WCF may be affected by species, forest
types, climate types, and hydrological regimes [65]. Soil moisture, as an important water
resource component, has a direct impact on the WCF. The current high-resolution soil
moisture products generated by remote sensing satellites provide new ideas for assessing
and analyzing the WCF and offer an efficient data source for large-scale and high temporal
resolution assessments [66–69]. Therefore, improving WCF requires maintaining a healthy
forest structure and a wide variety of species [57]. In conclusion, the WCF of the UYRB
is complexly influenced by multiple driving factors [5,18]. We could gradually deepen
our understanding of the driving mechanism by continuously analyzing the underlying
influencing factors.

4.3. Limitations and Uncertainties

Although this study analyzed the spatiotemporal evolution and driving factors of
the WCF in the UYRB based on emerging and comprehensive methods, there were still
some limitations and uncertainties. (1) First, despite the InVEST model’s proven validity in
assessing the WCF [19,39], the exclusion of glaciers and frozen soil may have an impact on
the calculation of WCF [18]. Although the resolution of the input data used in this study
(1000 m × 1000 m) proved to be a satisfactory performance resolution for the model [70],
high-precision materials may provide better results. (2) Second, GDM needs to discretize
the input data using classifications, such as natural break points [31], the standard deviation
method [71], or equal spacing methods [72]. Different methods may result in different input
errors. (3) Third, the analysis of the driving factors and their interactions with WCF was
carried out statistically in this study, and specific mechanistic explanations require further
research. Given the limitations, future research should explore the specific influence process
and mechanism of the driver factors on WCF using more comprehensive and detailed
monitoring data.

5. Conclusions

This study aims to investigate the spatiotemporal heterogeneity of the WCF in UYRB
and its driving factors. For this goal, the WCF was assessed using the InVEST model,
and its cold (hot) aggregation patterns were detected via EHSA. Furthermore, the driving
factors of WCF and their interactions were explored scientifically based on GDM. The
application of EHSA allows us to detect the state of the WCF at specific locations and its
temporal patterns, and GDM helps us to analyze the interactive effects of different driving
factors on WCF. This study can provide a basis for the development of differentiated water
resources management measures. The key conclusions are as follows.

(1) The inter-annual variation of the WCF in UYRB was significant. During the 1991–2020
period, the WCF of the study region showed a slight increase integrally, with a
growth rate of 1.48 mm/a. The areas with the fastest growing rate were located
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in the JLJ and MR watersheds, reaching 3.99 mm/a and 3.15 mm/a, respectively.
The JSJD watershed showed a decreasing trend at a rate of −0.85 mm/a, indicating
that measures are needed for alleviation. The JSJU watershed had a significant
improvement in WCF, with high slope and Cv values.

(2) The WCF of UYRB exhibited significant spatial heterogeneity that gradually increased
from the northwest to the southeast. Specifically, in the eastern region, the WCF was
strong and belonged to the hot spots. On the contrary, the fragile area of the WCF was
located in the western portion of the study region, including the JSJU watershed, the
JSJD watershed, the headwaters of the MTJ watershed, and the JLJ watershed. The
western region is a priority area for implementing WCF enhancement strategies.

(3) Among all selected driving factors, PRE (q-value = 0.701) was the factor with the high-
est level of explanatory power affecting the spatial differentiation of WCF in the UYRB,
followed by RHU (q-value = 0.527), DEM (q-value = 0.409), TMP (q-value = 0.387), and
PET (q-value = 0.311). Moreover, the explanatory power of the factor’s interactions
relative to the spatial heterogeneity of WCFs was higher than the single-factor results.
The interactions of multiple driving factors should be considered in improving WCF.
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