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Abstract: The assessment of ecosystem quality and the maintenance of optimal ecosystem function
require understanding vegetation area dynamics and their relationship with climate variables. This
study aims to detect vegetation area changes downstream of the Hali dam, which was built in 2009,
and to understand the influence of the dam as well as climatic variables on the region’s vegetation
areas from 2000 to 2020. The case study is located in an arid area with an average rainfall amount
from 50 to 100 mm/year. An analysis of seasonal changes in vegetation areas was conducted using
the Normalized Difference Vegetation Index (NDVI), and supervised image classification was used to
evaluate changes in vegetation areas using Landsat imagery. Pearson correlation and multivariate
linear regression were used to assess the response of local vegetation areas to both hydrologic
changes due to dam construction and climate variability. The NDVI analysis revealed a considerable
vegetation decline after the dam construction in the dry season. This is primarily associated with the
impoundment of seasonal water by the dam and the increase in cropland areas due to dam irrigation.
A significantly stronger correlation between vegetation changes and precipitation and temperature
variations was observed before the dam construction. Furthermore, multivariant linear regression
was used to evaluate the variations in equivalent water thickness (EWT), climate data, and NDVI
before and after the dam construction. The results suggested that 85 percent of the variability in the
mean NDVI was driven by climate variables and EWT before the dam construction. On the other
hand, it was found that only 42 percent of the variations in the NDVI were driven by climate variables
and EWT from 2010 to 2020 for both dry and wet seasons.

Keywords: vegetation areas; dam impacts; downstream vegetation; climate variability; arid regions

1. Introduction

The scarcity of water and recurrent droughts in arid regions pose significant challenges
to ecosystems and human communities [1]. These conditions often result in reduced water
availability, impacting vegetation growth and survival [2]. Vegetation is one of the most
fundamental parts of the earth’s ecosystem [3,4]. Quantitative measurements of vegetation
areas on well-defined spatiotemporal scales are important for ecological and climatological
studies [5,6]. The Normalized Difference Vegetation Index (NDVI) is an indicator of
vegetation’s ability to absorb photosynthetically active radiation and is the most widely
used vegetation index for analyzing vegetation dynamics [7]. The index measures the
reflectance of vegetation in the red and near-infrared bands [8,9]. It is applied primarily in
both global and regional studies to understand and quantify the impact of climate variables
on vegetation productivity, phenology, and how vegetation responds to other factors
and stressors [10,11]. Studying vegetation area changes over arid and semi-arid regions,
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however, is very challenging. The vegetation areas in these regions are widely recognized as
complex systems due to water stress, and its low density and sparse distribution [12]. Plant
growth is limited in arid regions by a lack of precipitation and humidity combined with
relatively high temperatures and evapotranspiration, which is sometimes highly dependent
on global and local climates [13–16].

Many studies have shown the complexity of studying NDVI changes and their rela-
tionships with climate variabilities over semi-arid and arid regions [17–19]. Wang et al. [7]
investigated the correlation between NDVI and temperature and precipitation in the central
United States Great Plain. A high correlation was found between NDVI values during
the growing season (March–October) and precipitation. Early and late in the growing
season, NDVI correlated positively with temperature; however, in the middle, it correlated
negatively [7]. A study by Xie et al. [20] found that temperature positively correlates
with vegetation in most periods in semi-arid areas. In the Xinjiang desert of northwest
China, vegetation has primarily shown a greening curve in recent decades, and the pri-
mary variable driving this process, as identified, is precipitation [21,22]. Tong et al. [23]
mentioned that NDVI correlated positively with precipitation and temperature in the Inner
Mongolian desert, where precipitation has a more substantial effect on vegetation variation
than temperature.

Moreover, the impact of large dams can pose further difficulties to studying vegetation
variation in dry areas by disrupting the water runoff downstream. Various studies have
indicated different connections between local climate change and dam construction through
analyses of precipitation and temperature changes. According to Degu et al. [24], large
dams in Mediterranean climates have the most significant effect on the climate closer to
reservoir areas and negligible influence in humid subtropical climates. Based on the study
results, Zhao et al. [25] concluded that the reservoir in the Miyun area, with a catchment
area of approximately 15,788 km2, had a notable influence on both local temperature and
precipitation during the summer months. A study by Chen [26] found that, while down-
stream precipitation had not changed significantly, the temperature increased following the
impoundment of the Three Gorges Reservoir (with a catchment area around 1 million km2)
where is situated in China. Over the same region, Miller et al. [27], using multiple exper-
iments to simulate the effects of the Three Gorges Reservoir on the local climate, found
no effects on precipitation. But, a different study by Wu et al. [28] found that there is an
effect on precipitation at the regional scale of 100 km rather than at the local scale. In the
context of dam reservoirs situated in the southwestern region of Saudi Arabia, such as
the Baish dam, the recorded figures for surface evaporation indicated a yearly range of
4.7–6.0 m [29]. Missimer et al. [29] also noted that, particularly in older stream systems, as
much as 80% of water could be lost due to evaporation. The anticipated rise in temperature
is expected to amplify evaporation losses from dam reservoirs, consequently impacting
water resources [30].

Geographic information systems (GIS) and remote sensing have been used to study
vegetation areas’ changes and the corresponding impact of local climate variabilities. GIS
and remote sensing provide essential data and tools for spatiotemporal detection modeling
at a local and global scale for the past, present, and future. Several changes in vegetation
can be detected and monitored through remote sensing, including changes in aboveground
production, structure, and cover [31]. Vegetation areas change detection is critical for
understanding the interaction and interrelationships of the ecosystem, climate, and human
activities. Monitoring vegetation changes at different spatial and temporal scales using this
technique is also important for detecting changes in vegetation structure, function, and
interaction with climate variabilities [32,33].

Previous studies have investigated the NDVI and climate variables using various
variables such as sunshine, wind velocity, and direction, allowing them to measure the
NDVI’s determinants with good precision [34]. Nevertheless, temperature and precipi-
tation have been found to be the two most used [34]. Srivastava et al. [35] investigated
semi-arid dryland areas in six districts in India, and they found that the NDVI has a much
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stronger relationship with the amount of water consumed by vegetation than precipitation.
Moreover, a study by Ji and Peters [36], which used six climate variables to analyze the
grasslands of the United States’ Great Plains, water condition was the most important factor
in determining vegetation growth. In addition, in an effort to comprehend the shifts in the
hydrological cycle through the application of remote sensing technology, accessible obser-
vations of Total Water Storage (TWS) primarily pertained to the timeframe encompassed
by the Gravity Recovery and Climate Experiment (GRACE) mission. Tangdamrongsub
et al. [37] meticulously quantified the shifts in water storage and land subsidence resulting
from the establishment of reservoirs, harnessing data on equivalent water thickness sourced
from the GRACE mission. Meanwhile, Alshehri and Mohamed [38] conducted an in-depth
analysis, utilizing GRACE to assess fluctuations in groundwater storage within Saudi
Arabia, clearly highlighting the effectiveness of this method in investigating changes in
groundwater resources.

The primary goal of this study is to assess the influence of the Hali dam construction
on vegetation downstream in the arid Hali basin of Saudi Arabia. This research also
examines the potential impact of local climate conditions within the basin, characterized
by extreme heat, high evaporation, limited surface water, a prolonged dry season, and
sporadic rainfall. To achieve these objectives, Landsat imagery time series are employed
to track the changes in downstream vegetation after the dam’s construction, while also
considering the change in the equivalent water thickness (EWT) and the effects of climate
variables, such as two meter surface temperature, total precipitation, total evaporation,
and specific humidity. By leveraging satellite remote sensing data and model outputs,
this research addresses the critical gap in our understanding of how the Hali dam affects
vegetation, both before and after its construction. Additionally, it sheds light on the broader
environmental consequences, including potential cropland expansion, associated with such
infrastructure projects. This work contributes to a more comprehensive comprehension of
their complex interactions.

2. Data and Method
2.1. Case Study

The Wadi Hali Basin is located within the Asir mountains and near the Red Sea
coast [39], in the southwestern region of Saudi Arabia as shown in Figure 1. It is one of the
largest basins in Saudi Arabia, located in the Southern Tihama Plain, with an average slope
of 17.5 m km−1 and a total length of 160 km. The Wadi Hali Basin encounters sporadic
rainfall, leading to flash floods crucial for aquifer recharge. Rapid runoff due to limited
vegetation and extreme temperature variations affect its hydrology and water balance,
making its study vital for resource management and environmental impact mitigation.
The study area is in a hot desert climate based on [40], and this type of climate contains
two types of seasons: long summers and short winters. Precipitation from the adjoining
hills is collected within the watersheds and channeled toward the Red Sea [39]. The Hali
basin has an average rainfall amount from 50 to 100 mm year−1, and the headwaters (e.g.,
the initial source of a stream) of the Hali basin have an average rainfall amount from 300
to 600 mm/year [40]. The Hali Dam is in the Wadi Hali Basin on the Red Sea coast on
the southwestern side of the Kingdom of Saudi Arabia, at Longitude of 41◦30′00′′E and
Latitude of 18◦44′00′′N. The Red Sea coast of the Arabian Peninsula contains different
ravines along the coast and has a limited amount of vegetation, except for a few sparse
species of Prosopis Juliflora, halophytes, and mangroves (Avicennia marina). The Hali
Dam is a gravity dam constructed in 2009 and has a catchment area of 5222 km2 [39].
According to the Ministry of Environment, Water, and Agriculture in Saudi Arabia, several
dam applications are flood control, irrigation, domestic water supply, and groundwater
recharge. The dam has a total storage of 249,860,000 m3 [39]. Its headwaters are located at
an elevation of about 2000 m above mean sea level, extending west to the red sea.
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2.2. Database
2.2.1. Satellite Data Source and Pre-Processing

The Landsat satellite images from various sensors, including Landsat-4 and 5, Landsat-
7 ETM+, and Landsat-8, were obtained from the United States Geological Survey (USGS)
(source: https://earthexplorer.usgs.gov, accessed on 22 October 2022). All images were
acquired in levels and collections 1 and were carefully processed to ensure accuracy, involv-
ing radiometric and atmospheric corrections to enhance their quality. Cloudy and missing
values in this study were processed using cloud masking and interpolation techniques.
In this study, satellite images were selected based on three criteria: (1) cloud coverage of
the satellite images must be less than 10 percent, (2) the availability of the image satellite
series should be available over a long period to provide the ability to compare downstream
changes before and after the dam construction, and (3) the data should be available over wet
and dry seasons. Cloudy and missing values in the remote sensing images were processed
using cloud masking and interpolation techniques. Satellite images were selected mainly
for January and February for the wet season from 2000 to 2020. During the dry season
from 2000 to 2020, satellite images were selected mainly for August and September. During
these months, the most data were available in terms of availability, and these months were
chosen because they represent the peak of each season. To achieve spatial and temporal
resolution in the satellite imagery and meteorological data, multiple sensors and reanalyzed
meteorological data were used in this study.

2.2.2. Climate Variables Selection and Data

Climatological data variables such as temperature, precipitation, humidity, evapora-
tion, and wind speed are important parameters that describe a specific region’s climate
and its interaction with vegetation. In this study, temperature, precipitation, specific hu-
midity, and evaporation were considered to investigate the impact of climate variables
on vegetation areas’ activities. This study considered climate data for the dry season
from May to September and the wet season from October to February to investigate
vegetation areas’ response to climate variability. Climate data were acquired from the
European Centre for Medium-Range Weather Forecasts Integrated Forecasting System,
the fifth-generation reanalysis ERA-5 (source: https://cds.climate.copernicus.eu, accessed
on 3 November 2022), and the Global Land Data Assimilation System (GLDAS) (source:
https://giovanni.gsfc.nasa.gov, accessed on 14 November 2022), which have widely been
used in previous studies [41]. This study used 21 years of climatic data, including two
meter surface temperature, evaporation, and total precipitation from ERA-5 and specific
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humidity from GLDAS for the period from 2000 to 2020 with a 0.1◦ × 0.1◦ spatial resolution
and monthly averaged time frequency.

2.2.3. Equivalent Water Thickness (EWT)

Gravity field variations due to Earth’s mass changes were obtained from The Gravity
Recovery and Climate Experiment (GRACE) mission [42]. Gravitational variations mea-
sured by GRACE are primarily due to water distribution on and beneath the Earth’s surface
over the terrestrial area [43]. Therefore, it can estimate the vertical changes in terrestrial
water storage, including surface water, soil moisture, groundwater, canopy storage, and
snow water equivalent [42]. This study used the monthly EWT product of JPL MASCON
GRACE product Level-3 data (source: https://grace.jpl.nasa.gov, accessed on 18 November
2022) for the study area for the (available) period from April 2002 to December 2020.

2.3. Methods

Figure 2 summarizes the research method starting from collecting the data, including
Landsat imageries and climate data from the ERA-5 and GLDAS models. The online
acquisition of EWT data was conducted. All the imagery data were pre-processed, such as
radiometric, geometric, and atmospheric corrections, which is a crucial step in preparing
data before analysis. The NDVI calculation and supervised classification using Maximum
Likelihood Classification (MLC) were applied to the satellite imagery before and after the
dam construction. High spatial resolution Satellite pour l’Observation de la Terre images
were used to evaluate the accuracy of the supervised classification. Change detection
maps were produced before and after the dam construction (2000–2009 and 2010–2020,
respectively). Afterwards, a Pearson correlation analysis and linear regression analysis were
used to explore the relationship between the vegetation data acquired from the satellite
imagery and both the climate and EWT data. In the following sections, all the steps taken
to obtain the results presented in this study are explained in more detail.

2.3.1. Image Classification and Accuracy Assessment

Maximum Likelihood Classification (MLC) is one of the most commonly used para-
metric classifiers [44] to investigate different vegetation types’ (e.g., natural vegetation
and croplands) changes. In this method, pixels are classified based on their probability of
belonging to a particular class. The covariance matrix is used to account for the variability
of classes. For the MLC algorithm to perform correctly, it needs enough training sample
plots with representative spectral signatures for each class. More details can be found in
different textbooks, such as [45]. The Landsat images were classified using MLC, into natu-
ral vegetation, croplands, and bare areas. The classification of vegetation types involved
data fusion, combining high-spatial-resolution imagery (SPOT) with the Landsat images.
Additionally, supervised classification was performed using visual interpretation of the
high-spatial-resolution images.

Performing an accuracy assessment is an essential step for the evaluation of clas-
sification results. As vegetation areas change, it is crucial to know the accuracy of the
result before using it [46]. A confusion matrix, which is an array of numbers arranged
in rows and columns that indicates how many sample units (pixels) are assigned to each
category compared to what is actually in the ground, was used here. Moreover, is often
used to derive descriptive and analytical statistics to determine classification accuracy. The
high-spatial-resolution SPOT images acquired from King Abdulaziz City for Science and
Technology of (1.5 to 10 m) for 2004, 2006, 2012, 2016, and 2021 were used to produce a
stratified random sample for each vegetation class. Each image was used for an accuracy
assessment evaluation for the corresponding years, assuming that no significant changes
accrued within the seasons. Many samples were taken to attain high classification and
accuracy results. Overall, 116 samples were considered for each year in each season to
produce accurate assessment results.

https://grace.jpl.nasa.gov
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Figure 2. Flowchart of the applied methodology to analyze the vegetation changes in the Wadi Hali
Basin before and after the Hali dam construction.

2.3.2. NDVI Calculation

The NDVI is an index that is widely used to describe vegetation variations. The NDVI
is used to enhance the presence or absence of vegetation by generating the normalized band
ratio. NDVI values range from +1 to −1, where positive values represent green cover while
negative values indicate non-vegetative surfaces [31]. The higher the positive values, the
more vegetation there is. A negative NDVI describes water bodies and built-up areas, while
bare areas range from 0 to 0.03, and the values for healthy vegetation are typically between
0.4 and 0.76 for cropland and natural vegetation [47]. The NDVI index is calculated using
the following equation:

NDVI = (NIR− RED)/(NIR + RED) (1)

In the case of Landsat-5 and 7, near-infrared (NIR) indicates band 4 and Red (RED)
indicates band 3. Regarding Landsat-8, near-infrared (NIR) indicates band 5 and Red (RED)
indicates band 4. The NDVI was calculated once for one month for each season (wet and
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dry), resulting in two NDVI calculations for each year spanning from 2000 to 2020. The
NDVI was calculated 9 years and 12 years before after dam construction, respectively.
After the NDVI values were calculated for each season in every year, the mean NDVI was
calculated before and after dam construction. The difference between the mean NDVI
before (NDVImean be f ore) and after (NDVImean a f ter) the dam construction was calculated
for each season. The results are presented as two maps illustrating each season’s gain and
loss of vegetated cover areas.

2.3.3. Estimation of Runoff

The terrestrial water budget encompasses various components, including precipitation
(rain and snowfall), evapotranspiration (evaporation from soil and canopy, plant transpi-
ration, and snow sublimation), runoff (surface and subsurface flow), and water storage
within the land surface (such as snowpack, vegetation canopy, lakes, wetlands, and rivers)
and subsurface (soil moisture and groundwater) [48,49]. The balance of precipitation (P),
evapotranspiration (E), and runoff (R) is determined by the change in the water storage (S)
at the Earth’s surface. Due to the lack of ground data for stream runoff, Equation (2) was
used to calculate the runoff for all the case studies:

R = P− E− ∆S
∆t

(2)

where t represents time. All measurements are presented in millimeters. Additionally,
the runoff, originally in cubic meters per second (m3/s), is converted into millimeters by
dividing it by the basin area. The time scale is monthly, and the data used are as mentioned
in the data section.

2.3.4. Pearson’s Correlation and Multivariate Regression Analysis

The Pearson’s correlation coefficient evaluates the strength of the linear relationship
between two variables by using the covariance matrix of the data and computing it. This
study used Pearson’s correlation coefficient to analyze the relationship between vegetation
types (i.e., natural vegetation, croplands, and mean NDVI), climate variables (i.e., two
meter surface temperature, precipitation, specific humidity, and evaporation), and EWT.
This was to identify the major climate variables that impacted the vegetation areas of the
study area from 2000 to 2020. The Pearson’s correlation coefficient was applied to the time
series for each season before and after the dam construction. This study used the p-value to
test whether the calculated correlation between the variables was statistically significant.

The final step of this study was applying the multivariate regression analysis, which
can determine the relationships between two or more variables, leading to a cause–effect
understanding [50]. A multivariate regression analysis was applied to the NDVI using
climate variables to evaluate if the variations in the EWT and climate variables’ data could
explain the NDVI variability before and after the dam construction. The first multivariate
regression analysis was performed before the dam construction from 2002 to 2009, and
the second one was applied after the dam construction from 2010 to 2020. The results are
presented to assess the ability of EWT and climate variables’ data to predict the NDVI
variations over the two periods. The multivariate regression analysis model (Equation (3))
is estimated by,

y = β0 + β1x1 + β2x2 + β3x3 + β4x4+β5x5 + e (3)

In Equation (3), y represents the dependent variable (mean NDVI) and x represents the
independent variables (EWT, two meter surface temperature, precipitation, evaporation,
and specific humidity). β0 is the intercept of y, and βx is the changes in the mean of y or
represents the slope of the regression line. e represents the model’s equation error.
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3. Results
3.1. Annual and Seasonal Variation of Vegetation Areas
3.1.1. Vegetation Areas Using Supervised Classification (MLC)

The vegetation areas’ classification maps for the years from 2000 to 2020 for wet and dry
seasons produced from the Landsat images are displayed in Figures 3 and 4, respectively.
The figures illustrate the results for 5 years (2000, 2005, 2010, 2015, and 2020) and for the
two seasons. The supervised classification shows natural vegetation and croplands. The
vegetation areas of the study area changed considerably between 2000 and 2020 for both
seasons. The average area covered by natural vegetation decreased by 25.5 percent from
2000 to 2020, while croplands increased by 48.4 percent from 2000 to 2020. Moreover, a
comparison of the results before and after the dam construction shows that the average
area covered by natural vegetation declined by 28.4 percent after the dam construction. In
contrast, the croplands increased by 62.7 percent after the dam construction. This increase
in croplands could have been due to various reasons, but irrigation plays a significant role,
as it was one of the important reasons for the dam construction. This caused an increase in
croplands and a decrease in natural vegetation areas due to the dam’s impoundment of
seasonal water flow after heavy rain, which used to support natural vegetation before the
dam construction.
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Figure 5 shows the bar chart of the total natural vegetation and cropland areas in km2

over the study sites for the wet and dry seasons and for the period from 2000 to 2020. Before
the dam construction (2009), the natural vegetation and croplands slightly increased in the
two seasons. After the dam construction, the trend line decreased for natural vegetation
and increased for the croplands in both seasons. Prior to the dam construction, there
were increases of 681 km2 and 600 km2 in natural vegetation areas during the wet and dry
seasons, respectively. Following the dam construction, natural vegetation areas experienced
decreases of 1116 km2 and 479 km2 during the wet and dry seasons, respectively. On the
other hand, before the dam construction, there were increases of 222 km2 and 1171 km2

in cropland areas during the wet and dry seasons, respectively. The significance of the
trendlines for natural vegetation, both before and after the construction of the Hali dam,
varied with the season. During the wet season, the t-test value was 2.306, with an associated
p-value of 0.047. In contrast, during the dry season, the t-test value was −2.536, with a
p-value of 0.032. Similarly, for croplands, the significance differed by season. During the
wet season, the t-test value was 3.281, with a p-value of 0.010, while during the dry season,
the t-test value was −8.188, and the p-value was 0.000. Following the dam construction,
cropland areas experienced increases of 1209 km2 and 1758 km2 during the wet and dry
seasons, respectively. The main crops grown in this region are sorghum, sesame, and
millet [51]. These crops are warm season plants and their growth is usually from May to
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October [52]. The cropland variation was significantly higher in the dry season compared
to the wet season due timing of the growing season. The results suggested that the changes
in the natural vegetation and croplands were associated with the dam construction. The
decrease in the natural vegetation after the dam construction could have been due to
the impoundment of the seasonal water flow by the dam construction. Moreover, the
significant increase in the croplands after the dam construction could be associated with
water management policies and dam applications, such as releasing water for agricultural
irrigation from the dam.
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Figure 5. The total areas of natural vegetation and croplands before and after the dam construction
for wet and dry season.

3.1.2. Accuracy Assessment of Vegetation Areas Using Supervised Classification

As a result of the accuracy assessment of the image classifications, it was determined
that the overall accuracy of the supervised classification was between 71 percent and
92 percent across all seasons. The accuracy assessment results were calculated using a
confusion matrix and high spatial resolution of satellite imageries (SPOT) for 2004, 2006,
2012, 2016, and 2021 between image pixels to the actual feature in the ground, as shown
in Table 1. As mentioned by Congalton [53], an accuracy assessment value greater than
70 percent is considered as acceptable to represent a perfect correspondence. In comparison,
an accuracy assessment of less than 70 percent could indicate confusion between vegetation
area types in the classification results. All the accuracy values in Table 1 are acceptable
because they are higher than 70 percent. The average accuracy values were 76 percent
for the wet season and 79 percent for the dry season. As a result, the final accuracy
assessment for the classification was 77.5 percent. The highest accuracy was associated
with the same years of the SPOT imagery that was used for the accuracy assessment
classification, such as 2004, 2012, and 2016. However, the lowest accuracy values were
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associated with the years that did not have the same years of SPOT imagery used for the
accuracy assessment classification. Additionally, the lowest accuracy assessment in the
2010 wet season could be attributed to cloud contamination, which may significantly have
impacted the classification accuracy.

Table 1. Supervised classification accuracy assessment results.

Year Wet Season Dry Season Year Wet Season Dry Season

2000 81% 73% 2011 73% 80%
2001 73% 73% 2012 76% 92%
2002 72% 80% 2013 74% 82%
2003 75% 72% 2014 71% 80%
2004 79% 80% 2015 76% 81%
2005 78% 78% 2016 80% 82%
2006 76% 76% 2017 78% 78%
2007 78% 73% 2018 74% 80%
2008 75% 79% 2019 92% 87%
2009 74% 75% 2020 81% 87%
2010 71% 77%

3.2. Annual and Seasonal Variation of NDVI

As explained in previous sections, the NDVI represents the greenness density and
health of vegetation within each pixel of a satellite image. The NDVI of the study area
changed considerably between 2000 and 2020 for both seasons. The wet season showed
the highest NDVI values ranging between 0.34 and 0.74, with an average of 0.54, while, for
the dry season, the NDVI ranged between 0.42 and 0.64, with an average of 0.53 between
2000 and 2009. However, after the dam construction, in the wet season, the highest NDVI
values ranged between 0.39 and 0.69, with an average of 0.54, while, for the dry season,
they ranged from 0.28 to 0.41, with an average of 0.34. This indicates a 26 percent decline
in the average NDVI for the dry season over the study area. Overall, the comparative
analysis before and after the dam construction showed higher NDVI values both in terms
of magnitude and spatial distribution before the dam construction.

NDVI variations were further analyzed to provide a clear understanding of how they
varied over time. Spatially averaged NDVI time series from 2000 to 2020 for the wet and
dry seasons were calculated from the Landsat images and are displayed in Figure 6a,b. The
mean NDVI for the wet and dry seasons before the dam construction were 0.115 and 0.102,
respectively. Moreover, the mean NDVI for the wet and dry seasons after dam construction
were 0.103 and 0.089, respectively. There was a variation in the annual mean NDVI before
the dam construction. Before the dam construction, there were increases of 0.0007 and
0.0019 in the NDVI values during the wet and dry seasons, respectively. Following the dam
construction, the NDVI values experienced decreases of 0.0027 and 0.0028 during the wet
and dry seasons, respectively. The significance of the trendlines for the mean NDVI, both
before and after the construction of the Hali dam, varied with the season. During the wet
season, the t-test value was 2.591, with an associated p-value of 0.046. In contrast, during
the dry season, the t-test value was 1.452, with a p-value of 0.180. A distinct decline in the
mean NDVI values can be observed after the dam construction, starting in 2011 and 2012
for both seasons. This trend could be attributed to the impoundment of water flow caused
by the dam construction. An increase in the NDVI values after the dam’s construction in
2011 could be associated with the expansion of croplands. Before the dam construction, the
trend in mean NDVI values slightly increased, which could have been due to the amount
of precipitation and a larger amount of surface runoff. A noticeable decrease, however,
can be seen after the dam construction, especially during the dry season. This could have
been due to the restriction of water downstream of the dam, which may have resulted in a
reduction in regeneration and vegetation greenness.
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Figure 6. The mean NDVI trendlines for wet season (a) and dry season (b) variation from 2000
to 2020.

3.3. Spatial Variations of NDVI

Figure 7 represents the spatial variations in the gain and loss of downstream vegetation
areas using the NDVI values. The red color in Figure 7 represents the loss of vegetation
areas downstream of the dam and coincides with the natural vegetation. The green color in
this figure represents gains in vegetation areas downstream of the dam, which correspond
to the croplands. The significant vegetation changes before and after the dam construction
for the two seasons are in areas far from the dam, such as in the middle of the stream and
the alluvial fan areas. The alluvial fan areas are deposits of gravel, sand, and even smaller
sediment particles, such as silt [54]. These areas are relatively more fertile than other soil
types. Therefore, the dam impounded this sediment to be transported by seasonal water
flow from the Hail basin catchment to the downstream alluvial fan areas [55], potentially
impacting the vegetation areas downstream. The negative impact represented in red color,
which mainly represents the natural vegetation area, could be due to several reasons; for
example, downstream wetland areas could decrease due to the dam impoundment of water
to support downstream vegetation areas. The gained areas mostly show the croplands,
possibly due to the dam’s irrigation water.
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3.4. Inter-Annual Variations of Climatic Variables

To better investigate the vegetation trends and the potential impact of climate variabil-
ities, this study used monthly climate model data from 2000 to 2020. Figure 8a shows the
monthly two meter surface temperature changes in the study area. No significant change
in the average two meter surface temperature, before the dam construction (30.23 ◦C) and
after the dam construction (30.25 ◦C), was found. While some increase in the amount of
total precipitation can be seen (e.g., in 2001 and 2004), the overall trend of precipitation was
slightly negative from 2000 to 2015, which could, in turn, impact the mean NDVI and the
vegetation areas variations. Moreover, EWT could contribute to the change in the variation
in the NDVI, as will be discussed in Section 3.5. Almazroui et al. [56] reported a similar
decline for the Saudi Arabia’s precipitation from 1994 to 2009. Moreover, Hasanean and
Almazroui [40] reported high precipitation accrued in 2001 and 2004 in the wet season.
In 2016 and 2017, there was a high amount of precipitation in the study area. This could
have been due to the presence of temperature anomalies in this period [57]. The mean
total monthly precipitation before and after the dam construction was relatively close:
3.05 mm and 2.88 mm, respectively. Despite slight changes in the precipitation and the two
meter surface temperature before and after the dam construction, these results showed no
clear evidence of climate variability in the area that could have been responsible for the
considerable observed vegetation decline after 2009.

Figure 8c shows the monthly specific humidity, which refers to the quantity of wa-
ter vapor contained in a unit quantity of air, expressed as kilograms of water vapor per
kilogram of air. The average monthly specific humidity before the dam construction was
0.015 kg kg−1 and 0.016 kg kg−1 after the dam was constructed. Therefore, this increase is
insignificant. as it shows no overall considerable change in evaporation and specific hu-
midity before and after the dam construction. This suggests that vegetation changes could
be primarily related to the water (surface and subsurface) changes that could be impacted
by the dam construction. Figure 8d shows the monthly total evaporation from 2000 to 2020,
with negative values indicating evaporation and positive values indicating condensation.
The total evaporation displayed higher values in some years, such as 2016 and 2017. The
increase in evaporation can be explained by the increasing the temperature values and the
higher precipitation values in 2016, and 2017. Previous research findings have indicated
a roughly 50% increase in evaporation from 2011 [30]. Overall, the variations in total
evaporation were similar to the changes in total precipitation. Nevertheless, the mean
total monthly evaporation before the dam construction (−0.00031 m water equivalent) was
slightly higher than that after the construction of the dam (−0.00029 m water equivalent).
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Figure 8. Two meter surface temperature (a) and total precipitation (b) from 2000 to 2020 ERA-5.
Monthly specific humidity kg kg−1 from 2000 to 2020 GLDAS (c) total evaporation in meter water
equivalent from 2000 to 2020 ERA-5 (d) and with mean NDVI (e).

3.5. Annual Variations of EWT

Figure 9 represents the monthly EWT in the land, with a clear negative trend from 2005
to 2020. Except for some seasonal variations and strong anomalies (e.g., in 2017), the EWT
overall changes and trends, particularly after 2009, were different than the climate variables’
changes, such as precipitation and evaporation. The EWT and mean NDVI increased
between 2002 and 2007, while precipitation decreased. A similar relationship was observed
in several other studies, such as during periods of no precipitation, where soil water content
increased and was attributed to a variety of environmental and climatic factors [58,59]. A
clear reduction in both EWT and the mean NDVI exists after 2003 and 2011, respectively.
The reduction in the EWT could have been due to agriculture’s continuous depletion of
groundwater over the past years [60]. As demonstrated by Alshehri and Mohamed [38], the
agricultural sector predominantly contributes to the significant upsurge in groundwater
extraction on the northern side of Saudi Arabia, and a similar scenario can be observed
in the southern regions as well. In addition, the Wadi Hali Basin’s arid climate results
in a limited natural recharge of groundwater. Low and irregular precipitation, coupled
with high evaporation rates, hinder the replenishment of groundwater aquifers [61]. It
is expected that the EWT and NDVI time series share similar variations, since there is
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a close relationship between soil moisture variations and vegetation changes. Overall,
changes in EWT were negatively impacted by decreasing rainfall, dam construction, and
high depletion by anthropogenic activities of groundwater, which consequently affected
the vegetation changes and water stored in the land.
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Figure 9. Equivalent Water Thickness (EWT) centimeters/month from 2002 to 2020 GRACE with
mean NDVI.

3.6. Monthly Variations of Runoff

The provided calculations illustrate the monthly changes in downstream runoff both
before and after the dam’s construction. In Figure 10, the period before the dam’s con-
struction demonstrates a considerable range of runoff variability. Certain months, like
December, exhibit minimal runoff with values close to zero, implying limited water flow
due to low precipitation. Conversely, months like April show a higher runoff, reaching
106.2 mm, indicating elevated water flow potentially due to precipitation; Almazroui [62]
indicated that the highest average rainfall that occurred was in April, with positive changes
from 1981 to 2010. These fluctuations underscore the inherent monthly runoff variability
before the dam’s establishment. Following the dam’s construction, the monthly runoff data
continue to exhibit variability due to the inadequate provision of the flow downstream.
Some months witnessed heightened runoff, such as 97.5 mm, indicating periods of in-
creased water flow. After 2007, the estimated runoff experienced a decline, followed by
an increase after 2010, which could be associated with a rise in NDVI values in 2011, and
subsequently, another decline in 2012. This trend closely parallels the observed fluctuations
in the NDVI values. The post-2015 period witnessed increased water flow due to the dam
reservoir’s elevation. As the dam reservoir capacity increased, the necessity to release
water led to heightened water flow, as evidenced post-2015. The presence of the dam
significantly influenced runoff patterns during this period, potentially resulting in modified
flow dynamics compared to the pre-construction phase. The observed changes in estimated
stream runoff may provide insight into alterations in NDVI values. This alignment between
runoff patterns and NDVI changes suggests an interconnected relationship between water
flow dynamics and vegetation health. Overall, the estimated runoff results can explain
some of the changes in the NDVI variations and highlight shifts in the flow regulation by
the dam, as these results are influenced by human activities, climate factors, and changes
in water storage [63].
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Figure 10. Monthly changes in runoff, which is the flow of water in streams, both before and after
dam construction.

3.7. Correlation Coefficient Analysis

Climate variables and soil water availability are the main driving forces for vege-
tation [64]. In this section, the Pearson correlation values between the NDVI, natural
vegetation, croplands, climatic variables (i.e., precipitation, evaporation, temperature, and
humidity), and EWT are presented in Table 2, showing a strong positive correlation ranging
from 0.66 to 0.80, with a significant p < 0.05 between vegetation types and NDVI with pre-
cipitation for the wet season before the dam construction. Moreover, there was a moderate
to strong positive correlation (p < 0.05 for only natural vegetation) between vegetation types
and NDVI with two meter surface temperature in the dry season before dam construction.

Table 2. Pearson correlation and p-value of vegetation type and NDVI with climate variables
and EWT.

Before Dam Construction: Wet Season

Precipitation Evaporation Temperature Humidity EWT
R P R P R P R P R P

Natural
vegetation area 0.77 0.009 −0.77 0.009 −0.36 0.312 −0.05 0.989 0.1 0.82

Croplands area 0.66 0.039 −0.58 0.082 −0.33 0.353 −0.08 0.822 −0.3 0.467
Mean NDVI 0.8 0.005 −0.76 0.011 −0.14 0.708 0.42 0.232 0.24 0.566

After Dam Construction: Wet Season

Precipitation Evaporation Temperature Humidity EWT
R P R P R P R P R P

Natural
vegetation area 0.04 0.899 0.41 0.207 0.03 0.941 −0.52 0.103 0.57 0.065

Croplands area 0.04 0.916 0.29 0.382 0.22 0.516 0.62 0.04 −0.66 0.023
Mean NDVI 0.03 0.927 0.2 0.557 −0.13 0.697 −0.17 0.612 0.5 0.157

Before Dam Construction: Dry Season

Precipitation Evaporation Temperature Humidity EWT
R P R P R P R P R P

Natural
vegetation area 0.28 0.43 0.45 0.188 0.72 0.019 0.25 0.477 0.34 0.125

Croplands area −0.25 0.487 0.23 0.524 0.54 0.33 −0.56 0.092 −0.5 0.204
Mean NDVI −0.07 0.851 −0.1 0.775 0.56 0.09 0.13 0.704 0.11 0.79
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Table 2. Cont.

After Dam Construction: Dry Season

Precipitation Evaporation Temperature Humidity EWT
R P R P R P R P R P

Natural
vegetation area 0.12 0.715 −0.1 0.762 −0.28 0.4 0.29 0.376 0.48 0.276

Croplands area 0.11 0.74 −0.05 0.893 0.42 0.199 0.38 0.245 −0.49 0.155
Mean NDVI −0.17 0.626 0.27 0.428 −0.18 0.595 −0.28 0.395 0.5 0.143

The evaporation correlation with vegetation areas and NDVI, as shown in Table 2,
mainly followed the precipitation correlation values. For example, in the wet season, as
the precipitation correlation became strongly positive, the evaporation became strongly
negative with vegetation areas and NDVI. Regarding the specific humidity, the correlation
between vegetation areas and humidity was ambiguous due to the climate characteristics
in arid areas. After the dam construction, for both seasons, the Pearson correlation between
vegetation changes and climate variables was mostly very low. Nevertheless, strong
correlations can be seen between EWT and both vegetation types and NDVI after the
dam construction. These Pearson correlation values agree with the previously presented
results, where NDVI variations followed climate variables patterns before 2009. However,
lower Pearson correlations can be seen after the dam construction, especially during the
dry seasons. The pattern of NDVI variations is different and better match those of EWT.
This can be explained by the impact of the dam on the downstream soil moisture and
groundwater changes, as well as groundwater withdrawal for agriculture, which are better
reflected in the EWT data. The difference in the Pearson correlations before and after dam
construction could also be due to the impoundment of water flow by the dam construction.

3.8. Multivariate Regression Analysis

Multivariant linear regression was used to assess the variations in EWT and climate
variables on NDVI variations before (2000–2009) and after (2010–2020) the dam construc-
tion. This was performed for two different scenarios: (1) modeling the NDVI only based on
climate variables (i.e., precipitation, two meter surface temperature, evaporation, and spe-
cific humidity without EWT) and (2) modeling the NDVI using all the variables, including
EWT. This was performed to examine the impact of EWT on the NDVI changes that were
found to be considerable in previous sections. In the multivariant linear regression model,
the NDVI was considered to be a dependent variable, while EWT and climate variables
were independent variables that drove the variation in NDVI.

Figure 11A,B show the results of the multivariant linear regression applied to assess
the variations in the NDVI using only climate variables before (Figure 11A) and after
(Figure 11B) the dam construction. The R2 value was found to be 0.76 before the dam
construction from 2002 to 2009 between the observed and modelled NDVI. It indicates
that 76 percent of the variations in the NDVI before the dam construction were driven by
climate variables. On the other hand, the Pearson correlation between the observed and
modeled NDVI after the dam construction was very weak. The R2 value was 0.22 after the
dam construction from 2010 to 2020. Therefore, using only climate variables to model the
variation in the NDVI was mainly useful before the dam construction but not after. EWT
data may be essential for modelling the variation in the NDVI that suggests the important
role of groundwater and soil moisture.

Figure 12 demonstrates the results of the second scenario, where all the variables,
including EWT, were used to predict the NDVI variations. As in Figure 12A, the Pearson
correlation between the observed and predicted mean NDVI before the dam construction
was strong in the case study. The R2 value was 0.85 before the dam construction from 2002 to
2009. It indicates that 85 percent of the variations in the NDVI before the dam construction
were driven by climate variables and EWT. This, which was higher than the first scenario
where only climate variables were assumed, clearly shows an impact of the water stored in
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the land on the vegetation. After the dam construction, the correlation between the observed
and modeled NDVI after the dam construction was weak (Figure 12B). Nevertheless, the R2

value (0.42) was higher than the first scenario after the dam construction from 2010 to 2020.
It indicates that, while adding EWT to the variables increases the correlation between the
modelled and observed NDVI, a considerable discrepancy between the NDVI variations
and other variables exists. Overall, the NDVI variations did not follow the climatic pattern
as they did before the dam construction. The changes in the correlation before and after the
dam construction could have been due to changes in the downstream ecosystem. The dam
construction impoundment of the seasonal water flow may have contributed to a decrease
in the R2 to 0.42.
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4. Discussion

Based on Figures 3–5, croplands have been increasing since 2009 as one of the im-
portant purposes of the dam. The results suggest that human activities and croplands
influenced by the dam have been extended at the expense of natural vegetation. Such activi-
ties, however, should be studied in more detail in studies. The NDVI time series and trends,
as shown in Figure 6, showed a decreasing trend for both the wet and dry seasons after
the dam construction. Moreover, the inter-annual vegetation NDVI and natural vegetation
declined significantly after the dam construction. A considerable difference was found
in the correlation between natural vegetation, croplands, and mean NDVI with climate
variables before and after the dam construction, which could be explained by the impact
of the dam on the region’s environment. Prior to the dam construction, the NDVI and
vegetation types in the study area were highly correlated with the surface temperatures
and total precipitation for both seasons. These results agree with the relevant literature. For
example, Xie et al. [20] and Tong et al. [23] suggested a strong positive correlation between
vegetation and climate variables, especially for precipitation and temperature, which is
similar to our findings before the dam construction. However, after the dam construction,
the correlation between vegetation and climate variables was much lower, especially for the
total precipitation, which is a critical climate variable for vegetation area. Such a correlation
decrease could have been due to the dam’s impacts. For example, stopping seasonal water
flow to the study area could influence the vegetation growth and distribution in the study
area. In addition, the presence of the dam influenced runoff patterns during this period,
potentially resulting in altered flow dynamics compared to the pre-construction period.
The change in the estimated stream runoff could be indicative of the alteration in the NDVI
values. Therefore, the dynamic relationship between runoff patterns and vegetation health
underscores the impact of the dam on flow dynamics and vegetation changes, influenced
by human activities, climate factors, and alterations in water storage.

Before the dam construction, precipitation and particularly seasonal runoff water
from the eastern mountains were the primary sources of vegetation area and soil moisture.
Disrupting the runoff via the application of the Hali Dam was found to significantly affect
vegetation growth and greenness. For instance, before the construction of the dam, water
flowing from upstream to downstream transported sediments, which often contained
significant nutrient content. Hence, the post-dam scenario of reduced water flow due to
the reservoir might account for the diminished soil nutrient availability [65]. This decrease
in water volume led to a decreased transport of sediments downstream, subsequently
contributing to the scarcity of nutrients in the soil [66]. The decline in the presence of fine
particles and nutrients within the soil could potentially yield detrimental repercussions
for vegetation located downstream, including adverse impacts on the growth and vitality
of plants and trees. Moreover, high temperatures and rapid evaporation can limit the
water absorption from the precipitation by the soil in the areas. Furthermore, tempera-
ture increases of 1 ◦C and 5 ◦C could potentially lead to reductions in surface runoff of
115–184 Million Cubic Meter (MCM) and 600–960 MCM per year, respectively [67,68]. In
a study conducted by Tarawneh and Chowdhury [30], an evaluation of temperature and
rainfall trends across various regions in Saudi Arabia was undertaken. The outcomes
revealed that both linear and Mann–Kendall analyses demonstrated a rise in temperature
across all regions and a reduction in rainfall in multiple areas. These changes notably
affect vegetation areas. Research conducted by Mallick et al. [69] suggested that rainfall
emerges as the primary determinant in shaping the distribution of vegetation within these
regions. As Saudi Arabia experiences rising temperatures and altered rainfall patterns, the
resulting changes in climate dynamics are proving to be one of the major factors that shape
the distribution and health of vegetation across the study area. Therefore, the decrease in
natural vegetation during the dry season may indeed be related to the construction of dams.
Dams can impact seasonal water flow, potentially leading to a reduced water availability for
vegetation, especially during the dry season. It is possible that the decrease in vegetation
coverage during the dry season is also related to the impact of drought. Drought conditions
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can independently affect vegetation health by reducing water availability, and this impact
may be exacerbated by dam construction.

The slight changes in the climate variables, as shown in Figure 8, may have led to slight
changes in the vegetation area. However, more significant changes in human activities,
e.g., through the dam construction, can cause similar changes in the total vegetation area.
Despite slight changes in the precipitation and two meter surface temperature before and
after the dam construction, these results showed no clear evidence of the climate variability
impacts on the area and, correspondingly, the vegetation decline after 2009. The relation-
ship between climate and vegetation dynamics can be complex, influenced by various
factors, including hydrological changes due to dam construction, land use alterations,
and ecological processes. Therefore, while the presented meteorological data may not
reveal an explicit link between climate variability and vegetation decline, a comprehensive
assessment of multiple factors is essential to unravelling the intricate web of influences
on the ecosystem. Regarding the cropland expansion and decrease in the EWT, there are
several papers that have examined the relationship between groundwater use and cropland
expansion in Saudi Arabia. A comprehensive study was conducted by the International
Water Management Institute (IWMI) [70]. The study found that groundwater use has been
a major driver of cropland expansion in Saudi Arabia since the 1970s. The study also found
that the expansion of cropland has led to a decline in the groundwater in many parts of the
country. Another study by Alshehri and Mohamed [38] indicates that the agriculture sector
is largely responsible for the dramatic increase in groundwater extraction in Tabuk areas,
which clearly shows a decline in the EWT.

This study was able to identify a noticeable link between the NDVI and both climate
variables and EWT variations. According to Figure 11A, using only climate variables,
one could model the NDVI variation to a high degree before the dam construction. This
modeling can be performed more successfully with a combination of climate variables
and EWT before the dam construction (cf. Figure 12A). However, Figure 11B suggests that
climate variables only were not able to accurately model the variation in the mean NDVI
after the dam construction. Adding the EWT data, however, can improve the modeling skill
to some extent (Figure 12B). Including EWT as the influencing factor in the multivariate
regression analysis led to improved results with a higher R2 value, which is important in
estimating and representing the roles of groundwater and soil moisture [71]. According
to the literature, EWT can be used to represent the impact of human variables on the
total vegetation area [63,72,73]. In Pan et al. [72], human-induced evapotranspiration was
detected in the Haihe River basin of China using EWT. Based on their findings, GRACE
has the capability to detect anthropogenic signals over regions with a high groundwater
consumption. The use of underground water for irrigation, water flow prevention by dam
construction, and decreased soil moisture can lead to a negative trend in the EWT time series.
Correspondingly, this can impact the total vegetation area directly by limiting soil moisture
and increasing sand movement and soil salinity. EWT contributes to increased vegetation
greenness, independent of climate variables. In addition, this exerts supplementary stress
on the system, thereby jeopardizing both the sustainability of vegetation and the robustness
and yield of crop production within this region. Furthermore, projections of future climate
change, extrapolated from temperature and precipitation data, could potentially contribute
to a decrease in the replenishment of groundwater resources. The research has limitations
in fully analyzing hydrological components due to data constraints, including average daily
and monthly flows and environmental flow. Future research should explore additional
factors like Land Use Land Cover (LULC), soil components, hydrological components,
wetlands, and groundwater’s impact on downstream vegetation. Moreover, integrating
high-spatial-resolution satellite imagery or a combination of high and medium spatial
resolution can enhance accuracy assessments for smaller study areas.
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5. Conclusions

Based on the characteristics of the selected study area, dam, and related reservoirs, and
using 21-year (i.e., 2000–2020) meteorological and remote sensing data, this study aimed to
detect changes in the vegetation areas downstream of the Hali Dam in the Wadi Hali Basin.
Notably, the change in the estimated stream runoff could represent the change in the NDVI
values. The NDVI results revealed a considerable decline after the dam construction in the
dry season. This was primarily associated with blocking the seasonal runoff water by the
dam and increasing cropland areas due to dam irrigation. There was no significant change
in the climate variables before and after the dam construction, which may indicate weak
impacts of climate variability on the area and, correspondingly, the vegetation decline after
2009. A significantly stronger correlation between vegetation changes and precipitation
and temperature variations was observed before the dam construction. According to the
multivariate regression analysis, 85 percent of the variations in the mean NDVI were driven
by climate variables and EWT. On the other hand, it was found that only 42 percent of the
variations in the NDVI were driven by climate variables and EWT from 2010 to 2020 for
both the dry and wet seasons. Another analysis with the multivariate regression analysis
using only the climate variables to model the NDVI variations showed that, before the dam
construction, climate variables may have caused the variation in the NDVI values (with an
R2 of 0.76), but not after the dam construction (with an R2 of 0.22). Despite these marginal
shifts in climate and EWT variable metrics, the interplay of factors driving the substantial
vegetation decline remains intricate and multifaceted. While these metrics provide valuable
context, they alone might not unveil the complete picture of climate variability’s impact
on the area. Other factors that impact downstream vegetation areas, such as Land Use
Land Cover (LULC), soil components, and wetlands, are important to be considered in
future research. In addition, the hydrological components were not fully analyzed and
incorporated into the research due to limitations in obtaining these data, such as average
daily and monthly flows and environmental flow. Using high-spatial-resolution satellite
imagery or combining high spatial resolution with medium spatial resolution is essential
for a small study area and can improve accuracy assessment values. To address this study’s
limitation and future work, it is essential to consider other factors that impact downstream
vegetation areas, such as Land Use Land Cover (LULC), soil components, wetlands, and
groundwater. Climate variables do not have a significant impact, whereas other variables
could have more impact on downstream vegetation area.
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The following abbreviations are used in this manuscript:
NDVI Normalized Difference Vegetation Index
EWT Equivalent Water Thickness
P Precipitation
E Evaporation
R Runoff
MLC Maximum Likelihood Classification
SPOT Satellite Pour l’Observation de la Terre
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LULC Land Use Land Cover
GIS Geographical Information System
TWS Total Water Storage
GRACE Gravity Recovery and Climate Experiment
USGS United States Geological Survey
ERA-5 European Centre for Medium-Range Weather Forecasts Integrated Forecasting System,

the fifth-generation reanalysis
GLDAS Global Land Data Assimilation System
NIR Near-infrared
RED Red Band
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