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Abstract: Precipitation products play an important role in monitoring rainstorm processes. This study
takes a rare historical event of extreme, heavy precipitation that occurred in Henan Province, China,
in July 2021 as a research case. By analyzing the distribution of the spatial and temporal characteristics
of precipitation errors, using a probability density function of the occurrence of precipitation and the
daily variation pattern, we assess the capability of a radar precipitation estimation product (RADAR),
satellite precipitation products (IMERG and GSMAP), a reanalysis product (ERA5) and a precipitation
fusion product (the CMPAS) to monitor an extreme rainstorm in the Henan region. The CMPAS has
the best fit with the gauge observations in terms of the precipitation area, precipitation maximum
and the evolution of the whole process, with a low spatial variability of errors. However, the CMPAS
slightly underestimated the precipitation extremum at the peak moment (06:00–08:00). The RADAR
product was prone to a spurious overestimation of the originally small rainfall, especially during
peak precipitation times, with deviations concentrated in the core precipitation area. The IMERG,
GSMAP and ERA5 products have similar performances, all of which failed to effectively capture
heavy precipitation in excess of 60 mm/h, with negative deviations in precipitation at mountainfront
locations west of northern Henan Province. There is still a need for terrain-specific error revisions
for areas with large topographic relief. By merging and processing precipitation data from multiple
sources, the accuracy of the CMPAS is better than any single-source precipitation product. The
CMPAS has the characteristic advantage of high spatial and temporal resolutions (0.01◦ × 0.01◦/1 h),
which play a positive role in precipitation dynamic monitoring, providing early warnings of heavy
rainfall processes and hydrological application research.

Keywords: extreme rainstorm; radar; satellite; ERA5; multi-source data merging; precipitation
monitoring; error characteristics

1. Introduction

Precipitation is an important component of global water and energy cycles and plays
an important part in the interactions among the hydrosphere, atmosphere and biosphere [1].
Accurate precipitation data are essential in hydrological, meteorological and ecological
research [2–4]. In the current context of global warming, there is an increasing trend of
extreme rainfall events [5]. In both rural and urban areas of China, a notable decline
in light rainfall has been observed, accompanied by an increase in heavy precipitation
events [6]. The frequency of extreme hourly precipitation nationwide has shown an increase
of 0.7 h/10a; however, the overall trend in precipitation intensity remains insignificant
across the country [7]. Liu et al. [8] also emphasized an increased risk of extreme wet
and hot events in different regions of China. From 17 to 22 July 2021, Henan Province
experienced a historically rare extreme, heavy precipitation event (referred to as the “7.20”
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Henan rainstorm), with rainfall in the Hebi area reaching 1122.6 mm. The maximum hourly
rainfall at Zhengzhou station reached 201.9 mm, exceeding the historical extreme value for
mainland China and causing significant casualties and damage to property [9]. This ex-
traordinary rainstorm process occurred against a background of weak weather-scale system
forcing, and the coupling of low-level jet streams provided good convergence–divergence
forcing for heavy precipitation [10]. The joint influence of strong and stable Typhoon In-Fa
and a stable atmospheric circulation situation in the middle and high latitudes established
long-range water-vapor transport channels [11]. The combined effect of the upper-level di-
vergence circulation and the blocking uplift of the mountains induced a deep, meso-β-scale
convective vortex system, producing extremely intense precipitation [12]. Henan Province
is located in the mid-latitude north–south climate transition zone and has a complex topog-
raphy; there have been many heavy rain disasters in Henan Province throughout history,
such as the 58.7, 75.8, 82.8, 96.8 and 18.8 extreme events [13]. Therefore, in the Henan
region, there is a great need for accurate and reliable real-time quantitative precipitation
grid products to dynamically monitor the whole process of the occurrence and develop-
ment of precipitation, providing effective supportive information for disaster warnings
and decision-making services while further improving the effectiveness of short-range
forecasting and reducing the damage caused by heavy rainfall and flooding.

The quantitative precipitation datasets currently available on a regional scale in China
mainly originate from gauge observations, weather radar, satellite measurements, reanaly-
sis data and multi-source-observation precipitation fusion products. Gauge observations
are considered the most accurate observations of precipitation but cannot effectively reflect
the spatial distribution of extreme precipitation events due to the uneven distribution
and varying density of gauge sites [14,15]. Ground-based meteorological radar systems
and space-based meteorological satellites are the two main observation techniques for
the remote sensing of precipitation [16]. Significant developments have been made in
quantitative techniques for the estimation of precipitation from radar data, including the
establishment of Z-I relationships from radar, radar puzzle studies and estimated precipita-
tion revisions from joint ground-based observations [17–19]. However, quantitative radar
precipitation estimates have some drawbacks, such as their limited spatial coverage, the
occlusion of radar signals by terrain, radar ray lifting and uncertainty in the Z-R relation-
ship [20]. Satellite remote sensing is currently the only method of obtaining global-scale
precipitation observations [1].

The Global Precipitation Measurement (GPM) program is a new generation of global
precipitation-observation satellites developed jointly by the National Aeronautics and
Space Administration (NASA) and the Japan Aerospace Exploration Agency (JAXA). The
GPM program uses advanced, dual-band rain-measuring radar and microwave sensors
and continually improving inversion algorithms. IMERG is a NASA release that partici-
pates in the GPM program to obtain level 3 products, and JAXA developed the GSMAP
global precipitation dataset using satellite sensor data from the GPM observing platform.
Although both IMERG and GSMAP are new-generation global precipitation datasets with
high spatial and temporal resolutions, they still have problems, such as insufficient in-
version accuracy for small and extreme precipitation events, large errors in precipitation
products at high altitudes and high latitudes and the overestimation of precipitation in
inland water bodies [21–23]. Precipitation data from atmospheric reanalysis datasets are
often used to analyze the spatial and temporal characteristics of precipitation. ERA5 is a
fifth-generation reanalysis product from the European Centre for Medium-Range Weather
Forecasts (ECMWF). The data are based on an improved 3D variational technique and have
the advantages of high spatial and temporal resolutions, fast updates and a wide range of
parameters, which have attracted a significant amount of attention. However, the atmo-
spheric reanalysis data are the product of the fusion of numerical forecast products and
observations. The errors in these forecast products and observations mean that assimilation
methods affect the quality of the reanalysis of climate data [24–26].
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In contrast, precipitation fusion products fully combine the advantages of precipitation
data from different sources and have been widely used in weather and climate monitoring,
climate change research, model forecast testing and hydrological forecasting [27,28]. The
National Meteorological Information Center of China has continuously developed and
improved data fusion technology to create the Chinese multi-source observation precipi-
tation fusion product (CMPAS), which has spatial and temporal resolution of 1 h/0.01◦.
The data sources for this product include hourly precipitation information from nearly
50,000 automatic weather stations in China, quantitative radar precipitation estimation
products and CMORPH satellite inversion precipitation data [29,30]. The CMPAS exhibits
better accuracy than any single-source precipitation product, especially in areas with sparse
gauges [31,32].

There have been some studies examining the ability of various precipitation products
to capture extreme precipitation events [33–35]. However, there is still uncertainty in
their ability to accurately capture heavy rainfall, and this uncertainty varies depending
on factors such as precipitation level and region. Therefore, further research is needed to
assess the ability of different precipitation products to monitor the exceptionally heavy
rainfall event in Henan. This study uses the “7.20” Henan rainstorm event as the research
object, employing dense gauge observations as the reference to evaluate whether RADAR,
IMERG product, GSMAP, ERA5 and CMPAS can accurately and reasonably portray the
distribution characteristics and evolution process of the extreme precipitation event through
various error analysis indicators. This work is significant as it provides valuable feedback
to product developers and useful information for end-users by analyzing the error and
uncertainty in precipitation products.

2. Data and Methods
2.1. Study Area

Henan Province is located in the mid-latitude north–south climate transition zone.
Rolling hills and mountains are found to the west, while the vast East Henan Plain lies to
the east. Topographic uplift results in most rainstorms being concentrated in the moun-
tainous area on the windward slopes of the Taihang Mountains, leading to highly uneven
seasonal and regional distribution of rainfall, and sudden heavy downpours can cause
serious secondary disasters. Henan experiences frequent heavy rainfall from June to Au-
gust every year as a result of the seasonal northward movement and southward retreat
of the subtropical high-pressure region. Low vortex shear lines and typhoon weather
systems contribute to extreme heavy precipitation events in Henan [36]. The whole study
area (Figure 1) is at 31◦N–40◦N latitude and 109◦E–112◦E longitude, with a core area of
precipitation at at 34◦N–36.7◦N latitude and 112.5◦E–114.8◦E longitude. The study period
extends from 00:00 UTC on 17 July to 23:00 UTC on 22 July 2021.

2.2. Data
2.2.1. Rain Gauge Observations

Rain gauge observations are typically considered the most accurate source of precipita-
tion data and play a crucial role in quantitative studies of surface precipitation [37]. Hourly
precipitation data from approximately 11,000 automatic weather stations in Henan Province
and the surrounding area in July 2021 are used to evaluate the accuracy of precipitation
grid products during the “7.20” Henan rainstorm event. Figure 1b illustrates the spatial
distribution of the station locations and their ground elevation. The station observations
are densely distributed, providing a reliable spatial representation of the precipitation. The
precipitation data from the automatic weather stations undergo strict operational quality
control [38], including boundary value checks, temporal consistency checks and spatial
consistency checks, with a minimum detectable precipitation of 0.1 mm/h.
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Figure 1. (a) Map of the national administrative divisions in China; the area circled in red is the 
study area, and the purple line shows the core area of precipitation; the filled part is the topographic 
height description (unit: m). (b) Spatial distribution of the gauges (red points) and the topographic 
features (filled part, unit: m) within the study area (31–40°N, 109–112°E), and the purple line shows 
the core area of precipitation. 
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Figure 1. (a) Map of the national administrative divisions in China; the area circled in red is the study
area, and the purple line shows the core area of precipitation; the filled part is the topographic height
description (unit: m). (b) Spatial distribution of the gauges (red points) and the topographic features
(filled part, unit: m) within the study area (31–40◦N, 109–112◦E), and the purple line shows the core
area of precipitation.

2.2.2. RADAR Product

The RADAR precipitation product is derived from radar observation data developed
by Meteorological Detection Center of China Meteorological Administration. The RADAR
product estimates precipitation based on a real-time statistical Reflectivity Factor–Rain
Intensity relationship from a networked radar and is calibrated using precipitation data
from 2400 national weather stations through Kalman filtering and average calibration. The
spatial and temporal resolution of the product is 1 h/0.01◦ [39].

2.2.3. IMERG Product

The IMERG currently provides three types of satellite precipitation data with a spatial
and temporal resolution of 0.1◦/30 min: EarlyRun, LateRun and FinalRun. Both the
EarlyRun and LateRun are near-real-time products, released with 4 h delay and 12 h delay,
respectively. The EarlyRun uses only forward propagation (equivalent to extrapolation)
algorithms, while the LateRun utilizes both forward and backward propagation (allowing
interpolation). The FinalRun product is calibrated using global rainfall stations and is more
accurate than the EarlyRun and LateRun products in terms of accuracy; however, the data
from the FinalRun product is released with a delay of about 3.5 months [40]. The data used
in this study is FinalRun product.

2.2.4. GSMAP Product

The GSMAP utilizes microwave datasets provided by low earth orbit satellite observa-
tions and visible/infrared datasets provided by geosynchronous satellite observations as
the input sources for the inversion algorithm. The source data are processed using cloud
motion vector and Kalman filtering methods, resulting in three different remote sensing
precipitation data products: GSMAP_NRT, GSMAP_MVK and GSMAP_Gauge. The near-
real-time data product, GSMAP_NRT, employs a forward cloud vector motion scheme
during processing, while the standard product, GSMAP_MVK, utilizes a bi-directional (for-
ward and backward) cloud vector motion scheme. GSMAP_Gauge is a calibrated version
of GSMAP_MVK based on observations from the Climate Prediction Center (CPC) global
surface rainfall stations [41]. The data used in this study is obtained from GSMAP_Gauge
with a spatial and temporal resolution of 1 h/0.01◦.
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2.2.5. ERA5 Product

The ERA5 reanalysis dataset, released in July 2017, is the fifth generation of global
climate products produced by the ECMWF and represents a significant upgrade from the
previous generation of the ERA-Interim dataset. The precipitation data has been widely uti-
lized in meteorological and hydrological research, leading to numerous meaningful results.
Although the ERA5 reanalysis precipitation dataset has shown considerable improvement
compared to the ERA-Interim dataset, it still contains large errors in areas dominated by
convective storms [42].

2.2.6. CMPAS Product

The CMPAS product is produced by China multi-source precipitation analysis system,
developed by the National Meteorological Information Center of the CMA (China Meteoro-
logical Administration). It uses probability density function (PDF), optimum interpolation
method (OI) and Bayesian model averaging method (BMA), combined with high-density
gauge precipitation observations, high-resolution weather radar quantitative precipitation
estimation (QPE) and satellite-based precipitation estimation, to generate gauge-radar-
satellite merged hourly precipitation product [43–45]. In December 2016, the Chinese
multi-source observation precipitation fusion product (CMPAS) entered operational trials
with a spatial and temporal resolution of 1 h/0.01◦ and was released in real time through
the China Meteorological Data Network, the National Meteorological Data Intranet and
the China Meteorological Administration Satellite Broadcasting System (CMACast). Cur-
rently, the CMPAS plays an active role in meteorological operations such as forecasting and
meteorological disaster warnings [45].

2.3. Methods
2.3.1. Data Pre-Processing

Rain gauge observations represent station data, while CMPAS, RADAR, IMERG,
GSMAP and ERA5 provide grid data. Rain gauge observations differ from various pre-
cipitation products in terms of data type and spatial–temporal scale; therefore, data pre-
processing is necessary. Both rain gauge observations and CMPAS, RADAR, GSMAP, ERA5
contain hourly-scale data. It is essential to standardize the half-hourly estimated data from
IMERG into hourly intervals. Regarding spatial matching, since there are uncertainties
when interpolating rain gauge data onto the grid system, we employ a point-to-point
analysis method to match the grid data with the stations. The nearest value from the grid
points to each station is selected for comparison with the gauge observation. Subsequently,
corresponding grid precipitation data are extracted at each rain gauge station location to
complete sample matching between the grid precipitation and gauge measurements [46].

2.3.2. Assessment Indicators

Several statistical metrics are utilized for quantifying and comparing the performance
of different types of precipitation products, which include the mean error (ME), relative
bias (rBIAS), root-mean-square error (RMSE), correlation coefficient (CORR) [47] and Kling–
Gupta efficiency (KGE). The detailed calculation of these indicators is as follows.

ME =
1
n

n

∑
i=1

(yi − xi), (1)

rBIAS =
n

∑
i=1

(yi − xi)/
n

∑
i=1

xi , (2)

RMSE =

√√√√ n

∑
i=1

(yi − xi)
2

n
, (3)
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CORR =
∑n

i=1 (yi − y)(xi − x)√
∑n

i=1 (yi − y)2∑n
i=1(xi − x)2

, (4)

KGE = 1 −
√
(r − 1)2 + (β − 1)2 + (γ − 1)2 (5)

where n is the total number of samples and y and x represent the precipitation product
samples and the gauge samples, respectively. rBIAS is dimensionless and is used to
measure the deviation of the precipitation products from the rain gauge observations.
When multiplied by 100, rBIAS expresses the degree of overestimation or underestimation
as a percentage. CORR is used to quantify the correlation of the precipitation products with
the rain gauge observations. KGE is an objective performance metric that combines the
correlation, the deviation (Bias, β) and the variability (VAR, γ). The deviation β = µG

µO
is

the ratio of estimated and observed means, where µ is the average value. The variability
γ = σG/µG

σO/µO
is the ratio of the estimated and observed coefficients of variation, and σ is the

standard deviation.
In practical applications, we also need to consider the ability of the precipitation

products to capture rainfall events. We use the Probability of Detection (POD), False
Alarm Rate (FAR), Frequency Bias Index (FBI) and TS score to analyze the agreement
between observed rainfall events and estimated events using precipitation products [48].
The equations for each evaluation index are as follows.

POD =
H

H + M
, (6)

FAR =
F

H + F
, (7)

FBI =
H + F
H + M

, (8)

TS =
H

H + F + M
(9)

where H (hits) is the frequency of rain observed simultaneously by the precipitation product
and the rain gauge; F (false Alarm) is the frequency of precipitation product with rain but
no rain observed by gauge; and M (misses) is the frequency of gauge with rain but no rain
observed by precipitation product. This paper also utilizes the cumulative distribution
function (CDF), which is the integral of the probability density function (PDF). It serves
as a model for determining the probability of a random variable assuming values below a
specific threshold. CDFc represents the cumulative probability function of precipitation
coincidence, while CDFc represents the cumulative probability function of precipitation
volume. Five different ranges are defined to discriminate between different intensities
of rainfall in order to evaluate combined performance: light rain (0.1–2 m/h), moderate
rain (2–5 mm/h), heavy rain (5–10 mm/h), rainstorm (10–20 mm/h) and heavy rainstorm
(>20 mm/h).

3. Results
3.1. Spatial Distribution Characteristics of Precipitation

The “7.20” Henan rainstorm is characterized by its long duration, extreme intensity of
precipitation and record-breaking cumulated precipitation. The reasons for the formation
of this extreme rainstorm are complex. The stable atmospheric circulation, sufficient water
vapor and energy, topographic effects and long-term maintenance of convection systems in
Henan are the major causes [6]. Figure 2 shows that precipitation is concentrated in north-
western central Henan, where the topography is significantly elevated (Figure 1b). Water
vapor transported from the east and south is blocked by the topography and accumulates
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in this region, resulting in an extreme precipitation event [49]. A comparison between
accumulated precipitation from CMPAS, RADAR, IMERG, GSMAP and ERA5 from 00:00
on July 17 to 23:00 on July 22 with high-density rain gauge observations reveals that all
the precipitation products can reflect the occurrence of this extremely heavy rainstorm
event. The CMPAS exhibits a high agreement with gauge observations, accurately depicting
precipitation distribution patterns and effectively capturing the extreme value of heavy
rainfall centers, thus accurately reproducing actual rainstorm conditions. The RADAR
also shows a high degree of precipitation reduction but overestimates the regional extent
and extreme values of the heavy precipitation center. The IMERG, GSMAP and ERA5
perform significantly worse than CMPAS and RADAR as they fail to reflect cumulative
precipitation > 600 mm. Additionally, the location of the area with >400 mm of rain is
shifted to the southeast in the IMERG and more to the northwest in the ERA5. The GSMAP
does not indicate any area with >400 mm of rain.
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Figure 2. Spatial distribution of the accumulated precipitation (unit: mm) in the study area during the
“7.20” Henan rainstorm compared with the original resolution of the gauge observations and various
precipitation products: (a) gauge observations; (b) CMPAS; (c) RADAR; (d) IMERG; (e) GSMAP and
(f) ERA5. The yellow box is the core area of precipitation.

Figure 3 is a scatter plot comparing the hourly rainfall between the rain gauges and
precipitation products during the “7.20” Henan rainstorm, with a linear fit (red line).
Warmer-colored scatter points indicate a larger precipitation sample size, while a black
dashed line represents the 1:1 line of observations versus products. The results demonstrate
that CMPAS exhibits the highest agreement with gauges, with the hourly precipitation
evenly distributed around the 1:1 line and a linear slope of 0.924 for the scattered points.
However, the fitted line is found to be right of the 1:1 line, suggesting that CMPAS may
underestimate extremely heavy precipitation. The deviation of the linear fitted line of
RADAR is larger, indicating that it is less accurate than the CMPAS in capturing extreme
precipitation. The RADAR also shows false precipitation >100 m/h when no precipitation is
recorded by rain gauges, which explains the overestimation of the cumulative precipitation
by RADAR (Figure 2). The hourly precipitation of IMERG is concentrated at <60 mm/h,
whereas that of GSMAP and ERA5 is concentrated at <25 mm/h and the linear fitted line
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deviates from the 1:1 line. The poor ability of satellite products to capture precipitation
extremes is related to the upper limit of the sensitivity of satellite sensors for remote sensing
of precipitation [50]. The GMI sensor in the GPM detects precipitation up to only 60 mm/h.
The ERA5 is limited by constraints in its convective parameterization scheme, resulting
in an inability to effectively capture convective precipitation and poor performance in
simulating heavy rainfall [51]. SUN et al. [52] proposed using machine learning techniques
to correct ERA5’s precipitation, making it more consistent with real conditions.
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for (a) CMPAS, (b) RADAR, (c) IMERG, (d) GSMAP and (e) ERA5.

A comparative analysis of the spatial distribution of several evaluation indicators has
been provided (Figures 4 and 5). The CMPAS outperforms other precipitation products
significantly in all scoring indicators, with a small spatial variability of the precipitation
deviation, indicating a consistent quality of CMPAS across the region. The ME of CMPAS is
±0.05 mm/h, the RMSE is <1.5 mm/h in the core area of precipitation and the correlation
coefficient and TS score are >0.9. KGE is concentrated above 0.8, and the coefficient of
variation is less than 1, indicating that CMPAS exhibits less variability in precipitation
than gauges (Table 1). The RADAR, IMERG, GSMAP and ERA5 have similar spatial
distribution of errors. The RADAR overestimates precipitation in all regions except north-
western Henan Province; its greatest overestimation occurred in central-eastern Henan
Province, with rBIAS reaching 77.9%. The RADAR has poor KGE indicators due to high
deviation bias, which reaches 1.779, indicating that RADAR is approximately 1.8 times
gauge observations. The rBIAS of GSMAP is −21.63%, whereas the rBIAS of IMEGR is
close to 0. This difference arises because the range of overestimate and underestimate of
precipitation in the study area is generally consistent for IMERG, whereas GSMAP exhibits
a larger area of underestimation. The ERA5 significantly underestimates precipitation in
the core area and overestimates it in western Henan. The correlation coefficients of the
four precipitation products, RADAR, IMGRG, GSMAP and ERA5, are significantly higher
in the core precipitation area than in the peripheral region, reaching above 0.6. TS scores
also indicate that as the intensity of precipitation increases, so does its accuracy across all
products, suggesting their ability to capture this process accurately. Additionally, both
satellite and model products share a common feature: an underestimation of precipitation
in the western part of northern Henan Province (negative deviation in ME). This may be
attributed to the relatively undulating topography of this mountainous region located
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upstream from these areas, indicating a need for further correction regarding topographic
errors within both satellite and model precipitation products [53].
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3.2. Temporal Variation of Precipitation

Figure 6a displays the time series of hourly average precipitation for rain gauges
and precipitation products during the “7.20” Henan rainstorm. Figure 6b illustrates the
corresponding cumulative average precipitation curves over time. Throughout the entire
precipitation process, CMPAS exhibits almost perfect agreement with the rain gauges in
terms of regional average precipitation, with a CORR value of 0.96. Periods of heavy
precipitation mainly occur between 00:00 on July 19 and 00:00 on July 22. The RADAR
reflects an overestimation of precipitation throughout the entire period, particularly during
periods of heavy rainfall. The IMGER and GSMAP underestimate precipitation before
00:00 on July 19, but there is a better agreement with observations after that. The ERA5,
on the other hand, demonstrates better agreement with observations before 00:00 on the
19th but systematically underestimates precipitation as the intensity increases during the
rainfall process. In the core precipitation area (Figure 6c,d), the findings are generally con-
sistent with those of the entire study area, except that RADAR and IMERG exhibit a more
pronounced regional overestimation of precipitation during the peak period (03:00–09:00
on the 20th), while ERA5 also demonstrates a more noticeable underestimation.
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Figure 5. Boxplots of the precipitation products for various assessment metrics during the “7.20”
Henan rainstorm. The red lines indicate the median; the left and right boundary lines of each box
plot indicate the 25th and 75th percentile of that assessment indicator, respectively. (a) ME, (b) rBIAS,
(c) RMSE, (d) TS score, (e) CORR, (f) Bias, (g) VAR and (h) KGE.

Table 1. Scoring metrics for the precipitation products during the “7.20” Henan rainstorm. The units
of ME and RMSE are mm/h; the units of rBIAS are %.

ME rBIAS RMSE CORR Bias Var KGE TS

CMPAS 0.007 1.07 0.88 0.961 1.01 0.948 0.934 0.791
RADAR 0.521 77.9 5.439 0.385 1.779 1.018 0.007 0.556
IMERG 0.0002 0.031 2.867 0.486 1.0003 0.701 0.405 0.456
GSMAP −0.144 −21.63 2.917 0.415 0.783 0.655 0.288 0.442

ERA5 −0.056 −8.425 3.105 0.278 0.915 0.476 0.104 0.341

Figure 7 shows the time series of the evaluation indicators of various precipitation
products across the entire study area (left) and the core precipitation area (right) during the
“7.20” Henan rainstorm. It can be observed that the evaluation indicators for CMPAS remain
relatively stable over time, indicating its consistent quality compared to other precipitation
products. The assessment results of CMPAS are closer to the optimal values for each
indicator. The ME and RMSE values for RADAR increase significantly with precipitation,
resulting in larger error values than other products, with ME exceeding 1 mm/h and
RMSE reaching 8 mm/h. The ME and RMSE values of IMERG, GSMAP and ERA5 are
similar, which also change consistently over time. In terms of precipitation capture ability
(TS score and FBI), RADAR, IMERG, GSMAP and ERA5 exhibit consistent performance
over time, with ERA5 performing slightly worse than the others at certain times. In the
core precipitation area, there is a notable increase in the ME and RMSE indicators for all
precipitation products due to the increase in precipitation magnitude. The TS scores for
different products show a significant increase in the precipitation core area, reaching above
0.8, indicating that these products are less likely to miss strong precipitation processes in
the core area compared to weak precipitation outside the core area.
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Figure 8 compares the comprehensive performance of the various precipitation prod-
ucts at different hourly rain intensities. It can be observed that CMPAS has the lowest RMSE
and FAR, as well as the highest POD and TS scores across all rain intensity ranges compared
to other products, with ME remaining mostly around 0 and FBI around 1. However, for
precipitation > 20 mm/h, both ME and FBI values fall below optimum values, indicating
that CMPAS becomes less effective in detecting heavy precipitation above 20 mm/h com-
pared to other rain intensity classes. This highlights an aspect for future improvement of
CMPAS. The RMSE of RADAR is significantly greater for rain intensity less than 20 mm/h,
indicating that the overestimation of precipitation by RADAR is mainly concentrated in
precipitation below 20 mm/h. For precipitation (>10 mm/h), the POD of RADAR is lower
(<0.3), the FAR is higher (>0.7) and the FBI is abnormally high. The FBI reaches 2 for
precipitation (>20 mm/h), indicating a large false area of strong precipitation detected
by RADAR. The scores of the IMERG, GSMAP and ERA5 products are similar for each
precipitation threshold, indicating that the three products are of comparable quality, with
FAR > 0.4, TS scores < 0.5 and POD > 0.6 for precipitation < 2 mm/h.

3.3. Probabilistic Statistics of the Occurrence of Precipitation

The probability density distribution (PDF) of hourly precipitation during the rainstorm
(Figure 9) shows overall good agreement between various precipitation products and
gauges. There are two extreme values, with the largest one (precipitation in the range of
0.1–0.25 mm/h) accounting for about 28% and precipitation in the range of 1–2.5 mm/h
accounting for about 18%, while the maximum hourly precipitation exceeds 200 mm/h. The
PDF of precipitation in the range of 0.1–0.25 mm/h for CMPAS is 8% lower than that for rain
gauges but 5% higher than that for rain gauges in the range of 0.25 to 0.5 mm/h. The PDF of
RADAR is also close to gauges, but there is a relative overestimation of precipitation in the
range of 7.5–50 mm/h. The IMERG and GSMAP significantly overestimates precipitation
at the second peak, with GSMAP overestimating by 8%, but underestimates precipitation
in the range of 7.5–50 mm/h. The ERA5 is closest to gauges for PDF in the range of
0.1–0.25 mm/h, with greater deviations in other ranges. In general, there is a similarity
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between PDFs obtained from both precipitation products and rain gauge observations,
but PDFs for precipitation products in the range of 0.1–0.25 mm/h are low, whereas the
estimates for the range of 0.25–2.5 mm/h are high.
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The sensitivity of various precipitation products to the detection of rainfall events
can be revealed by further analysis of the cumulative distribution function [54] in terms of
coincidence (CDFc) and volume (CDFv). Figure 10a shows that, except for ERA5, all precip-
itation products have a CDFc similar to that of rain gauges. For precipitation < 1.5 mm/h,
CMPAS has a lower CDFc compared to gauge observations, but they are similar for pre-
cipitation > 2 mm/h, indicating that CMPAS is biased in capturing small precipitation but
consistent with gauges for higher amounts (>1.5 mm/h). The RADAR’s CDFc curve lies
below gauge observations and is the last product to reach 100% CDFc, suggesting that
RADAR detects more spurious heavy precipitation. The IMERG and GSMAP both have
similar CDFc values, which are lower than rain gauges for precipitation < 2 mm/h and
much higher than the rain gauges for precipitation > 2 mm/h, indicating both products
are inadequate at detecting light precipitation events (<2 mm/h) and better at detecting
precipitation events of 2–8 mm/h. The CDFc curve for ERA5 lies entirely above rain gauge
observations and reaches 100% at the fastest rate, indicating that ERA5 is least effective at
detecting heavy precipitation.
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Figure 9. Probability density function (PDF, unit: %) curves of the hourly precipitation for gauge
observations and precipitation products during the “7.20” Henan rainstorm, with subplots showing
the frequency (unit: %) of occurrence of different hourly rain intensities.

For the CDFv, CMPAS gives similar results to the rain gauges, except for a slightly
higher CDFv between 2 and 24 mm/h. The CDFv curve of RADAR is located at the right of
observations, indicating that RADAR contributes the most to the total precipitation volume
through strong precipitation. The curves of IMERG, GSMAP and ERA5 are located at
the left of observations, indicating that these three precipitation products contribute the
most to the total precipitation volume through weak precipitation. Specifically, hourly
precipitation ranging from 0 to 4 mm/h in ERA5 contributes 60% of the total precipitation.
Figure 10c,d display CDF curves of the RMSE and correlation coefficient for each type of
precipitation product. In terms of error distribution, CMPAS have the minimal RMSE and
highest correlation coefficient values among all products evaluated. The CDF curves of
RMSE for IMERG, GSMAP and ERA5 are identical and superior compared to RADAR’s
curve. The order of correlation coefficients is as follows: CMPAS > IMERG > GSMAP and
RADAR > ERA5.
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The structure of the spatial distribution (Figure 11b) of the maximum hourly rainfall
intensity and the PDF of the maximum hourly rainfall intensity (Figure 11a) for each
precipitation product throughout the rainstorm are presented in Figure 11. The gauge
observations indicate that the maximum hourly rain intensity during this process is mainly
concentrated between 10 mm/h and 31.6 mm/h. Among all precipitation products, CMPAS
has a PDF distribution shape closest to that observed by gauges. The maximum hourly
rainfall intensity for RADAR is concentrated between 10 and 100 mm/h, with the PDF
peak occurring at precipitation of 31.6 mm/h, which exceeds the results from gauges.
The distribution of maximum hourly rain intensity for IMERG, GSMAP and ERA5 is
significantly smaller compared to gauges, with the peak precipitation of PDF also being
smaller than that observed by gauges, further illustrating the apparent underestimation
of precipitation. The structure of the spatial distribution of the maximum hourly rainfall
intensity is essentially similar to that of gauge observations. However, because CMPAS
is a grid product with a higher spatial resolution, it can represent more precipitation
details than gauge observations. The RADAR significantly overestimates maximum hourly
precipitation in the core precipitation area, with large areas of greater than 200 mm/h
rainfall intensity. At the periphery of the core, RADAR still agrees well with observations.
The IMERG captures precipitation distributions exceeding 50 mm/h, while both GSMAP
and ERA5 reflect maximum hourly precipitation less than 50 mm/h. The reason why
satellite products are weak in capturing this extreme precipitation is that IMERG and
GSMAP heavily rely on the scattering signal of ice phase particles within rain clouds when
using the QPE algorithm to retrieve land precipitation based on PMW. When there are
no or few ice particles in the topographic cloud, the estimation of extreme precipitation
is less accurate than expected [55]. As for ERA5, the precipitation in the reanalysis is
generally forecast by the model; however, its sub-grid convection parameterization schemes
have limitations that can not reveal the convective activity effectively, resulting in poor
monitoring performance for heavy precipitation, especially convective rainfall [56,57].
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distribution function curve of CORR of the precipitation products.
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3.4. Daily Variation of Precipitation

Figure 12 illustrates the longitudinal representation of the average daily variation in
hourly precipitation for each product. The precipitation products consistently indicate
that this precipitation event lacks significant eastward propagation characteristics, instead
primarily occurring within the range of 112.5◦E to 115◦E, with two extreme centers of
precipitation near 03:00 and 12:00. The daily precipitation variation characteristic of CMPAS
is most similar to gauge observations. There is a positive precipitation deviation exceeding
1.6 mm/h in RADAR between 00:00 and 18:00. The precipitation distribution structure
of IMERG is basically consistent with observations, but there is a two-hour delay in the
peak precipitation and a shift of the extreme center toward the east. The GSMAP only
shows unimodal distribution as an estimated center for precipitation extremes, with an
overall eastern shift of precipitation. The daily precipitation patterns of ERA5 exhibit
inconsistencies with observations, and the primary rain belt extends toward the west.
Figure 12c shows the daily variation in mean precipitation across the entire study area,
indicating that all other precipitation products are similar to gauge observations except for
RADAR, which systematically appears stronger.
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tion of the maximum hourly rainfall (unit: mm/h) from gauges and various precipitation products at
the original resolution, in the order of gauges, CMPAS, RADAR, IMERG, GSMAP, ERA5.

To investigate whether deviations in daily variability are related to precipitation inten-
sity classes, we further calculate the joint probability density distribution function (JPDF)
of rain intensity and day variability [58]. Across the entire study area (Figure 13), rain
gauges show obvious daily variation in the different precipitation classes. Precipitation
is primarily concentrated during the day and after midnight, with weaker precipitation
between 10:00 and 15:00 (UTC). The higher the rainfall intensity, the greater its contribution
to the total precipitation, especially for rainfall exceeding 20 mm/h. The peak time for
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precipitation occurs from 06:00 to 08:00 (UTC). The CMPAS reflects the same pattern with
gauges but has a lower contribution of precipitation during peak time for heavy rainstorms
(>20 mm/h). The RADAR significantly overestimates heavy rainstorms while underesti-
mating moderate-intensity precipitation; however, the daily variability pattern is consistent
with gauges. The IMERG, GSMAP and ERA5 exhibit obviously high contributions to the
total precipitation within the rainfall intensity range below 10 mm/h.
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(JPDF) between gauges (a1) and precipitation products (a2–a6) by rain intensity class during
“7.20” Henan rainstorm, and the JPDF difference between the precipitation products and gauges
(Diff = precipitation products − gauges; (b1–b5)).

4. Discussion

The “7.20” Henan rainstorm event is characterized by its long duration, heavy hourly
rainfall intensity, large cumulative rainfall and wide coverage, causing significant damage
throughout the region. High-resolution precipitation estimation products have broad appli-
cations in scientific research and operations, such as the initial field of model forecasting,
meteorological disaster monitoring and warning, simulation of catastrophic flash floods
and numerical model evaluation. In this study, we fully understand the performance of
CMPAS, RADAR, IMERG, GSMAP and ERA5 in monitoring extreme rainfall in the Henan
region by analyzing the spatiotemporal distribution of precipitation errors, probability
statistics of precipitation occurrence and diurnal variability characteristics of precipitation.
Overall, the CMPAS has the best evaluation indicators compared to other products in the
monitoring of the “7.20” Henan rainstorm with 0.88 mm/h (RMSE), 1.07% (rBIAS), 0.961
(CORR), 0.791 (TS) and 0.934 (KGE). The CMPAS exhibits a remarkable resemblance to rain
gauges in accurately capturing the intricate characteristics of regions with heavy rainfall,
representing the intensity distribution of precipitation centers and depicting the temporal
evolution features of precipitation systems. With a spatial resolution of 0.01◦ × 0.01◦, CM-
PAS effectively complements precipitation information in areas where station observations
are lacking.

Typically, a sufficient number of samples is employed to demonstrate the statisti-
cal significance of the results. Therefore, in order to further validate the reliability and
applicability of the aforementioned conclusions and minimize misjudgments regarding
precipitation product performance, we have supplemented three instances of catastrophic
rainfall that occurred in July 2022 for comparative analysis. The time periods during which
these three heavy rain events took place are as follows: Case 1 (3–6 July 2022), Case 2 (22–23
July 2022) and Case 3 (25–28 July 2022).

The “7.20” Henan rainstorm event, which occurs once every few decades, is an excep-
tional occurrence. Although the three selected instances of heavy rainfall can not reach
the same unprecedented intensity as the “7.20” Henan rainstorm, they still result in a
certain degree of economic loss. The results presented in Figure 14 demonstrate that five
precipitation products can successfully capture the occurrence of these three intense rainfall
events. A comparison with gauge observation reveals that CMPAS exhibits superior perfor-
mance compared to other types of precipitation products, particularly in terms of its precise
spatial depiction of precipitation distribution and accurate representation of extreme values
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associated with heavy rainfall centers. Specifically, in case 3, accumulated precipitation
exceeding 50 mm impacts areas located in the southern part of Hebei Province as well as
the central and southern parts of Henan Province. These regions exhibit a locally scattered
distribution pattern, which demands high precision for accurately capturing local precip-
itation zones by precipitation products. The CMPAS demonstrates superior agreement
with observations, while RADAR significantly overestimates the extent of precipitation,
surpassing 50 mm and 100 mm. Two satellite products (IMERG and GSMAP) roughly
depict these three intense rainfall regions but lack detailed characterization. The ERA5
exhibits the poorest performance.
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Figure 14. The spatial distribution of accumulated precipitation (unit: mm) during the three heavy
rainfall cases in Henan province in July 2022. (a1–a6) represent case 1, respectively, for gauge obser-
vations, CMPAS, RADAR, IMERG, GSMAP and ERA5; (b1–b6) represent case 2; (c1–c6) represent
case 3.

The differences between various precipitation products and gauge observations in
terms of hourly rainfall are also compared for three cases (Figure 15). The fitting line of
the CMPAS exhibited the closest proximity to the 1:1 line, although still slightly below it,
indicating a persistent tendency to underestimate precipitation, especially for heavy rainfall
exceeding 50 mm/h. The overall performance of RADAR, IMERG, GSMAP and ERA5 in
fitting hourly rainfall intensity in three case studies is consistent with their performance
during the “7.20” Henan rainstorm. The RADAR still exhibits false intense precipitation,
while IMERG, GSMAP and ERA5 still fail to effectively capture rainfall exceeding 50 mm/h.
Additionally, we provide box plots (Figure 16) illustrating the distribution of error metrics
for various precipitation products during three case studies. The overall evaluation results
of these three cases are consistent with the “7.20” Henan rainstorm. However, since
these three cases are not as extreme as the “7.20” Henan rainstorm, there has been an
enhancement in the detection capability for precipitation (as measured by TS scores) across
all four products: RADAR, IMERG, GSMAP and ERA5.
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Figure 15. Scatter comparison diagram of hourly rainfall (unit: mm/h) observed by gauges and
precipitation products during three cases in July 2022, as well as their linear regression distribution
fitting (red line). (a1–a5) represent case 1, respectively, for CMPAS, RADAR, IMERG, GSMAP and
ERA5; (b1–b5) represent case 2; (c1–c5) represent case 3.

The CMPAS represents a high degree of agreement with rain gauge observation,
indicating its potential for hydrological utilization due to its 1 h/0.01◦ temporal and
spatial resolution, which allows it to capture more precipitation details than rain gauges.
However, the RADAR, IMGRG, GSMAP and ERA5 products tend to overestimate small
precipitation and underestimate large precipitation in different degrees. This is due to the
difference between observation systems and observation equipment and the limitation of
observation technology. The observation error of data always exists objectively [20–26]. The
performance of monitoring different precipitation intensities of 10 satellite precipitation
products in this extreme heavy rain event studied by Liu et al. [59] showed a similar
phenomenon. Prakash et al. [60] conducted a daily assessment of the GSMAP-NRT product
and found that it underestimates rainfall in most parts of India. ERA5 has shown excellent
application in simulating global storm surges [61]. Wu et al. [62] pointed out that there
is still room for improvement in the FY-2H QPE’s precipitation retrieval algorithm. Error
correction algorithms are necessary, especially for rainstorm events occurring in complex
topography. Li et al. [63] pointed out that CMPAS shows a high consistency with the
observed data in the Sichuan Basin; however, its applicability in plateau regions still
needs further research due to factors such as sparse station coverage and complex terrain.
Gentilucci et al. [64] validated the IMERG product at annual and monthly scales by pixel-



Remote Sens. 2023, 15, 5255 20 of 25

to-pixel and found that it performs worse in coastal and hilly areas. Therefore, how to
effectively combine the advantages of precipitation data from different sources and develop
multi-source precipitation-merging technology has become the mainstream trend in the
development of high-quality precipitation products in the world in recent decades [65–67].
Although CMPAS has performed very well, there are still many problems that need to be
solved, such as the scientific elimination of the systematic bias of various observation data
and the influence of complex underlying surface conditions, so as to obtain more accurate
precipitation real data.
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5. Conclusions

In this study, the extreme precipitation monitoring capability of five precipitation
products is systematically investigated during the “7.20” Henan rainstorm, using dense
surface rain gauge observation data for reference. The main findings are as follows:

1. Regarding the spatial characteristics of precipitation analysis, the CMPAS shows the
best performance in terms of fitting with gauge observations, particularly in precip-
itation distribution and extreme values at the center of heavy rainfall, with rBIAS,
RMSE, CORR, KGE and TS scores of 1.07%, 0.88 mm/h, 0.961, 0.934 and 0.791, respec-
tively. The spatial variability of error in CMPAS is minimal, and the product remains
regionally stable. The RADAR significantly overestimates the cumulative precipita-
tion, primarily due to a large number of falsely estimated heavy rainfall exceeding
100 mm/h. The overall RMSE of RADAR is 5.43 mm/h, with bias mainly concentrated
in the core precipitation area in central Henan Province. The IMERG, GSMAP and
ERA5 exhibit similar performance, with IMERG showing slightly better error perfor-
mance. There is a significant underestimation of the cumulative rainfall in the core
precipitation areas, and none of IMERG, GSMAP and ERA5 can capture heavy rainfall
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exceeding 60 mm/h. In the mountainous areas of northwestern Henan Province, there
are negative biases in precipitation products, indicating the need for terrain error
correction for satellite and model precipitation products in complex terrain.

2. Regarding the temporal characteristics of precipitation analysis, the CMPAS accurately
captures the evolution of the average precipitation in the region, and all evaluation
indicators are stable and better than those of other precipitation products. The RADAR
significantly overestimates during peak precipitation periods in the core precipitation
area, with the largest deviation values and RMSE reaching 8 mm/h. The TS scores of
IMERG and GSMAP are higher during heavy rainfall periods (0.6) compared to light
rainfall periods (0.4), and the TS score for the precipitation core area (0.8) is higher
than that for the entire study area (0.6). The ERA5 matches well and initially gauges
moderate-intensity rainfall but then significantly underestimates after heavy rainfall
begins, particularly in the core precipitation area where underestimation is more
pronounced. In terms of the precipitation grading test, the CMPAS has slightly lower
ME and FBI scores than the optimal values for rainfall exceeding 20 mm/h, indicating
an underestimation of heavy rainfall estimation. The RADAR has a significantly
higher RMSE in precipitation intensity below 20 mm/h, indicating that RADAR
mainly produces false overestimation for small to large rainfall. The scores of IMERG,
GSMAP and ERA5 are better for light rainfall compared to heavy rainfall.

3. In terms of the probability statistical characteristics of precipitation occurrence, various
precipitation products exhibit a similar PDF distribution to rain gauge observations
when estimating hourly rainfall intensity. However, there is an underestimation in
the probability estimation of precipitation occurrence in the range of 0.1–0.25 mm/h,
while overestimation occurs in the range of 0.25–2.5 mm/h. When the hourly rainfall
intensity exceeds 7.5 mm/h, the CMPAS and rain gauges show complete consistency
in their PDFs, while RADAR overestimates and IMERG, GSMAP and ERA5 underes-
timate it. In ERA5, an hourly precipitation intensity of 0–4 mm/h contributes 60% of
the total precipitation, while gauges and CMPAS are mainly concentrated in the range
of 2–24 mm/h. The analysis of hourly maximum rainfall intensity of various precip-
itation products further indicates the consistency between CMPAS and rain gauge
observations, the overestimation of precipitation by RADAR and the weak ability of
IMERG, GSMAP and ERA5 products to capture the extreme values of heavy rainfall.

4. In terms of the diurnal variation characteristics of precipitation, there is no obvi-
ous east–west propagation of precipitation in this precipitation process. Instead, it
mainly occurs between 112.5 and 115◦E, with two precipitation peak centers near
03:00 and 12:00. Both rain gauges and CMPAS reflect that the contribution rate of
rainfall intensity to total precipitation is positively correlated. However, the CMPAS
underestimates the extremely heavy rainfall during the peak period (06:00–08:00). Pre-
cipitation greater than 20 mm/h in the RADAR makes the largest contribution to total
precipitation and is significantly overestimated from 08:00 to 14:00. The precipitation
peak time estimated by IMERG lags by 2 hours. The GSMAP only reflects a single-
peak structure of precipitation, while ERA5 has a diurnal variation structure opposite
to gauge observations. Throughout the day, the IMERG, GSMAP and ERA5 generally
overestimate rainfall from light to heavy levels but underestimate the contribution of
rainstorms and heavy rainstorms to total precipitation.

Our study provides a comprehensive evaluation of the precipitation characteristics,
error indicators and diurnal variation rules of radar precipitation estimation product
(RADAR), satellite precipitation products (IMERG, GSMAP), reanalysis product (ERA5),and
multi-source observation precipitation fusion product (CMPAS) during the “7.20” Henan
rainstorm period. Additionally, we conduct further discussions on three other precipitation
cases occurring in the Henan region to analyze the applicability of the methods used in a
series of events and compare the consistency of results from these three cases with those
of the ‘7.20’ Henan rainstorm. However, in order to gain a deeper understanding of the
root causes of the errors, further work will be needed in the future. This being the case,
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it is necessary to further consider the influence of different terrain factors on the compre-
hensive performance of precipitation products, as well as research on correction methods
for extremely heavy rainfall events, and analyze the applicability of different precipitation
products in driving hydrological models to simulate flash flood processes.
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