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Abstract: Cloud detection is critical in remote sensing image processing, and convolutional neural
networks (CNNs) have significantly advanced this field. However, traditional CNNs primarily focus
on extracting local features, which can be challenging for cloud detection due to the variability in
the size, shape, and boundaries of clouds. To address this limitation, we propose a hybrid Swin
transformer–CNN cloud detection (STCCD) network that combines the strengths of both architectures.
The STCCD network employs a novel dual-stream encoder that integrates Swin transformer and CNN
blocks. Swin transformers can capture global context features more effectively than traditional CNNs,
while CNNs excel at extracting local features. The two streams are fused via a fusion coupling module
(FCM) to produce a richer representation of the input image. To further enhance the network’s ability
in extracting cloud features, we incorporate a feature fusion module based on the attention mechanism
(FFMAM) and an aggregation multiscale feature module (AMSFM). The FFMAM selectively merges
global and local features based on their importance, while the AMSFM aggregates feature maps
from different spatial scales to obtain a more comprehensive representation of the cloud mask. We
evaluated the STCCD network on three challenging cloud detection datasets (GF1-WHU, SPARCS,
and AIR-CD), as well as the L8-Biome dataset to assess its generalization capability. The results
show that the STCCD network outperformed other state-of-the-art methods on all datasets. Notably,
the STCCD model, trained on only four bands (visible and near-infrared) of the GF1-WHU dataset,
outperformed the official Landsat-8 Fmask algorithm in the L8-Biome dataset, which uses additional
bands (shortwave infrared, cirrus, and thermal).

Keywords: Swin transformer; cloud detection; image segmentation; attention; convolution

1. Introduction

Remote sensing imagery has indeed been widely used for land cover detection, land
surface change monitoring, and the estimation of biophysical parameters [1,2]. While the
presence of clouds contributes to providing helpful information for weather forecasting
and climate prediction [3,4], the cloud cover not only diminishes the quality of the optical
remote sensing data, but also intensifies the complexity of subsequent data processing and
downstream remote sensing analysis [5]. And the diverse types of clouds and intricate
ground surfaces make it challenging to accurately distinguish between clouds and mixed
ground objects. Consequently, the development of automatic cloud detection has become
increasingly pivotal and crucial in the preprocessing of optical satellite remote sensing
images, thereby significantly improving their utilization.

Recently, a wide range of techniques for identifying clouds have been put forward.
Rule-based algorithms extract clouds based on significant disparities in both the physical
characteristics and spatial characteristics between the clouds and most ground surfaces [6–9].
Using the ACCA algorithm [10], the authors applied several spectral filters and employed
32 fixed thresholds and three dynamic thresholds to estimate the overall percentage of
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clouds in each Landsat 7 scene. The authors in [11] utilized 26 fixed thresholds according
to different features to delineate cloud and cloud shadow regions. The spectral indices,
namely, the method cloud index (CI) and cloud shadow index (CSI), were introduced
in [12] to identify the clouds and cloud shadow regions using threshold segmentation.
In summary, threshold-based algorithms are simple and effective, thereby making them
well suited for small scenes or situations without complicated objects. However, it is
essential to note that climate and ground surface conditions vary over time and space, and
fixed thresholds may not be universally applicable to all areas and time frames, even for
data from the same sensor. Additionally, adaptive thresholds are difficult to determine,
especially in cloud-like features such as deserts, fog, haze, and ice/snow cover.

Furthermore, traditional machine learning algorithms are frequently employed in
cloud detection. Those methods generate the cloud masks by carefully selecting relevant
features and choosing an effective model. The authors in [13] proposed an algorithm that
combines k-means clustering and random forest for cloud detection in Landsat images,
which had better results than FMask [14]. Researchers applied the support vector machine
(SVM) for cloud detection based on comparative analysis of the feature differences between
clouds and backgrounds, and they verified the method using GF-1 and GF-2 satellite
images [15]. An end-to-end PCANet cloud detection for Landsat 8 images obtained the
cloud masks by employing an SVM based on the superpixels. Additionally, the boundaries
of the clouds were refined through the fully connected conditional random field (CRF) [16].
Traditional machine learning algorithms have obtained promising results through statistical
analysis. However, they heavily rely on artificial features or human-specified rules, thereby
making it difficult to design a universal template to handle the diversity of cloud types.

With the rapid and extensive advancement of deep learning, it has been widely
used in various industries. Deep learning-based methods can automatically extract data
features from data and achieve remarkable results without the need for manual feature
selection [17–22]. Numerous approaches based on deep learning have been proposed for
cloud detection [23–30]. For example, DANet [31] utilizes space and channel attention
to obtain the semantic interdependencies in different dimensions. CCNet [32] designs
a crisscross attention module to harvest all pixels’ contextual information using their re-
spective crisscross paths. CSD-Net [33] composes the multiscale global attention feature
fusion module and channel attention mechanism to refine the edges of cloud and cloud
shadow masks. CSD-HFnet [34] combines the fundamental features, obtained through
the local binary pattern, gray-level co-occurrence matrix, superpixel segmentation, and
the deep semantic features, which are acquired form deep learning feature extraction
network to distinguish the clouds from snow. BABFNet [35] introduces a boundary pre-
diction branch to enhance the cloud detection results in confusing areas. CDUNet [36]
uses a high-frequency feature extractor and multiscale convolutions to predict cloud masks.
MAFANet [29] combines a multiscale strip pooling attention module, a multihead at-
tention module, and a feature fusion module to acquire more accurate cloud and cloud
shadow masks.

Nevertheless, CNN-based cloud detection models still have limitations due to the
diversity of cloud forms and the difficulty of learning long-range dependencies using
convolution operations. Recent advances in vision transformer (ViT) [37] technology have
demonstrated its ability to learn long-term features and model global information effec-
tively, thus resulting in satisfactory performance on image classification tasks [38]. To
overcome the high memory demand of transformers, the Swin transformer [39] designs
a hierarchical transformer to limit self-attention computation within nonoverlapping win-
dows. Using the Swin transformer as the backbone, Swin-Unet [40] and TransDeepLab [38]
have outperformed other methods in medical image segmentation. To leverage the com-
plementary strengths of CNNs and ViTs, researchers have proposed hybrid models that
combine convolution and transformer architectures to extract both local and global features
for image classification tasks [41–43]. He et al. [44] integrated the global dependencies of
the Swin transformer into the features from the UNet’s encoder for remote sensing image
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segmentation. BuildFormer [45] designs a dual-path structure with a CNN and transformer
to extract the spatial details and global context for building segmentation. Yuan et al. [46]
proposed the LiteST-Net model to extract building data from remote sensing images, which
creatively simplifies the matrices Q, K, and V of the transformer to decrease the model com-
putation. Alrfou et al. [47] concatenated the feature maps of CNN and Swin transformer
encoders as the input into the corresponding decoder, and it has been demonstrated that
combining transformers and CNN encoders consistently outperforms using CNN encoders
along with image segmentation.

To enhance the capability of obtaining precise cloud boundaries and efficiently dis-
cerning clouds from bright ground objects, this paper proposes a novel network with an
encoder–decoder structure for cloud detection, which has been named STCCD (a hybrid
Swin transformer–CNN cloud detection network). The STCCD network has a parallel
hybrid encoder that combines the Swin transformer layers and convolution blocks. Within
this encoder, the feature coupling module (FCM) interacts with features from the Swin
transformer layer and residual convolution blocks to allow the encoder to effectively learn
the global representations while also capturing local features. Additionally, the feature
fusion module based on the attention mechanism is designed to fuse the feature maps
outputted from the Swin transformer and convolution branches to explore the relationships
between channels. Next, we introduce an aggregation multiscale feature module (AMSFM)
to extract multiscale features, which equips our network with the ability to recognize clouds
at different scales. In the decoder part, the first four layers take three inputs: the output of
the upper layer, the outputs of the corresponding residual layers, and the Swin transformer
layer. Finally, a boundary refinement module (BRM) is utilized to capture edge details and
optimize the result of cloud detection.

The main contributions of this paper are as follows. Firstly, we propose a novel cloud
detection framework, the STCCD network, with an encoder–decoder architecture that
leverages a combination of Swin transformer layers and residual convolution blocks to
obtain both global representations and local features. Secondly, the STCCD network also
includes two novel modules, FFMAM and AMSFM, which exploit the interplay between
various network levels and the characteristics of cloud pixels. The STCCD netowork
achieves state-of-the-art performance on cloud detection benchmarks, as evidenced by its
superior results on the GF1-WHU, SPARCS, AIR-CCD, and L8-Biome datasets.

2. Methodology

The overall architecture of the STCCD network is presented in Figure 1, which is
an encoder–decoder structure integrated by several feature extraction modules. In the
encoder, the first two layers, composed of convolution blocks, are used to extract fine-
grained information such as the spectral and texture features. Subsequently, the features
extracted from each Swin transformer (ST) layer are processed by the FCM and then
concatenated with the features achieved from the previous convolution layer. Likewise, the
outputs of each residual convolution layer are also processed by the FCM and concatenated
with the features from the previous ST layer. Overall, the convolution layers and the
ST layers are paralleled and staggered. The FCM plays a pivotal role in eliminating the
misalignment between the two branches, thereby effectively enabling global representations
to interact with local features. Subsequently, the FFMAM uses a multihead spatial attention
mechanism to fuse the outputs of these two branches, and a channel attention mechanism
is utilized to enhance the communication between different channels. Following that, this
paper introduces an AMSFM to capture multiscale contextual information. In the decoder,
each decoder layer is composed of a basic convolution block and upsampling operation,
and it fuses the low-level and high-level features. Finally, the BRM is utilized behind the
decoder to capture intricate details and enhance the representations of cloud boundaries.
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Figure 1. The structure of the STCCD network. The framework primarily consists of four components:
encoder, decoder, bridge, and output. Two branches of Swin transformer layers and convolution
layers, as well the FCM, are in the encoder stage, and the bridge stage includes FFMAM and AMSFM;
there are six convolution blocks and five upsampling interaction layers in the decoder stage. Finally,
the BRM is a simple boundary-refined module.

2.1. Convolution Branch

The convolution branch adopts a feature pyramid structure, in which the resolution
of the feature maps decreases with network depth while the channel number increases.
This branch has six layers. The initial two layers consist of different numbers of basic
convolution blocks. The next four layers each contain two basic residual blocks, thus
following the architecture of ResNet18 [48]. The structures of the basic convolution block
and basic residual block are illustrated in Figure 2. Among these layers, max pooling is
employed to decrease the spatial resolution.
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Figure 2. The structure of the basic residual block (a) and the basic convolution block (b).

2.2. Swin Transformer Branch

Liu et al. [39] proposed a hierarchical vision transformer based on a sliding window
mechanism (Swin transformer). To decrease the computation complexity, Swin transformer
calculates the multihead self-attention within local windows (W-MSA) and the shifted
windows (SW-MSA), thereby evenly dividing the image without overlapping. Further-
more, in order to enhance the connections across windows while preserving the efficient
computation of regular windows, Swin transformer alternately uses a regular window
configuration and a shifted window configuration in consecutive Swin transformer blocks.
As shown in Figure 3, the components of a Swin transformer block include a window based
on an MSA module (W-MSA or SW-MSA), a two-layer MLP, and two LayerNorm layers.
The process of the consecutive Swin transformer blocks is represented as follows:

ẑl = W-MSA(LN(zl−1)) + zl−1

zl = MLP(LN(ẑl)) + ẑl

ẑl+1 = SW-MSA(LN(zl)) + zl

zl+1 = MLP(LN(ẑl+1)) + ẑl+1

(1)

where ẑl and zl represent the output features of the W-MSA and the MLP module, respec-
tively, for block l, and ẑl+1 and zl+1 denote the output features of the SW-MSA and the
MLP module, respectively, for block l + 1.

In our Swin transformer branch, there are four stages, and each stage includes two
consecutive ST blocks. As Figure 1 shows, starting from the second stage of the Swin
transformer branch, the input feature maps are the concatenated features of the output
features of the previous stage and the corresponding layers of the convolution branch. So,
the linear layer in patch merging is applied to the 8C-dimensional concatenated features,
with the output dimension remaining set at 2C, where C denotes the feature dimension
after the process of the linear embedding layer.
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Figure 3. Two consecutive Swin transformer blocks.

2.3. Feature Coupling Module

The feature coupling module is designed to eliminate the misalignment between the
convolution branch and the Swin transformer branch. The feature sizes of the convolution
layer and Swin transformer layer are different. The feature maps of the convolution block
have the size B× C × H ×W (B, C, H, and W are the batch size, channels, height, and
width, respectively), while the shape of the feature maps from the Swin transformer block
is B× L× C (B, L, and C are the batch size, number of tokens, and dimension, respectively).
When fed to the convolution branch, the feature maps outputted from the Swin transformer
layer must be upsampled to the same spatial scale. Next, the channel dimension is processed
through a 1× 1 convolution operation to align with that of the corresponding convolution
layer; then, the resulting features are concatenated with those of the convolution layer.
Those processes are shown in Figure 4a. When transitioning from the convolution branch
back to the Swin transformer branch, the feature maps first undergo a 1× 1 convolution
to match the channel dimension. Afterward, the feature array is flattened to ensure that
it has the same dimensionality as the feature maps from the Swin transformer layer, as
depicted in Figure 4b. In the end, the spatial scale of the feature maps outputted from the
Swin transformer branch is the same as that outputted from the convolution branch so that,
as shown in Figure 4c, the process of the FCM(c) is identical to that of the FCM(a), with the
sole difference being the absence of interpolating.

Figure 4. The operation process of different FCMs. BN denotes the BatchNorm operation.

2.4. Feature Fusion Module Based on Attention Mechanism

The attention mechanism has been extensively exploited in semantic segmentation
because it enables the network to automatically learn and selectively focus on the critical
information in the input, thereby improving the model’s performance and generalization
ability [18,49]. The self-attention mechanism works by calculating the relative importance
and establishing an association between one pixel and all the other pixels, rather than just
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relying on elements in adjacent positions, which aids in effectively capturing the long-term
dependencies between pixels [50]. The multihead attention mechanism is developed on the
basis of self-attention, which enhances the expressiveness and generalization ability of the
model [51]. The channel attention mechanism operates by assessing the importance of each
channel, and it generates more representative features. EcaNet [52] presents an efficient
and lightweight correlation channel module, which is composed of a one-dimensional
convolution determined by nonlinear adaptive control.

Considering the advantages of the attention mechanism, and inspired by the multihead
feed-forward transfer attention module [29] and the boundary-guided context aggregation
module [51]—which utilizes the multihead attention mechanism to fuse the feature maps
of different convolution layers—we have designed the feature fusion module based on
the attention mechanism (FFMAM) to promote the mutual guidance of two branches,
integrate the features extracted, and explore the relationship between the channels. As
the left of Figure 5 shows, the feature tensor X ∈ RC×H×W , derived from the convolution
branch, is used to generate the key vector (Key) and the value vector (Value) through
different reshape modes; meanwhile, the feature tensor Y ∈ RC×H×W , acquired from the
Swin transformer branch, is employed for generating the query vector (Query). These
vectors undergo processing via a 1 × 1 convolution layer and a batch normalization layer
to consolidate the pixel-level crosschannel context information. The created Q, K, and V
are shown as follows:

Q = BN(Conv1×1(Y)) (2)

K = BN(Conv1×1(X)) (3)

V = BN(Conv1×1(X)) (4)

where Conv1×1 denotes a two-dimensional convolution with a kernel of 1× 1, and BN
denotes the batch normalization layer. Subsequently, the feature vectors Query and Key are
reshaped to the size RC×L and RL×C, respectively, where L = H×W represents the number
of pixels. Matrix multiplication is performed between the Query and Key to produce
a transposed attention graph, and then a Softmax function is applied. The above processes
are shown in the following:

F′ = V
′ · So f tmax(K

′ ·Q′) (5)

where F′ is the output characteristic graph, and V
′
, Q

′
, and K

′
denote the reshaped vectors.

After this, an efficient and lightweight channel attention module is applied to capture
the local crosschannel interaction, as illustrated in the right side of Figure 5. Initially, the
attention feature tensors are processed by a global average pooling (GAP). Subsequently,
a 1× 1 convolution operation with a kernel size of k is used to make all channels share the
same learning parameters, which is followed by a sigmoid function. Finally, the output
of the sigmoid function is multiplied by the attention feature tensors. The process can be
expressed by the following formula:

GAP(x) =
1

H ×W

H,W

∑
i=1,j=1

xi,j (6)

E
′
= x ∗ (Sigmoid(Conv1×1(GAP(x)))).expandas(x)) (7)

where E
′

is the output characteristic graph, and the kernel size k of 1× 1 convolution layer
is determined by the following:

k = | log2(C)
γ

+
b
γ
|odd (8)
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where C is the number of the channel dimension, |n|odd indices the neatest odd number of
n. The parameters γ and b are set to two and one, respectively, by referring to [52]. In the
experiment, the C of the input came out to be 512, so the k was set to five.

The FFMAM facilitates mutual guidance between the two branches for feature ex-
traction, thereby enabling the integration of global and local feature information while
investigating interchannel relationships.

Figure 5. The structure of the FFMAM module. The feature tensor X is derived from the convolution
branch, and the feature tensor Y is acquired from the Swin transformer branch. The feature tensor F′

is the output characteristic graph of the multihead attention mechanism part, and the feature tensor
E′ is the output characteristic graph of the channel attention mechanism part.

2.5. Aggregation Multiscale Feature Module

Capturing representative features at multiple scales plays a crucial role in numerous
visual tasks [53]. Dilation convolution [54] and the pyramid structure [55] are widely
adopted to augment semantic information. Dilation convolution can effectively capture
long-distance correlations, which are beneficial to the segmentation of large objects. Pooling
is frequently utilized to acquire feature maps at different scales, yet it may have poor,
limited effectiveness when dealing with scattered small-scale objects. The use of large
square kernels in dilation convolution and pooling operations often results in the extraction
of excessive information from irrelevant regions, thereby leading to the loss of fine-grained
details. In response to these problems, the Atrous Spatial Pyramid Pooling (ASPP) module
proposed in DeepLabv3 [56] is a spatial pyramid module composed of dilation convolution
with different rates and an average pooling. Zhu et al. [57] added the attention mechanism
in DeepLabv3+ [58] to detect foreign object debris on an airport runway. Additionally,
in the task of cloud detection, where clouds can display a wide range of shapes and
frequently have indistinct boundaries, the acquisition of more effective features becomes
a critical consideration.

We designed the AMSFM to capture characteristics across various spatial scales in
cloud detection. Figure 6 illustrates the structure of the AMSFM, which comprises four
dilation convolution layers with different dilation rates, two spatial pooling operations,
and a spatial attention mechanism. Four dilation convolution layers, as shown in Figure 7,
facilitate the extraction of feature maps with varying receptive fields. Meanwhile, the
pooling layers, global average pooling, and global max pooling, are used to obtain the
average value and max value of each channel, respectively, which help to reserve essential
semantic features. Then, the feature maps outputted from the dilation convolution layers
and pooling layers are concatenated and operated by 1× 1 convolution to produce the
multiscale feature maps X ∈ R512×12×12. The spatial attention mechanism is used to
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generate the feature maps with enhanced spatial information. Initially, the max pool (MP)
and the average pool (AP) are employed to obtain the maximum and average values,
respectively, for each spatial position along the channel dimension. Subsequently, we
concatenate the feature maps acquired from both pooling operations along the channel
dimension. Following this, a convolution operation with a kernel size of 7× 7 is performed
to decrease the number of channels from two to one. Finally, the spatial weight feature
maps of each spatial location generated by a nonlinear activation function (sigmoid) is used
to multiply with the input feature maps to get the final feature map Y ∈ R512×12×12. The
calculation process can be summarized as follows:

SA(x) = x∗(Sigmoid(Conv7×7(Concat(AP(x), MP(x))))) (9)

where SA(x) is the result of the space attention module, Conv7×7 denotes a two-dimensional
convolution with the kernel size of 7× 7, and Concat represents the connect operation.
At the end of the AMSFM, the results of the aforementioned feature maps X and Y are
concatenated along the channel dimension and operated through a 1× 1 convolution to
form the input features for the decoder part.

Figure 6. The structure of AMSFM.

Figure 7. Four dilation convolution layers in parallel.
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2.6. Boundary Refinement Module

Boundary features are significant in segmentation tasks, as the delineation of regions
and boundaries are mutually determined. Presently, many researchers utilize the boundary
features to assist segmentation. BANet [59] is a boundary-aware segmentation network that
concatenates three streams, including a boundary localization stream, an interior perception
stream, and a transition compensation stream to form a boundary-aware feature mosaic
map. A multiscale boundaries extractor was proposed in the BCANet [51], which is an
independent protocol used to predict the binary boundary of an image. Given the variability
in the cloud shapes and the potential confusion between thin cloud boundaries and ground
objects, the extraction of the boundary information assumes significant importance in
cloud detection.

In this paper, we still utilized a simple encoder–decoder module to process the output
of the decoder part to refine the cloud boundary. Subsequently, we combined the refined
boundary information to the decoder’s output to produce the final cloud mask by numerical
addition. Figure 8 shows the structure of our boundary refinement module. There are
three parts in the BRM: an encoder, a decoder, and a transition layer. The BRM operation
serves to enhance boundary features and capture fine details, thus effectively mitigating
the potential blurring of the boundaries of cloud masks. In summary, the boundary-refined
architecture provides a simple yet powerful result in cloud detection.

Figure 8. The structure of boundary refinement module.

3. Experiment
3.1. Datasets
3.1.1. GF1-WHU Dataset

The GF1-WHU dataset is constructed based on GF-1 WFV (wide field view) imagery
to verify the performer of the MFC algorithm [11]. It contains 108 Level-2A scenes
collected from 2013 to 2016 with different geomorphic environments and varying cloud
conditions. In this dataset, the approximate size of an image is 17, 000× 16, 000 pixels, and
the spatial resolution is 16 m. Each image has four multispectral bands, including visible
and near-infrared bands. In our experiment, we randomly selected 66 training images and
10 validating images. The 32 leftover images from the year 2013 were excluded due to
abnormal top of atmosphere (TOA) reflectance values, which had been calibrated using the
official parameters and fell outside the range of [0, 1].

3.1.2. SPRACS Dataset

The SPARCS dataset [60,61] was created by M. Joseph Hughes of Oregon State Univer-
sity and was delineated manually based on Landsat 8 images to verify the performance
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of the Spatial Program for Automatic Cloud and Shadow Removal (SPARCS) method.
There are 80 images with 1000× 1000 pixels in this dataset, and it contains six categories,
including cloud, cloud shadow, snow/ice, water, land, and flooded. The spatial resolution
is 30 m, and each image has ten bands. In this paper, 70 images were selected randomly as
the training data, and the remaining ten images were used as the verification data. In the
training process, only visible and near-infrared bands were used.

3.1.3. AIR-CD Dataset

The AIR-CD dataset [62] is a publicly available cloud detection dataset with a high
spatial resolution, which contains 34 GF-2 images from different regions across China. This
dataset poses considerable challenges due to its complex and diverse backgrounds, thereby
encompassing urban areas, snow-covered regions, forests, and bare lands. Those 34 images
were collected from the PMS1 and PMS2 sensors of the GF-2 satellite imaging system, and
each image has visible and near-infrared bands. Furthermore, these images have a spatial
resolution of 4 m and a size of 7300× 6908 pixels. In the experiment, we randomly selected
27 images as the training data, and the remaining 7 images were the test data.

3.1.4. L8-Biome Dataset

USGS EROS createed the Landsat 8 cloud cover validation dataset named L8-Biome [63,64].
The L8-Biome dataset comprises 96 Landsat 8 OLI/TIRS terrain-corrected scenes from
various global locations. Among these, 64 images are labeled as containing only clouds,
while 32 images are labeled as containing both clouds and cloud shadows. There are four
classes in the L8-Biome dataset, i.e., clear, cloud shadow, thin cloud, and cloud. We used
this dataset to verify the generalization ability of our method in the extended experiment.

The images we used in the GF1-WHU, SPARCS, and L8-Biome datasets are distributed
in global regions, which are shown in Figure 9. The details of those datasets are listed
in Table 1.

Table 1. The information about the datasets we used.

Dataset Name Number Resolution Size References

GF1-WHU 76 16 m 17,000 × 16,000 Li et al., 2017 [11]

SPARCS 80 30 m 1000× 1000 Hughes and Hayes, 2014;
USGS., 2016c [60,61]

AIR-CD 34 4 m 7300× 6908 He et al., 2021 [62]

L8-Biome 96 30 m 7500× 7300 Foga et al., 2017; USGS.,
2016b [63,64]

Figure 9. Global distribution of the datasets, including GF1-WHU, SPARCS, and L8-Biome. The
AIR-CD dataset is not shown due to lack of geolocation information.
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3.2. Training Details

This experiment was implemented using the PyTorch deep learning framework [65] on
an NVIDIA A100 GPU with 40G of memory. In this work, the adaptive motion estimation
(Adam) optimizer [66] was used, with β1 = 0.9, β2 = 0.999, and ε = 10−8. The initial
learning rate was 10−4, and a total of 200 epochs were trained.

3.2.1. Data Processing

We used a randomly cropped tool from the Albumentations library to partition each
image of these datasets into 384× 384 image patches. Due to the variation in image sizes
across datasets, we selected 160 patches per image in the GF-WHU dataset, 40 patches per
image in the SPARCS dataset, and 100 patches per image in the AIR-CD dataset.

In order to improve the generalization of our network, we used the data enhancement
tool from the Albumentations library to perform brightness contrast changes, blurring, and
flips with a probability of 0.5.

3.2.2. Loss Function

To achieve high-quality cloud detection results, we used a hybrid loss defined as
the sum of the binary crossentropy loss and the intersection over union loss. This loss
function learns the difference between the true and predicted values of the cloud pixels.
The calculation formula is as follows:

`h = λ1`bca + λ2`IoU (10)

where the λ1 and λ2 represent the weights of the corresponding loss function, and `bca and
`IoU denote the BCE loss [67] and IoU loss [68], respectively.

The BCE loss is most widely used in binary segmentation, which is calculated in
a pixelwise manner. The formula of the BCE loss is shown as follows:

`bce = −∑
(i,j)

W[G(i, j)log(S(i, j)) + (1− G(i, j))log(1− S(i, j))] (11)

where G(i, j) is zero or one and is the ground truth label of the pixel (i, j)—zero is the
noncloud pixel and one denotes the cloud pixel—and S(i, j) ∈ (0, 1) is the predicted
probability of the cloud mask. W is the weight given to the loss of each element.

The IoU loss is a map-level measure used in image segmentation and object detection,
which quantifies the ratio of the intersection of the true and predicted areas to their union.
The IoU loss is given as follows:

`IoU = 1−
∑H

i=1 ∑W
j=1 S(i, j)G(i, j)

∑H
i=1 ∑W

j=1[S(i, j) + G(i, j)− S(i, j)G(i, j)]
(12)

where G(i, j) is zero or one and is the ground truth label of the pixel (i, j)—zero is the
noncloud pixel 1 denotes the cloud pixel—and S(i, j) ∈ (0, 1) is the predicted probability
of the cloud mask.

In the decoder part, the output of each block undergoes processing through a 1× 1
convolution operation followed by a bilinear interpolation layer to generate an interim
cloud mask. As shown in Figure 1, there are six blocks in the decoder, and counting the
output of BRM, our segmentation model is deeply supervised, thus resulting in seven
outputs. Therefore, the overall training loss function is computed by summing the losses
from all the blocks as follows:

`overall =
N

∑
n=1

`n
h (13)

where N = 7 denotes that there are seven outputs of this network, and `n
h denotes the loss

of the nth block output.
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3.2.3. Evaluation Metrics

In order to evaluate the performance of this network in the cloud segmentation task,
the overall accuracy (OA), mean intersection over union (MIoU), and F1 score of the cloud
were chosen as the evaluating indices. The F1 score is a harmonic mean of the precision and
recall, and a higher F1 score indicates greater robustness of the model. Those indicators
are calculated based on the confusion matrix, which includes the true positive (TP), true
negative (TN), false positive (FP), and false negative (FN), and their calculation formulas
are listed as follows:

OA =
TP + TN

TP + FN + FP + TN
(14)

F1cloud = 2× precision× recall
precision + recall

(15)

MIoU = [
TP

TP + FP + FN
+

TN
TN + FP + FN

]/2 (16)

where precision = TP
TP+FP and recall = TP

TP+FN , F1cloud represent the F1 score of cloud. The
MIoU represents the average of the intersection over union from two categories (cloud
and noncloud).

3.3. Ablation Study

To ascertain the validity and necessity of each module, we conducted an ablation study
using the GF1-WHU dataset. The base model is established as a U-shaped architecture
based on ResNet18. To verify the role of the FCM, we conducted experiments using
a dual-branch encoder composed of a convolution and Swin running in parallel but without
interaction. Table 2 illustrates the incremental accuracy improvements achieved through
the gradual addition of individual modules.

Table 2. Evaluation results with the proposed modules on GF1-WHU dataset.

Method MIoU (%) F1_cloud (%)

Base 91.14 91.32
Base+SwinTransformer 91.52 91.59
Base+SwinTransformer+FCM 91.67 91.73
Base+SwinTransformer+FFMAM 91.70 91.79
Base+SwinTransformer+FCM+FFMAM 91.79 92.08
Base+SwinTransformer+FCM+FFMAM+AMSFM 91.90 92.42
Base+SwinTransformer+FCM+FFMAM+AMSFM+BRM 91.96 92.45

3.3.1. Ablation for Swin Transformer Branch

On the basis of the base network, We added the Swin transformer branch, which is
composed of four stages, and each stage includes two consecutive ST blocks to acquire
a parallel but noninteractive encoder. The output features from each convolution layer and
the corresponding Swin transformer stages were reshaped to the same dimensionality and
concatenated along the channel and then as the input feature maps to the corresponding de-
coder layers. The Swin transformer branch helped to obtain the global context information,
which is beneficial to distinguish clouds from ground objects and to extract thin clouds.
The result shows that the addition of the Swin transformer branch led to an improvement
in the F1_cloud to 91.59% and in the MIoU to 91.52%.

3.3.2. Ablation for FCM

The addition of the FCM serves to enhance the interplay between the global infor-
mation representation and local features. These two elements complement each other,
thereby facilitating the model’s ability to comprehend both the broader context and specific,
fine-grained details. This synergy between the global and local information contributes
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to the model’s overall effectiveness in understanding and processing complex data. As
indicated in Table 2, the cooperative operation of the dual branches, Swin transformer, and
convolution led to a 0.14% improvement in the F1_cloud and a 0.15% enhancement in the
MIoU. In addition, on the basis of adding the FFMAM to fuse the global and local features,
the addition of the FCM making those two branches interact still led to an improvement in
the F1_cloud to 92.08% and in the MIoU to 91.79%.

3.3.3. Ablation for FFMAM

We employed the FFMAM to enhance the fusion of features obtained from the dual
branches in both the spatial and dimensional aspects instead of directly through concatena-
tion. By coordinating the multihead self-attention and the channel attention mechanisms,
it further enables the global features to blend with the local features, thereby improving
the global feature connectivity and acquiring more discriminative characteristics. Con-
sequently, this enables the more precise differentiation of clouds from other objects. As
demonstrated in Table 2, there were two ablation experiments to verify the effect of the
FFMAM. The addition of the FFMAM on the noninteractive encoder with a convolution
and Swin transformer led to a 0.20% increase in the F1_cloud and a 0.18% boost in the
MIoU. In comparison, the inclusion of the FFMAM on the synergy encoder led to a 0.35%
increase in the F1_cloud and a 0.12% boost in the MIoU.

3.3.4. Ablation for AMSFM

The AMSFM extracts large-scale information from various receptive fields and em-
ploys an attention mechanism to emphasize the spatial importance of each pixel. In remote
sensing images with different resolutions, clouds exhibit distinct characteristics, shapes,
and scales. Therefore, by integrating multiscale features, the AMSFM can not only improve
the accuracy of cloud detection, but also enhance the generalization ability of the model.
Experimental results show that the inclusion of the AMSFM led to an improvement in the
F1_cloud to 92.42% and in the MIoU to 91.90%.

3.3.5. Ablation for BRM

At the end of the STCCD model, we added the enhanced edge features obtained from
the BRM into the feature maps produced by the decoder section. This integration results in
cloud masks exhibiting sharper boundaries and finer details. In our experimental results,
the inclusion of the BRM led to an improvement in the F1_cloud from 92.42% to 92.45%
and in the MIoU from 91.90% to 91.96%.

3.4. Comparison Test of the GF1-WHU Dataset

In this section, the proposed method is compared with other semantic segmentation
models, such as UNet [69], DeepLabv3+ [58], U2Net [70], Swin-Unet [40], BoundaryNet [25],
LiteST-Net [46], BuildFormer [45], and ST-UNet [44]. The quantitative results are listed in
Table 3, and the best result is underlined. Analysis of the data presented in Table 3 reveals
that the models with U-shaped structures outperformed other models, likely because their
decoder components combined the deep context information with shallow features, which
is beneficial for capturing finer details. In addition, in direct comparison, our network
obtained a higher F1 score, thus substantiating that the STCCD model exhibits the best
overall performance in cloud detection.

Figure 10 displays the cloud detection results obtained by applying the different models
to various scenarios within the GF1-WHU dataset. As seen in the first row, the image is
predominantly covered by a large expanse of thin clouds. U2Net, DeepLabV3+, ST-UNet, and
BuildFormer only extracted the thick clouds and missed all the thin clouds. BoundaryNet and
LiteST-Net identified a few thin clouds. and the STCCD network combined the local features and
the global information representation while also incorporating a spatial attention mechanism,
which is essential for accurately detecting thin clouds and achieving optimal results. As seen in
the second row, the background of the image is the ocean, and the fractus clouds in this scene
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are dispersive and fragmentized. As the result shows, almost all of the models missed most of
the broken clouds. However, compared with the other models, the STCCD network accurately
identified the spatial locations of the most clouds in this challenging scene. As seen in the third
row, we encounter scenarios with snow, which has high brightness and irregular shapes like
clouds. Consequently, the initial four models exhibited significant challenges in terms of false
positives due to the complexity of distinguishing between clouds and snow when they coexist.
In the remaining three models, the STCCD network, benefiting from a two-branch feature
extraction structure, had a superior capability to distinguish between clouds and snow in such
scenarios and obtained the fewest errors and missed marks. As seen in the fourth row, almost
all of the models had splendid results in this scenario. However, it can be seen that the STCCD
model had better performance in the detection of details and small-scale clouds. As seen in the
fifth row, distinguishing between white buildings beneath clouds and the clouds themselves
based solely on physical features is challenging. The FFMAM and AMSFM modules of our
network effectively integrated the global information representation and multiscale semantic
information, which is advantageous for learning the distinctive features that can be used to
accurately determine the specific location of clouds. Overall, the STCCD network demonstrates
the ability to extract clouds of different scales and thicknesses while also discriminating between
clouds and other highlighted objects. This leads to more accurate cloud detection results.

Table 3. Comparison of evaluation metrics of different models on GF1-WHU dataset.

Method OA (%) MIoU (%) F1_cloud (%)

DeepLabv3+ 97.88 90.83 91.06
UNet 97.92 90.90 91.04
U2Net 97.91 91.19 91.54

BoundaryNet 97.92 91.13 91.76
Swin-Unet 97.72 90.34 90.54
ST-UNet 97.66 90.70 91.30

BuildFormer 97.13 90.15 91.15
LiteST-Net 97.61 91.07 91.52

Our network 98.06 91.96 92.45

Figure 10. Prediction results of different models on GF1-WFV dataset. Black and white represent
the noncloud and cloud pixels, respectively. (a) RGB image. (b) Label. (c) U2Net. (d) DeepLabV3+.
(e) BoundaryNet. (f) ST-UNet. (g) BuildFormer. (h) LiteST-Net. (i) Our network.
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3.5. Comparison Test of the SPARCS Dataset

In this section, we used the SPARCS dataset to further verify the effectiveness of the
STCCD network. The quantitative results of the different models are shown in Table 4, and
the best results are underlined. Compared to the GF1-WHU dataset, the SPARCS dataset
has only 80 images with 1000× 1000 pixel resolution, which may result in less training
data and cause the model to overfit. According to Tables 3 and 4, the UNet, PSPNet, U2Net
DeepLabV3+, ST-UNet, BuildFormer, and SwinUNet achieved lower accuracies on the
SPARCS dataset than those on the GF1-WHU dataset, while the BoundaryNet, LiteST-Net,
and STCCD network achieved similar F1 scores on both datasets.

Table 4. Comparison of evaluation metrics of different models on SPARCS dataset.

Method OA (%) MIoU (%) F1_cloud (%)

DeepLabv3+ 96.89 87.40 87.09
UNet 97.23 88.31 87.95
U2Net 97.14 89.08 89.39

BoundaryNet 97.85 91.22 91.65
Swin-Unet 96.09 86.21 86.75
ST-UNet 96.14 88.26 90.08

BuildFormer 96.91 89.44 90.67
LiteST-Net 96.79 89.87 91.16

STCCD 97.78 91.48 92.20

Figure 11 shows the different performance outcomes of those models. The five samples
include bare soil, thin clouds, thick clouds, white buildings, and small clouds. As seen in
the top row of Figure 11, most of the models exhibited misclassifications with respect to the
highlighted bare soil areas adjacent to a cluster of clouds. Notably, both the ST-UNet and
STCCD models displayed comparatively less noise in their results. As seen in the second
row, some small-scale clouds were easily confused with bright buildings. The STCCD
model exceled in accurately identifying the clouds in this scenario, thus owing to its robust
feature extraction and integration modules. As seen in the third row, it is noteworthy
that the fractus clouds may be overlooked, and there is a potential for misidentification of
the boundaries of thick clouds. We can see from the results that our model successfully
detected all of the clouds’ locations and had the fewest false positive pixels. As seen
in the fourth row, the image background consists of a river and bare soil. The results
show that the U2Net, DeepLabV3+, ST-UNet, and BuildFormer mistakenly detected bare
soil as clouds. The BoundaryNet and LiteST-Net missed many small-scale clouds. The
STCCD network’s unique blend of Swin transformer and convolutional techniques can
aggregate the global context information and establish detailed context connections, which
significantly contributes to the enhancement of prediction results.

These examples illustrate that the STCCD network has the ability to effectively detect
clouds in a variety of complex backgrounds.
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Figure 11. Prediction results of different models on the SPARCS dataset. Black and white represent
the noncloud and cloud pixels, respectively, green represents cloud pixels that are missed, and red
represents that the noncloud pixels are detected as clouds. (a) RGB image. (b) Label. (c) U2Net.
(d) DeepLabV3+. (e) BoundaryNet. (f) ST-UNet. (g) BuildFormer. (h) LiteST-Net. (i) Our network.

3.6. Comparison Test of the AIR-CD Dataset

The accuracy assessment results on the AIR-CD dataset are given in Table 5. As the
results show, compared with the other models, the STCCD model still obtained the best
performance regarding the OA, MIoU, and F1 score. However, compared to the other
datasets, the backgrounds in the AIR-CD dataset are more complex and easily confused
with the cloud. Consequently, some small-scale clouds were overlooked, thereby leading to
lower performance scores for these models on this particular dataset when contrasted with
their performance on other datasets.

Table 5. Comparison of evaluation metrics of different models on AIR-CD dataset.

Method OA (%) MIoU (%) F1_cloud (%)

DeepLabv3+ 97.50 87.82 84.62
UNet 96.76 86.96 85.38
U2Net 97.16 87.15 84.31

BoundaryNet 97.12 89.18 88.81
Swin-Unet 96.89 87.43 85.67
ST-UNet 96.32 87.29 87.08

BuildFormer 96.54 86.72 86.36
LiteST-Net 97.21 88.25 85.81

Our network 97.59 90.47 90.12

Several prediction results for the GF-2 images are displayed in Figure 12. As seen
in the first row, there is a big area of bare soil in the image background. The U2Net,
BoundaryNet, and ST-UNet mistakenly detected the bare soil as clouds. The DeepLabv3+
and BuildFormer missed most of the low-brightness clouds visible in the lower right corner
of the image. Compared to the LiteST-Net, our model had fewer false negative pixels. As
seen in the second row, the thin clouds in the lower right corner cover the cloud shadow,
thus leading to decreases in the brightness of those thin clouds. As a result, most of the
models failed to detect those thin clouds, and only the STCCD network achieved the fewest
negative pixels. As seen in the third row, the thick clouds are surrounded by flocculent
clouds, thus rendering it challenging to recognize the boundary between the clouds and
the ground. The BRM played a crucial role in refining these boundaries, thus making the
edges of our results closer to the real label. In the image of the fourth row, there is a large
expanse of thin clouds, thus presenting challenges for boundary prediction. However, the
STCCD model exceled in predicting the thin clouds. The success of STCCD model can
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be attributed to the fusion of global representation information and local features in the
encoder part, as well as the combination of deep context information and shallow features
in the decoder part.

Figure 12. Prediction results of different models on AIR-CD dataset. Black and white represent
the non cloud and cloud pixels, respectively, green represents cloud pixels that are missed, and red
represents that the noncloud pixels are detected as clouds. (a) RGB image. (b) Label. (c) U2Net.
(d) DeepLabV3+. (e) BoundaryNet. (f) ST-UNet. (g) BuildFormer. (h) LiteST-Net. (i) Our network.

3.7. Extended Experiment
3.7.1. Crossvalidation

Crossvalidation was conducted to assess the robustness of the STCCD model using
the SPARCS dataset. In the comparison test of the SPARCS dataset, the STCCD model,
LiteST-Net, and BoundaryNet exhibited similar accuracy metrics. Therefore, we proceeded
to further compare the stability of these three models through crossvalidation. During the
crossvalidation process, we randomly partitioned the 80 images into five sets, with each
containing 16 images. Subsequently, we selected one set sequentially as the testing dataset
while using the remaining four sets as the training data. The mean and standard deviation
(std) of each indicator are listed in Table 6, which are expressed as mean ± std.

Table 6. Crossvalidation of STCCD model, LiteST-Net, and BoundaryNet on the SPARCS dataset.

Method OA (%) MIoU (%) F1_cloud (%)

BoundaryNet 96.70± 0.61 88.55± 0.91 89.10± 1.16
LiteST-Net 96.66± 0.46 87.79± 0.85 88.07± 1.30

Our network 97.41± 0.27 90.50± 0.87 91.04± 1.12

Table 6 reveals that, among these three models, the STCCD model had the highest
mean values of the OA, MIoU, and F1_cloud score. The mean F1_cloud score of the STCCD
model was 1.94% higher than that of the BoundaryNet, while the std of the F1_cloud
score for the STCCD network was the lowest. Moreover, the std of the OA of the STCCD
model was also the lowest, and the std of the MIoU was only 0.2% higher than that of the
LiteST-Net. The results demonstrate that the STCCD network not only achieved the highest
accuracy in cloud detection, but also excels in reliability and stability.

3.7.2. Extend Validation

In this section, we conducted an extended experiment to evaluate the generalization
performance of the STCCD model. We used the model parameters trained on the GF1-WHU
dataset to predict the cloud mask for images from the L8-Biome dataset. As described in
Section 3.1.4, the L8-Biome dataset consists of 96 images distributed globally with diverse
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backgrounds, thereby making it challenging to correctly detect clouds in all of the images.
The L8 cloud cover assessment system uses the C Function of Mask (CFMask) method
derived from the FMask algorithm to identify clouds, cloud confidence, cloud shadows, and
snow/ice in Landsat 8 scenes, and it has been validated for cloud detection [71]. Therefore,
we compared the predicted results of the STCCD model on the L8-Biome dataset with those
of the FMask. The quantitative results are presented in Table 7. The Mask and STCCD
models achieved similar overall accuracy values. However, it is noteworthy that the STCCD
model achieved a higher F1_cloud score. Our model was trained on the GF1-WHU dataset
with only four spectral bands, while the FMask used additional spectral information from
the shortwave infrared bands, the cirrus band, and the thermal bands. This indicates
a higher extensibility of the STCCD model for general satellite remote sensing imagery.

Table 7. Comparison of evaluation metrics of FMask and STCCD on L8-Biome dataset.

Method OA(%) MIoU (%) F1_cloud (%)

FMask 91.19 75.65 77.54
Our network 92.07 76.37 80.62

We present selected samples in Figures 13 and 14 to illustrate the model’s performance.
As seen in the first two rows of Figure 13, the exposed riverbed appears white and bright,
which can be easily confused with clouds. The FMask not only misclassified the riverbed as
clouds, but also missed almost all the actual clouds. In contrast, the STCCD model correctly
distinguished between the riverbed and clouds, thus achieving high accuracy. However,
due to the riverbed’s distance, the STCCD model did not detect all the true clouds. As seen
in the third and fourth rows, the result detected by the FMask has numerous holes in the
thick clouds, and it incorrectly identified bare soil as clouds. Comparatively, the STCCD
model obtained superior results. As seen in the fifth and sixth rows, our STCCD model
successfully discriminated between the snow and the clouds and accurately located the
clouds. Moving to Figure 14, as seen in the first two rows, a comparison with the true label
reveals that the STCCD model attained a higher recall, whereas the FMask had a higher
precision. However, as seen in the enlarged view of the second row, the FMask mistakenly
detected parts of the town’s impervious surface as clouds. As seen in the subsequent two
rows, the STCCD model accurately extracted clouds from the bright images, bare soil,
and ice.

In summary, we used the model parameters trained on the GH1-WHU dataset to detect
the cloud masks of the images from the L8-Biome dataset and obtained superior results
compared to the FMask method. The complete inconsistency of the time, location, and
resolution of images in these two datasets demonstrates the robustness and generalizability
of our STCCD model. Despite outperforming the FMask, the STCCD model achieved
an F1_cloud score of only 80.62%. This may be due to the differences in radiation and
resolution of the different satellites.

In addition, the STCCD network exhibited lower accuracy in complex scenarios.
As Figure 15 shows, the situations where the entire image is covered with snow posed
a significant challenge. In such cases, clouds may be even darker than snow due to the
influence of cloud shadows, making them difficult to distinguish from snow using only
visible and near-infrared bands. This challenging problem remains an open research area
in cloud detection.
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Figure 13. Prediction results of the STCCD model and FMask method on L8-Biome dataset. Black and
white represent the noncloud and cloud pixels, respectively, green represents cloud pixels that are
missed, and red represents that the noncloud pixels are detected as clouds. (a) RGB image. (b) Label.
(c) FMask. (d) Our network.
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Figure 14. Prediction results of STCCD model and FMask method on L8-Biome dataset. Black and
white represent the noncloud and cloud pixels, respectively. (a) RGB image. (b) Label. (c) FMask.
(d) Our network.

Figure 15. Failure sample of the STCCD model. Black and white represent the noncloud and cloud
pixels, respectively. (a) RGB image. (b) Label. (c) FMask. (d) Our network.

4. Discussion
4.1. Advantage Analysis

The STCCD network, LiteST-Net, and BoundaryNet showed similar accuracy met-
rics, and the performance differences for different underlying surface types were further
investigated. The F1 scores of the snow and bare scenarios, which are usually confused
with clouds, of the SPARCS dataset are listed in Table 8. An example of the comparison of
these two scenarios is shown in Figure 16. The result shows a better accuracy of the STCCD
model. As shown in the first row of Figure 16, all three methods successfully distinguished
clouds from snow. However, the STCCD model had the least false positive pixels and false
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negative pixels. As seen in the second row, there are thin clouds covering the bare soil,
and the results show that the STCCD model had the highest F1_cloud and the least false
negative pixels.

Table 8. Comparison of evaluation metrics of STCCD, LiteST-Net, and BoundaryNet on the images
with snow and bare soil.

Method F1_cloud(%) (Snow) F1_cloud(%) (Bare Soil)

BoundaryNet 81.89 88.90
LiteST-Net 83.40 87.60

Our network 86.41 90.45

Figure 16. Prediction of STCCD, LiteST-Net, and BoundaryNet for clouds over snow and clouds
over bare soil on the SPARCS dataset. Black and white represent the noncloud and cloud pixels,
respectively, green represents cloud pixels that are missed, and red represents that the noncloud pixels
are detected as clouds. (a) RGB image. (b) Label. (c) Our network. (d) LiteST-Net. (e) BoundaryNet.

Overall, the STCCD network has achieved superior results in these comparative
experiments, even when considering the variations in spatial resolutions and the number of
images across the three datasets. The extended experiment indicates the higher extensibility
of the STCCD model regarding general satellite remote sensing imagery. The reason that
the STCCD network can effectively distinguish clouds from other objects, when confronted
with images featuring complex backgrounds, is because of its robust feature extraction
and integration capabilities derived from the dual branches and features fusion modules.
Moreover, the skip connection operation of the U-shaped structure, combining deep context
information and shallow fine-grained features, proves to be a crucial feature splicing
strategy, and it exhibits excellent performance in many end-to-end semantic segmentation
algorithms. In addition, the FFMAM and AMSFM play significant roles in enhancing the
extraction of crucial information for cloud detection. The BRM optimizes the edge of the
cloud masks and makes them visually fit more closely with real cloud labels.

4.2. Limitations and Future Perspectives

However, despite achieving the best segmentation accuracy, there were still some
misclassifications and omissions in the edges of clouds and the small scale of the thin
clouds. In addition, Figure 15 shows the failure of the STCCD model in bad conditions. We
hope to solve this problem by adding auxiliary data in future work. Additionally, our model
incorporates the Swin transformer, the attention mechanisms, and the multiscale dilation
convolution layers, which are helpful for improving the accuracy of cloud detection, but
they also increase the model parameters and reduce the prediction speed. As shown in
Table 9, the parameters and frames per second (FPS) for the various models on the SPARCS
dataset are listed. The FPS represents the number of images processed by the model per
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second. Table 9 indicates that both the STCCD and the ST-UNet models possess a greater
number of parameters and exhibit slower processing speeds compared to other models.
However, it is noteworthy that the STCCD model outperformed the ST-UNet in terms of
overall performance. Therefore, reducing the model’s parameter count while maintaining
the performance of our model is another meaningful work for us. Furthermore, it is
essential to acknowledge that, like most fully supervised semantic segmentation methods,
model performance still inherently relies on the quality of the datasets. Hence, it’s necessary
to explore how to reduce the dependence on labels and improve the utilization of datasets
through methods such as semisupervised learning or domain adaptation.

Table 9. Comparison of parameters and speed of different models on SPARCS dataset.

Method Parameters (MB) FPS

DeepLabv3+ 17.59 405
UNet 31.04 224
U2Net 44.01 160

BoundaryNet 53.32 86
Swin-Unet 27.17 378
ST-UNet 168.8 23

BuildFormer 40.52 140
LiteST-Net 18.03 55

Our network 164.71 63

5. Conclusions

This paper introduces the STCCD network, an encoder–decoder network tailored for
cloud detection, which has demonstrated remarkable performance. The STCCD network
embodies a holistic methodology, with multiple pivotal modules synergistically collab-
orating to attain its overarching success. The dual branches seamlessly combine Swin
transformer and convolutional components. These components harness convolutional
operators to extract local features and utilize the self-attention mechanisms within shift
windows to capture global representations. The feature coupling module, in various forms,
facilitates the transformation of the global representations and local features. On the basis
of the harmonious branches, the feature fusion based on the attention mechanism leverages
multihead attention and channel attention to effectively fuse the local and global features,
thereby enhancing the overall feature representation. The aggregation multiscale feature
module plays a pivotal role by extensively employing dilated convolution, pooling layers,
and spatial attention mechanisms to extract discriminative information from the fused
features. The boundary refinement module finetunes the cloud mask boundaries, thus
further improving the accuracy of the cloud detections.

The experimental results prove the effectiveness of the STCCD network in cloud
detection across diverse datasets, including the SPARCS, GF1-WHU, and AIR-CD. Quan-
titatively, the STCCD network achieved an overall accuracy (OA) that was greater than
97.59%, a mean intersection over union (MIoU) that was greater than 90.5%, and a cloud F1
score that was greater than 90.1% on these three datasets, thereby evidencing its versatility
and superior performance. Moreover, we set up an extended experiment to verify the
generalization capability of the STCCD model, and the results show that our model has
high extensibility.

Future work will investigate the relationship between clouds and cloud shadows based
on our accurate cloud mask generation to enhance cloud shadow extraction capabilities.
Additionally, we will explore cloud detection methods based on domain adaptation to
alleviate the reliance on limited sample data.
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