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Abstract: Reference-based super-resolution (RefSR) has achieved remarkable progress and shows
promising potential applications in the field of remote sensing. However, previous studies heavily
rely on existing and high-resolution reference image (Ref), which is hard to obtain in remote sensing
practice. To address this issue, a novel structure based on a zoom camera structure (ZCS) together
with a novel RefSR network, namely AEFormer, is proposed. The proposed ZCS provides a more
accessible way to obtain valid Ref than traditional fixed-length camera imaging or external datasets.
The physics-enabled network, AEFormer, is proposed to super-resolve low-resolution images (LR).
With reasonably aligned and enhanced attention, AEFormer alleviates the misalignment problem,
which is challenging yet common in RefSR tasks. Herein, it contributes to maximizing the utilization
of spatial information across the whole image and better fusion between Ref and LR. Extensive
experimental results on benchmark dataset RRSSRD and real-world prototype data both verify the
effectiveness of the proposed method. Hopefully, ZCS and AEFormer can enlighten a new model for
future remote sensing imagery super-resolution.

Keywords: remote sensing imagery; reference-based super-resolution; attention

1. Introduction

Image super-resolution aims at reconstructing a super-resolution image (SR) from
a low-resolution image (LR). Since the mapping between SR and LR is not bijective, it
results in countless possibilities of SR reconstruction. Although image super-resolution
is a long-standing topic with history of several decades [1,2], the effectiveness of SR has
been benefiting from recent deep-learning (DL) neural networks due to the rap-id-evolving
computers in the past few years [3,4]. Usually, in DL-based single image super-resolution
(SISR), LR is reconstructed into SR result based on pretrained model [5–7]. Although great
progress has been achieved by DL-based SISR methods, it’s still challenging to reconstruct
the fine textures and missing details across SR imagery [8–11]. Herein, SR tasks remain
challenging despite decades of researches.

To overcome the shortcoming of SISR, previous studies attempted to introduce more
details from a reference image (Ref) to enrich the reconstruction, the process of which is
called reference-based super-resolution (RefSR) [12–14]. In RefSR, HR texture details are
extracted, aligned, then transferred from a given Ref to LR. The core difficulty and key to
high-quality RefSR progress lie in the alignment and fusion problem between Ref and LR. To
alleviate this problem, previous RefSR methods adopted optical-flow or spatial alignment.
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These methods usually introduced a Ref, which is imaged from an-other perspective, video
frame, or at different times, to reconstruct corresponding LR image. However, they have
limitations and shortcomings that prevent them from being directly applicable in the field
of remote sensing.

First, adopting external data as Ref results in heavy temporal and spatial redundancy.
For example, RRSGAN [11], the first RefSR method in the field of remote sensing, adopted
images from Google Earth as Ref and degraded images from GF-X satellite as LR. Note
that images from different satellites vary in both spatial content and spectral characteristics.
Pioneering though it is, RRSGAN still restricts the potential of RefSR in the field of remote
sensing. Second, it’s extremely hard to obtain equivalent high-quality Ref image in remote
sensing practice unless significantly enhancing imaging hardware. But it’s impractical to en-
hance hardware significantly due to limited satellite assembly space, and more importantly,
of high cost [15].

To address these problems, in this study proposes a feasible approach by establishing
zoom camera structure (ZCS) [16,17]. It allows simultaneous imaging of region of interest
(ROI) by shifting focal length of zoom camera, thereby reducing the temporal redundancy
and mitigating content irrelevance caused by different imaging times or different satellite
cameras disparities. Specifically, in ZCS, camera with short long length is equipped with
n× times focal length than the other camera, where n is the magnification factor of SR task.
The difference of focal length between two cameras aims at capturing n× magnified image
as Ref (with a resolution of 4s × 4s) and original image as LR (with a resolution of s × s).
In this way, the 4× amplified LR image, denoted as LR↑, share the same resolution as Ref,
both of which can serve as inputs to the subsequent RefSR network.

Herein, two mentioned problems are alleviated. Based on ZCS, Ref and LR images
are obtained subsequently through consistent camera structure, which can dramatically
reduce temporal and spatial redundancy. Besides, the zoom camera enables us to capture
high-quality Ref image without significantly increasing hardware costs.

Furthermore, to achieve better RefSR performance, this study proposes a vision trans-
former (ViT)-based network through aligned and enhanced attention, namely AEFormer.
By replacing deformable convolution (DConv) [18] with attention mechanisms [19], more
spatial information across the whole image is accessible. Through the proposed aligned
and enhanced attention, features of LR and Ref are utilized, aligned and fused thoroughly,
which contributes to a more valid and effective SR progress. It turns out that the proposed
network, AEFormer, demonstrates remarkable performance in reconstructing high-quality
SR image, surpassing existing SISR networks and RefSR networks.

The main contributions of this study are summarized as follows:

(1) This study proposes a novel network for super-resolving remote sensing imagery,
namely AEFormer. To the best of our knowledge, AEFormer is one of the first ViT-
based RefSR networks in the field of remote sensing. Compared with existing SR
networks, especially CNN-based ones, AEFormer exhibits extraordinary performance
both qualitatively and quantitatively;

(2) The core advantage of AEFormer lies in the proposed aligned and enhanced attention.
Due to the strong representation capability of ViT, aligned and enhanced attention
represents a significant improvement to existing RefSR frameworks;

(3) The proposed ZCS is capable of enhancing the efficiency and quality of remote sensing
imagery in both temporal and spatial dimensions. To the best of our knowledge, ZCS
is pioneering in the field of remote sensing, which may provide insights for future
satellite camera design.

2. Related Works
2.1. Single Image Super Resolution (SISR)

Single image super-resolution (SISR) aims at reconstructing SR result from LR input
based on the learned end-to-end mapping between LR and high-resolution (HR) training
data. SRCNN is the first DL-based method adopting a three-layer convolution neural
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network (CNN) to achieve SISR [3]. The groundbreaking ResNet [20] improved the rela-
tionship between convolution layers and network effectiveness, which leads to SRResNet
and other achievements in the field of SISR [21,22]. While most CNN-based networks are
optimized towards minimizing mean-square-error (MSE) or mean-absolute-error (MAE),
previous studies have found it not sufficient or accurate for human vision [23]. To address
with this problem, generative adversarial network (GAN) offers a reliable solution by
generating more photo-realistic texture, in which SRGAN is the first GAN-based SR net-
work [21,24]. Recently, SPSR [25] proposed dual-domain encoding by adding an additional
gradient domain, which contributes to a more effective feature representation process. Liu
et al. introduced detail complement (DMDC) into GAN-based SR to improve the recovery
capability of detailed supplyment [26]. Diffusion model was closely related to and involved
in recent SR practice due to its capability generate more high-frequency information [27,28].

2.2. Reference-Based Super Resolution (RefSR)

RefSR alleviates the shortcomings of SISR by transferring more relevant details from
Ref to LR [29]. Apparently, the key of RefSR lie in the alignment between LR and Ref.
There are two mainstream ways for achieving alignment between LR and Ref, which are
image alignment [11,29–31] and patch match [13,14,32–34]. In RefSR studies, alignment
process aims at bridging the gap between LR and Ref image, and in turn obtaining aligned
Ref features, which would be transferred into LR feature space during SR reconstruction
process [35]. It’s noteworthy that some fusion-based methods [36–38], though aimed for
different tasks, can also be attributed to the mentioned transfer process, which aims at
bridging the gap between target image or information and corresponding reference label for
improved network performance or effect. For example, Zhou et al. proposed a multiscale
feature adaptive fusion module to effectively reduce the redundancy in low-level features
and background noise in S2EPC [36]. Yuan et al. proposed an enhanced fusion module for
deep features from both M and RGB images via Encoder and DenseNet fusion structures
with receptive fields in MCRN, which contributed to a more valid fusion than single-modal
encoding [37]. Besides, Yuan et al. proposed a multi-level fusion module for global and
local information, which leverages complementarity between them to generate prominent
visual representation in GaLR [38].

Two typical image-alignment-based methods in RefSR tasks are optical flow [39]
and deformable convolution [18]. They tend to warp the aligned parts in a flexible and
rapid way. However, they prove less effective in long-distance correspondence [15]. On
the other hand, patch matching-based methods prove more stable but resume higher
calculation resources. SRNTT is one of the first patch-matching-based RefSR network [13],
which swaps feature patches and transfers swapped patches based on pretrained VGG [40].
However, SRNTT ignores the correspondence between LR and Ref, because pretrained
VGG is not in-volved in the end-to-end training. To address this problem, recent studies
introduce patch-based attention to enable a learnable framework, which proves valid
for most scenes yet invalid for in-patch misalignment [14]. To solve this problem, this
study proposes aligned-and-enhanced attention for a more thorough patch match during
alignment. Different from fusion module in previous works, this study proposes a three-
level transfer module, in which each level consists of a learning mask to ensure the complete
fusion effect between Ref branch and LR branch.

2.3. Vision Transformer (ViT)

The success of transformer [19] has brought unparalleled rapid development to fields
like computer vision (CV) and natural language processing (NLP). In the field of CV,
transformer is introduced as ViT. SwinIR is the first ViT-based SR network [41], whose
performance surpassing most of previous CNN-based methods. ESRT improves SwinIR
by feasibly adjusting the size of the feature map and extracting deep features with a low
computational cost [42]. In fact, ESRT is a combination of convolution and transformer [43],
in which the former one aimed at recognizing low-level information while the latter aimed
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at exploring deeper information. Recently, transformer-based SR networks are focusing
on cross-window information iteration to release further potential of ViT [44,45]. Since the
above ViT-based methods are towards SISR, currently, there are few studies on ViT-based
RefSR [14,46]. In this study, we aim to propose the first transformer-based RefSR network
in the field of remote sensing.

2.4. Dual Camera for Super Resolution

The first demand for super-resolution is driven by on-orbit remote sensing imagery
when the satellite resolution is rather poor, in which researchers incorporated two satellite
camera arrays for better visual results [1]. Wilburn et al. are one of the first to achieve
higher imaging quality based on multiple camera arrays [47]. In the past, non-learning-
based methods [48,49] focused on searching image similarity to achieve image registration,
which tend to be low-efficiency and inaccurate. CameraSR tried to reverse the latent
model which was regarded responsible for degradation of camera imagery due to intrinsic
tradeoff between field of view and resolution [50]. Recently, Guo et al. proposed a dual
camera system to achieve low-light color imaging, which consists of a high-resolution
monochromatic camera and a low-resolution color camera [51]. However, it focused on
fusing spectral dynamic range, while had limited effect on high-quality super-resolution.
As a matter of fact, dual camera array is a favorable structure for implementing RefSR,
because dual camera guarantees a reliable implementation platform for RefSR. However,
there are few previous studies extended on this topic [17].

To the best of our knowledge, we’re one of the first to explore the application feasibility
and potential of RefSR via zoom camera in the field of remote sensing. Different from
above dual camera structures, this study only uses single camera. Considering there’s
limited satellite assembly space, this study utilizes only one zoom camera to achieve the
functions of dual cameras by changing its focal length. In this study, ZCS is the foundation
to implementing the proposed AEFormer.

3. Methodology

The proposed method follows the process of ‘imaging then super-resolving’, which
refers to the design of zoom camera structure (ZCS) and the proposed RefSR network,
namely AEFormer.

As shown in Figure 1, a zoom camera is installed and imaged towards a common
region of interest (ROI). To fully estimate the effect of super resolution, the LR and Ref
image are cropped from either camera imaging as shown in Figure 2, aligned with each
other, and then super-resolved according to the proposed network AEFormer as shown in
Figure 3. Given cameras with different focal lengths, L1 and L2, where L1 is equipped with
the focal length of f while L2 is equipped with 4f, L1 and L2 are imaged towards the same
target. LR is cropped from imagery by L1, with a size of n × n, while Ref is cropped from
imagery by L2, with a size of 4n × 4n.

ZCS works following illustration in Figure 2. Constrained by the contradiction be-
tween the camera’s field of view (FOV) and imaging spatial resolution, for most cases,
the zoom camera works as short-focus camera L1 to expand the effective imaging field,
as shown in position 1,2,3. When encountering ROI, zoom camera changes focal length
and works as long-focus camera L2 to obtain optical magnified image (Ref), as shown in
position 4. With LR from Pos 1,2,3 and Ref from Pos 4 as inputs, corresponding SR im-ages
can be obtained through the proposed AEFormer, as shown in right side of Figure 2.

Section 3 is arranged as follows. Section 3.1 introduces aligned and enhanced
attention mechanism for feature alignment process. Section 3.2 presents feature trans-
fer based on dynamic transfer module. Section 3.3 illustrates the loss function of the
proposed AEFormer.
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Figure 2. The working mechanism of ZCS in remote sensing practice. In most cases, to expand
the imaging area, short-focus camera L1, which is equipped with wide FOV, is used for wide-field
imaging, as shown in position 1, 2, and 3. However, when it is in need for super-resolving ROI in
the image captured by L1, a zoom camera switches to long-focus camera L2 which is equipped with
narrow FOV, to capture Ref, as shown in position 4. ↑ denotes upscale ×4.

3.1. Feature Alignment Based on Aligned and Enhanced Attention

Considering the time intervals for changing the focal length of a zoom camera, there
are subtle differences in the spatial content and viewpoint of images acquired by L1 and
L2 which results in the misalignment problem between LR↑ and Ref. Addressing the
misalignment is crucial for achieving a high-quality RefSR [11]. Since there is a certain
similarity between patches across correlated images, the alignment strategy in the proposed
network is based on the patch match [34].
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Different from previous patch-match-based methods where patches are swapped
from non-learning process [13], the alignment strategy proposed in this study is an end-
to-end ViT-based learnable process, namely of aligned and enhanced attention, as shown
in Figure 4. For improved model generalization, Ref and LR, in this section, are selected
from the external dataset which differ in spectral characteristics and spatial content despite
being aimed for the same ROI. It corresponds to a normal RefSR verification process.

To bridge the gap between Ref and LR image, and obtain valid and effective aligned
Ref features to be involved in SR reconstruction, it occurred to us that attention mechanism
may be an alternative for deformable convolution [18] which is widely used in previous
RefSR alignment practice [11], and the combination of feature swapping [13] and attention
mechanism may lead to a reinforced aligned features acquisition. To obtain the mentioned
aligned features, it takes several steps as follows.

First, considering there is a difference in content and viewpoint between LR↑ and Ref,
Ref feature map FRef is swapped according to feature swapping [13], denoted as Swap(·),
for a rough processing. The swapped Ref feature map FRe f

tmp is only temporary because it
does not involve a learning process.

FRe f
tmp = Swap

(
FRe f

)
(1)

where the role of feature swap aims at swapping features which searches over the entire IRef

for locally similar textures of ILR for enhanced SR reconstruction. The swapped LR and Ref
patches, which may differ in color and illumination, are matched in neural feature space
φ(·) [13] to emphasize the structural and textural information. The similarity between both
can be calculated as:

si,j =

〈
Pi

(
φ
(

ILR↑
))

,
Pj

(
φ
(

IRe f ↓↑
))

‖ Pj
(
φ
(

IRe f ↓↑)) ‖
〉

(2)
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where Pi denotes sampling i-th patch from corresponding feature map. si,j denotes the
similarity between the i-th LR patch and the j-th Ref patch. The similarity computation
Sj can be efficiently implemented as a set of convolution operations over all LR patches
with each kernel corresponding to a Ref patch:

Sj = φ
(

ILR↑
)
∗

Pj

(
φ
(

IRe f ↓↑
))

‖ Pj
(
φ
(

IRe f ↓↑)) ‖ (3)

where Sj denotes the similarity map for the j-th Ref patch, and * denotes the correlation
operation. Use Sj (x, y) to denote the similarity between the LR patch centered at location
(x, y) and the j-th Ref patch. Based on the similarity score, a swapped feature map M can be
constructed to represent texture-enhanced LR image. Each patch in M centered at (x, y) is
defined as

Pω(x,y)(M) = Pj∗
(

φ
(

IRe f
))

, j∗ = argmax
j

Sj(x, y) (4)

where ω(x, y) maps patch center to patch index. As a result, swapped feature map M can
be obtained from feature swap, as the basis for subsequent operations.
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Figure 4. Aligned and enhanced attention. All image branches are transferred to feature space via
the learnable texture extractor (LTE). Three branches of the feature map are aligned and concatenated
into aligned attention Fal

att Finally, Fal
att is concatenated with the swapped feature map FRe f

tmp to obtain

the final aligned and enhanced attention FAE
att . Considering the structure of the zoom camera, Ref↓↑

and LR↑ share a common image sampling frequency. In this way, the IRe f ↓↑ branch is added for the
alignment process which is novel compared to previous alignment modules [52].

Second, for all the image branches, including Ref image IRef, LR bicubic image ILR↑,
and Ref down sampled then up sampled image IRef↓↑, the learnable texture extractor
(LTE) [14] is adopted as the deep feature extractor of each branch. Once feature maps
of three branches are obtained from LTE, they need to be aligned. For an improved
alignment effect, Ref↓↑ and LR↑, which share the same image sampling frequency, need to
be aligned first, which is different from previous alignment process [52]. Specifically, the
relevance between Ref↓↑ and LR↑ images are calculated by relevance embedding [14,19,32].
Then, the embedded images IRe f ↓↑

tmp and ILR↑
tmp are divided into patches pi and qi, in which
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pi (i ∈ [1, HRe f ↓↑ ×WRe f ↓↑]) are from Ref↓↑ and qi (i ∈ [1, HLR↑ ×WLR↑]) are from LR↑,
respectively.

For each patch in IRe f ↓↑
tmp and ILR↑

tmp , the relevance ri,j between two patches calculated by

ri,j =

〈
pi
‖pi‖

,
qj

‖qj‖

〉
R =

∥∥ri,j
∥∥2

(5)

Third, through relevance map R obtained from Equation (5), the attention map can
be achieved by incorporating the relevance map and feature map. Specifically, for Ref
attention map, FRe f

tmp and RRe f are integrated to obtain Ref attention map FRe f
att :

FRe f
att = T

(
FRe f

tmp ⊕ RRe f
)

(6)

where T denotes the local transformer network [53] which aims at estimating patch-wise
alignment parameters for all patches. ⊕ denotes concatenation in channel. Similarly, for
the LR↑ branch, FRe f

att and RLR↑ are incorporated to obtain the aligned attention Fal
att:

Fal
att = T

(
FRe f

att ⊕ RLR↑
)

(7)

Such aligned attention Fal
att can compensate for the weakness of a swapped patch match

feature map FRe f
tmp where nonlinear misalignment is usually hard to cope with. However,

non-learning feature map FRe f
tmp contains a basic high-similarity patch match which means

combining the strength of FRe f
tmp and Fal

att can hopefully enhance the aligned attention map

Fal
att. In this way, to further enhance Fal

att, concatenate FRe f
tmp and Fal

att to obtain the final aligned
and enhanced attention FAE

att .

FAE
att = FRe f

tmp ⊕ Fal
att (8)

Compared with DATSR [35] where feature maps are obtained through convolution
and aligned attention mechanism, this study enhanced the aligned attention on the basis
on swapped features.

Based on the above process, FAE
att can be transferred to the LR feature space to obtain

the SR result through the proposed dynamic transfer module (DTM) in Section 3.2.

3.2. Feature Transfer Based on the Dynamic Transfer Module

Transferring an aligned feature to the LR feature space has been a long challenging
task [11,54]. Direct transfer, such as summation or concatenation, would lead to information
loss or misalignment.

To address the challenging task of feature transfer, this study proposes a novel dynamic
transfer module (DTM), shown as Figure 5. From what is presented in Figure 3, aligned and
enhanced attention FAE

att is transferred to the LR feature space in a multi-level way. Within
each level, DTM adopts the LR feature map FLR↑

level and corresponding FAE
att,level as inputs and

generates FLR↑
level+1 as the output. The number of total levels corresponds to the number of

feature encoding levels.
As shown in Figure 5, the transfer within each DTM can be divided into 3 stages. First,

embed the concatenation between FAE
att,level and FLR↑

level with a learnable convolutional layer
which is denoted as C1(·). The normalized attention map is then elementwise multiplied by
the LR feature map. Second, obtain more information through another convolutional layer,
which is denoted as C2, then elementwise add (denoted as +) that with the LR feature map.
Finally, to obtain the output of DTM, the above attention map goes through residual blocks
to prevent degradation resulting from multiple convolutions [20].
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Figure 5. Dynamic transfer module (DTM). Aligned and enhanced attention FAE
att is transferred into

the LR feature space for a better transfer effect with less information loss. Given aligned and enhanced
attention FAE

att,level and the LR↑ feature map FLR↑
level of the same level, DTM generates the LR↑ feature

map of the next level FLR↑
level+1 as the output.

The above feature transfer process can be represented as

Fmul
level = Sig

(
C1

(
FLR↑

level ⊕ FAE
att,level

))
⊗ FLR↑

level

Fsum
level = C2

(
Fmul

level

)
+ FLR↑

level

FLR↑
level+1 = Res

(
Fsum

level
) (9)

where C1/2(·) denotes the learnable convolution layer with a kernel size of 3 × 3. Sig(·)
denotes the sigmoid operation. Res(·) denotes residual blocks [20]. ⊕ denotes concatenation
in the channel. ⊗ denotes elementwise multiplication. Level = 1, 2, and 3. Note that the
output of DTM (level) equals the input of DTM (level + 1) which corresponds to Figure 3.

Furthermore, as can be seen from Figure 3 and Equation (9), FLR↑
4 can be obtained

from the final level of feature transfer. With the decoder, the feature map FLR↑
4 can be

transformed back to the image space, in other words, the SR result.

3.3. Loss Function

To achieve a better SR effect, the loss function in this study consists of four components
which are reconstruction loss Lrec , adversarial loss Ladv, perceptual loss Lper , and texture
loss Ltxt . For improved clarity, the component and configuration of the loss function are
different from previous studies [12–14,31].

Ltotal = λrec Lrec + λadvLadv + λper Lper + λtxtLtxt (10)

Reconstruction loss. To preserve the basic structure of LR-SR mapping, reconstruction
loss aims at making SR infinitely approach HR (GT) during training. In this study, l1 norm is
adopted within Lrec . Notably, Lrec is the most basic component of the SR training process.

Lrec =
∥∥∥IHR − ISR

∥∥∥
l

(11)

Adversarial loss. Since GAN [24] is capable of reconstructing a visually satisfactory
image, adversarial loss is common yet effective in recent SR tasks [11,31]. Herein, Ladv
proposed in WGAN-GP [55] is adopted in our loss function.

LD = Ex̃∼Pg [D(x̃)]−Ex∼Pr [D(x)] + λEx̂∼Px̂

[
(‖ ∇x̂D(x̂) ‖2 −1)2

]
Ladv = −Ex̃∼Pg [D(x̃)]

(12)

where LD denotes loss of the discriminator. D(·) denotes 1-Lipschitz functions [56]. Pr and
Pg denote the distribution of the proposed model and actual situation, respectively [14].



Remote Sens. 2023, 15, 5409 10 of 22

Perceptual loss. Inspired by [13,14,57,58], perceptual loss aiming for better visual
perception, in our study, is different from previous studies. Specifically, Lper consists of
two parts in this study. The first part is consistent with traditional studies while the second
part combines the perceptual effect of an aligned and enhanced attention map because it
records certain information of certain stages during training.

Lper =
1

Ci HiWi
‖ φ

vgg
i

(
ISR
)
− φ

vgg
i

(
IHR

)
‖2

2 +
1

Cj HjWj
‖ φE

j

(
ISR
)
− FAE

att ‖2
2 (13)

where φ
vgg
i represents the feature map of VGG-19 of the i-th layer while (Ci, Hi, Wi)

represents the shape of the feature map. ISR denotes the super-resolved (generated) image
of the corresponding iteration. φE

j denotes the feature map warped from the j-th layer of

the rough alignment E(·) while FAE
att denotes the aligned and enhanced attention of the

corresponding iteration.
Texture loss. Following [13], texture loss, aimed at alleviating texture differences

between ISR and IRef, is also involved in our loss function.

Ltxt = ∑
l

λl ‖ Gr
(

φl

(
ISR
)
·S∗l
)
− Gr(Ml ·S∗l ) ‖F (14)

where Gr(·) computes the Gram matrix and λl is a normalization factor corresponding to
the feature size of layer l. S∗l denotes a weighting map for all LR patches.

4. Experiment

This section presents three aspects of our experiment. First, dataset and implemen-
tation details are presented as the basis of the experiment. Second, comparisons between
state-of-the-art methods and ours are carried out for validating the effect of super-resolving.
Finally, AEFormer’s capability of super-resolving real-world imagery is verified based on
the proposed ZCS.

4.1. Dataset and Implementation Details

Dataset. To verify the effectiveness of the proposed method and train the proposed
AEFormer, benchmark dataset RRSSRD [11] is adopted in our experiment. Specifically,
4047 pairs of HR-Ref remote sensing images are used for training while four groups of
images are used for testing. RRSSRD is constructed based on GF-X satellite open source,
Google Earth Engine, and Microsoft Virtual Earth, which contains various remote sensing
scenes, such as urban architecture, an airport, farmland, a parking lot, and more. The
spatial resolution of images from RRSSRD is approximately 0.5 m.

HR and Ref within RRSSRD have the same image resolution of 480 × 480 pixels,
while LR is downsampled from HR with resolution of 120 × 120 (unit in pixel). Figure 6
displays some examples of HR-Ref pairs within RRSSRD. Following standard protocol in
SR tasks [4,11,21], all LR images are obtained by bicubic downsampling corresponding HR
images to a 1

4 size. LR↑ denotes LR upsampling four times. Ref↓↑ denotes Ref downsam-
pling then upsampling to the original size, which aims at seeking better matching band
frequency between images [11,14], as shown in Figure 4.

In Section 4.2, LR (down sampled from HR) and Ref from RRSSRD test sets are used
for a classical SR verification. In Section 4.3, LR and Ref are obtained from camera L1 and
L2 (within ZCS) for real-world SR verification.

Implementation details. For a valid verification, following some previous known
works [8,11,14,29], scale factor is set to be large as 4 in this study. For improved clarity,
state-of-the-art methods are compared with the proposed AE-Former, including CNN-
based SISR method EDSR [22], GAN-based SISR method SPSR [25], CNN-based RefSR
method CrossNet [12], GAN-based RefSR method SRNTT [13], ViT-based SISR method
SwinIR [41], ViT-based RefSR method TTSR [14]. For fair comparison, all methods are
configured via the default provided by their authors to achieve their best performance
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and trained for a consistent or close iteration. AEFormer is trained for 200,000 iterations
to achieve convergence, which took about 53 h on 2 × Nvidia RTX 4090. SRNTT was
implemented on TensorFlow while others were implemented on PyTorch. Inspired by
some previous known works [11,15,25,41,52,59,60], hyperparameter configuration in our
study, which are (Lrec , Lper , Ladv, Ltxt ) in Equation (10), are set as 1, 1 × 10−3, 1.5 × 10−7,
and 1 × 10−7, respectively. Quantitative comparison between state-of-the-art methods and
AEFormer in Section 4.2 are evaluated in terms of LPIPS [61], PSNR, SSIM, and FID [62–64],
all of which compare SR with HR (GT) to calculate the corresponding evaluation metrics.
For real-world experimentation in Section 4.3, SR quality is evaluated by NIQE [65] and
PI [23], both of which are non-reference image quality evaluation metrics [66]. Besides, the
metrics for evaluating the diversity of GAN capability, IS, is also adopted in the comparison
study [64].
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LPIPS(ISR, I0) = ∑
l

1
HlWl

∑
h,w

∥∥∥wl �
(

ŷl
hw − ŷl

0hw

)∥∥∥2

2

PI = 1
2 ((10−Ma) + NIQE)

FID
(
Pr,Pg

)
=‖ µr − µg ‖ +Tr

(
Cr + Cg − 2

(
CrCg

)1/2
)

IS
(

Pg
)
= eEx∼Pg [KL(pM(y|x)‖pM(y))]

(15)

where Hl and Wl represent the height and width of l-th layer. ŷl
hw and ŷl

0hw
indicate the

features at the specific location (h, w) of l-th layer from the generated image and the
ground truth image. wl is a supervised weight vector. � denotes elementwise multiply.
Tr(·) represents the sum of elements on the diagonal of a matrix. PI, as the non-reference
metrics, can be calculated by incorporating the criteria of Ma [67] and NIQE [65]. It indicates
the perception quality of the generated image. More details in the generated image can lead
to a better PI result, which is lower in score. In FID equation, the distance between these two
univariate Gaussian distributions is calculated using mean and variance, in which r denotes
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the ground-truth image, while g denotes the generated image. A lower FID means that the
two distributions are closer, which means that the quality and diversity of the generated
images are higher. Lastly, in IS equation, the conditional probability P(y|x) is expected to
be highly predictable (low entropy) for GAN. For example, given an image, the object type
should be known easily. In turn, an Inception network is used to classify the generated
images and predict P(y|x), where y is the label and x is the generated data. This reflects the
quality of the images. Besides, if the generated images are diverse, the data distribution for
y should be uniform (high entropy) [64]. Finally, to combine these two criteria (quality and
diversity), their KL-divergence can be computed and the equation can be used to obtain
IS score. Based on previous knowledge [63] and experimental results below, the biggest
difference between FID and IS is that FID focuses more on image similarity, while IS focuses
more on data diversity especially for GAN methods.

4.2. Comparison with State-of-the-Art Methods

In this section, both qualitative and quantitative comparisons are carried out to fully
estimate the performance of the proposed AEFormer.

Qualitative comparison. To verify the visual quality of SR results, AEFormer is com-
pared to state-of-the-art methods. As shown in Figure 7, AEFormer elicits the best visual
quality on the dis-played test sets. It’s also observable that, by enriching details from Ref,
RefSR methods are more visually satisfactory than SISR methods. Although Ref and HR
differ in viewpoints, spectral characteristics, and spatial content within RRSSRD, AEFormer
successfully utilizes Ref and LR to reconstruct the best SR effect among selected methods.
Specifically, in the first set in Figure 7, AEFormer retains the best roof details while sup-
pressing noise across whole image (compared to TTSR). In the second set, only AEFormer
recovers the horizontal structures. In the third set, SPSR and TTSR generate massive
artifacts and blurriness on the scaffolding, while other methods even fail to distinguish
between multiple scaffolding elements. Only AEFormer succeeds in distinguishing them.

It’s observable that SwinIR, which is trained with reconstruction only, achieves the
second best PSNR and SSIM scores, only second to AEFormer_rec (AEFormer trained
from scratch with reconstruction loss only). Based on previous known studies [11,13,14],
it’s commonly known that SR network trained with reconstruction loss (e.g. l1 loss) can
lead to better PSNR and SSIM scores, because they’re usually oriented towards MAE or
MSE. However, higher PSNR and SSIM don’t guarantee a better visual result because
over-smooth texture can lead to higher PSNR, this is why we need different loss functions
and additional metrics to evaluate its effectiveness.

Quantitative comparison. Table 1 shows the quantitative comparison on RRSSRD in
terms of LPIPS, PI, NIQE, FID, IS, PSNR, and SSIM. Red bold score denotes the 1st best
result, while blue bold score denotes the second best result. Considering the combination
of different loss functions con-tribute to a more photo-realistic details with slightly worse
PSNR and SSIM score [11,21], AEFormer is trained from scratch with all losses, denoted as
AEFormer. For fair comparison, AEFormer is additionally trained with reconstruction loss
only to achieve higher PSNR and SSIM score, with adversarial loss, perceptual loss and
texture loss removed, which is denoted as AEFormer_rec.

It’s observable that AEFormer outperforms the second best method, SwinIR [41],
53.28%, 1.98%, 2.14% in terms of average LPIPS, PNSR, and SSIM. It further reiterates the
superiority of AEFormer. Considering there are many indicators in this section, some of
which are lower, the better, whereas for others is the opposite.

For more intuitive com-parison, improvement percentage in this study is defined as

Improvement Percentage =
|Indicator(Method)− Indicator(Bic)|

Indicator(Bic)
× 100% (16)
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Table 1. Average LPIPS, PI, NIQE, FID, IS, PSNR, and SSIM scores of selected SR methods of×4 factor
on different test sets. For LPIPS, PI, NIQE and FID, a lower score indicates a better result whereas for
IS, PSNR and SSIM, a higher score indicates a better result. The best results are highlighted in red
(first best) and blue (second best).

Test Set Metrics Bicubic EDSR
[22]

SPSR
[25]

CrossNet
[12]

SRNTT
[13]

TTSR
[14]

TTSR_rec
[14]

SwinIR
[41]

AEFormer
(Ours)

AEFormer
_rec (Ours)

1

LPIPS 0.3667 0.1688 0.1723 0.2897 0.2004 0.1944 0.2323 0.2351 0.1035 0.1639
PI 7.1020 5.1290 3.2918 5.3949 3.7471 3.4192 5.7505 6.2364 3.2000 5.5191

NIQE 7.7933 5.6877 4.2980 6.0194 4.1205 4.1673 6.2667 6.9530 4.2309 6.0150
FID 126.0413 89.9880 75.6160 90.0235 89.4061 89.2271 97.1016 123.0567 39.1042 79.7634
IS 1.9299 2.0919 2.0071 1.9316 2.0796 1.9836 2.0115 2.0883 1.9882 2.0982

PSNR 29.6840 32.2835 30.4216 31.0801 29.1221 30.9589 32.8617 33.4122 32.4519 34.2224
SSIM 0.7914 0.8750 0.7908 0.8590 0.7977 0.7957 0.8558 0.8758 0.8470 0.8915

2

LPIPS 0.3920 0.2704 0.2105 0.3093 0.2348 0.2110 0.2400 0.2681 0.1340 0.1960
PI 7.0139 4.9010 3.0975 5.2704 3.7498 3.1980 5.8804 6.2632 3.1927 5.6102

NIQE 7.6505 5.5122 4.0160 5.9580 4.1104 4.0012 6.5053 6.9457 4.1917 6.2035
FID 127.7582 104.1339 98.8441 113.6950 115.4572 99.1046 107.9276 125.6784 47.9718 83.3458
IS 2.0822 2.0836 2.0543 1.9980 2.1643 2.0933 2.1141 2.1376 2.1200 2.1272

PSNR 29.5621 31.1646 29.2977 31.0895 27.9063 29.9981 32.1126 32.5679 31.6659 33.2675
SSIM 0.7638 0.8319 0.7446 0.8295 0.7727 0.7543 0.8275 0.8406 0.8119 0.8615

3

LPIPS 0.4748 0.2712 0.2040 0.3266 0.2426 0.2212 0.3210 0.3491 0.1414 0.2874
PI 7.0493 5.0103 2.8630 5.1190 3.9161 3.0213 5.8568 6.5596 2.8314 5.7783

NIQE 7.6804 5.4921 3.9324 5.1493 4.3254 3.9501 6.3419 7.3428 3.9168 6.2950
FID 138.0656 101.5913 73.8934 106.9849 80.1084 75.8917 99.1774 127.0837 43.2799 98.4504
IS 1.9127 1.9825 2.0001 1.9197 2.1088 2.0276 2.0170 1.9656 2.0359 1.9612

PSNR 27.7658 29.4900 28.0084 28.9832 27.8890 28.7439 30.5491 30.9032 29.6163 31.3204
SSIM 0.7275 0.8071 0.7082 0.7897 0.7472 0.7281 0.7997 0.8117 0.7646 0.8282

4

LPIPS 0.3749 0.2807 0.2427 0.3216 0.2574 0.2326 0.2470 0.2817 0.1509 0.2143
PI 7.1793 5.3996 3.3195 5.4073 4.2947 3.4277 6.3508 6.5094 3.5329 6.1760

NIQE 7.7796 5.6910 4.1089 5.8788 4.5599 4.0359 6.8673 7.2425 4.2829 6.6927
FID 123.8509 98.8013 104.6603 112.0716 112.9005 99.0680 100.5237 124.4605 57.2116 88.4482
IS 2.1570 2.1563 2.1753 2.0994 2.1225 2.1860 2.1172 2.1140 2.1787 2.1158

PSNR 30.0465 31.5246 29.1996 30.1077 29.2247 30.1338 32.4450 32.9487 31.9228 33.5955
SSIM 0.7593 0.8233 0.7231 0.7690 0.7687 0.7394 0.8184 0.8310 0.7962 0.8496

Average

LPIPS 0.4021 0.2478 0.2074 0.3118 0.2338 0.2148 0.2601 0.2835 0.1325 0.2154
PI 7.0861 5.1100 3.1430 5.2979 3.9269 3.2666 5.9596 6.3922 3.1893 5.7709

NIQE 7.7260 5.5958 4.0888 5.7514 4.2791 4.0386 6.4953 7.1210 4.1556 6.3016
FID 128.9290 98.6286 88.2535 105.6938 99.4681 90.8229 101.1826 125.0698 46.8919 87.5020
IS 2.0205 2.0786 2.0592 1.9872 2.1188 2.0726 2.0650 2.0764 2.0807 2.0756

PSNR 29.2646 31.1157 29.2318 30.3151 28.5355 29.9587 31.9921 32.4580 31.4142 33.1015
SSIM 0.7605 0.8343 0.7417 0.8118 0.7716 0.7544 0.8254 0.8398 0.8049 0.8577

For each indicator in Table 1, denote the improvement of each average indicator of
the compared methods by calculating corresponding improvement percentage. The higher
the percentage is, the more effective corresponding method is. The graphical result of
improvement percentage is shown in Figure 8. It’s observable that the pro-posed AEFormer
(and AEFormer_rec) can elicit the best improvement percentage in most circumstances.
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indicator in Table 1. The higher improvement percentage is, the better corresponding method is.
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4.3. ZCS for Real-World Super Resolution

The above experiment adopts degraded images (LR down sampled from HR) as LR
to verify the effectiveness of AEFormer. This typical super-resolution verification differs
from super-resolving real-world data because real-world LR data are not obtained through
down sampling. Since there is no equivalent corresponding HR (GT) of real-world LR data,
the quality of SR results cannot be evaluated by previous metrics which are LPIPS, PSNR,
and SSIM. Instead, they should be evaluated by PI [23] and NIQE [65], both of which are
non-reference image quality evaluation metrics [66]. In this section, SR results of real-world
Orbita satellite data [68] are verified.

The experimental process of super-resolving real-world data based on ZCS also follows
the flowchart outlined in Figure 1. Evidently, as shown in Figure 9, short-focus camera L1 is
aimed for capturing the wide FOV image where LR images are cropped from. Long-focus
camera L2, with limited and narrow FOV, is aimed for obtaining Ref images, which share
the same image resolution as LR↑. In this section, both LR↑ and Ref have the same image
resolution as 600 × 600 (unit in pixel).
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Although Orbita satellite data are not involved in our training, the SR result of AE-
Former still elicits the best performance both qualitatively and quantitatively when com-
pared with the selected state-of-the-art methods.

As shown in Figure 9, the SR image of SPSR is full of noise and artifacts. On one hand,
the SR image of SRNTT lacks real image intensity despite achieving the second best scores.
On the other hand, SwinIR, trained only on reconstruction loss, achieves low scores when
facing real-world imagery super resolution, which is different from the previous section. It
proves the necessity of a combination of different loss functions, especially perceptual loss
and adversarial loss. Most importantly, the SR image of AEFormer shows the most detailed
contents and achieves the best scores in terms of PI and NIQE (Table 2). It demonstrates
the robustness and effectiveness of the proposed method.

Table 2. Evaluation of Real-world imagery SR. Both PI and NIQE are non-reference image quality
evaluation metrics. For PI and NIQE, a lower score indicates better. The best results are highlighted
in bold.

Methods
Data (1) Data (2)

PI NIQE PI NIQE

SPSR [25] 3.508 3.3052 3.0197 3.1995
SRNTT [13] 3.5142 3.9132 3.1793 3.8485
TTSR [14] 5.6652 5.8128 5.3023 5.5889

SwinIR [41] 6.4644 6.9157 6.4344 7.0353
AEFormer 2.8890 3.5367 2.9647 3.6203
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5. Discussion

In this section, three key points of the proposed method, which are ZCS, aligned and
enhanced attention, and dynamic transfer module, are discussed. Specifically, the imple-
mentation process of ZCS is discussed. Its current effectiveness and future development
are detailed. Additionally, ablation studies are carried out on the aligned and enhanced
attention and dynamic transfer module to demonstrate their effectiveness.

5.1. Effectiveness and Limitation of ZCS

As introduced in Section 2.2, the performance of RefSR greatly depends on the align-
ment between the LR and Ref image. In other words, it also indicates that the quality of
the Ref image could possibly affect the performance of RefSR. In the proposed ZCS, zoom
camera L2 is equipped with four times the focal length of L1 to obtain the magnified yet
same resolution Ref image as LR↑. What would happen when L2 is equipped with different
focal lengths? Moreover, what would happen when an irrelevant image or external dataset
is adopted as a Ref for the RefSR process?

To verify the necessity and effectiveness of ZCS, an ablation study is carried out on the
quality of Ref which is photographed by zoom camera L2. Specifically, to address the above
questions, two types of experiments are conducted. First, adopt a different focal length to
obtain a different Ref image, which captures different regions from LR↑ or the previous
Ref. Second, adopt an irrelevant image or external dataset as the Ref. By comparing
corresponding SR results based on the above Ref both qualitatively and quantitatively, a
comprehensive conclusion about the effectiveness of the proposed ZCS can be arrived at.

As shown in Figure 10 and Table 3, different ZCS configurations result in obtaining
different Ref images, in turn leading to different SR results. By evaluating corresponding
SR results, the effectiveness of ZCS can be estimated. Specifically, given a fixed L1 configu-
ration (f ), different ZCS configurations include L2 imaging with focal lengths of f, 2f, and 4f.
Moreover, irrelevant imagery and external datasets (from Google Earth Engine 2023) are
also involved in ZCS configurations.

Table 3. Evaluation of SR results according to different ZCS configuration. For PI and NIQE, a lower
score indicates better. The best results are highlighted in bold.

ZCS Configuration Data (1) Data (2)
PI NIQE PI NIQE

Irrelevant image as Ref 2.9043 3.5912 2.9829 3.6536
Google Earth as Ref 2.9959 3.7749 2.8806 3.5593

Ref with focal length = f 3.1877 3.7340 2.9960 3.6807
Ref with focal length = 2f 2.9189 3.5839 2.9810 3.6476
Ref with focal length = 4f 2.8890 3.5367 2.9647 3.6203

It can be concluded from Figure 10 and Table 3 that adopting Google Earth data and
L2 4f imaging as Ref can possibly lead to the best SR result while adopting L2 f imaging
or irrelevant imagery as the Ref leads to a poor SR result. This is possibly due to the
high-frequency details in Ref because there are many high-frequency details in Ref from
L2 4f imaging whereas there are few in Ref from L2 f imaging. Since the external dataset
may vary significantly from LR in spatial content or other issues, ZCS for capturing ahigh-
quality Ref proves feasibly accessible and practically effective for contributing to a better
RefSR performance. In remote sensing practice, determining which Ref, from 4f ZCS or
Google Earth, to use depends on data accessibility.

In future remote sensing practice, common path system [69,70] can be introduced into
satellite camera design for shortening the interval time of the changing focal length.
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Figure 10. SR results according to different ZCS configuration. The first row displays different Ref
images obtained by different ZCS configuration, while the second row displays corresponding SR
results. Given fixed L1 configuration (L1 imaging with f), changes in ZCS include: (a) L2 imaging
with f; (b) L2 imaging with 2f; (c) irrelevant imagery; (d) external data (from Google Earth Engine
2023); (e) Real ZCS configuration (L2 imaging with 4f).

5.2. Effectiveness of Aligned and Enhanced Attention

In this study, the remarkable performance of the proposed AEFormer is attributed to
the configuration of Ref↓↑ branch, aligned attention, and aligned and enhanced attention,
all of which are regarded as improvements from previous studies [14,25,31,41,71]. To
verify the necessity and importance of these modules, ablation study is carried out on each
mod-ule, as shown in Table 4.

Notably, ‘Ref↓↑ branch’, ‘Aligned attention’, and ‘Enhanced attention’ in Table 4 are
not complementary. For ‘Ref↓↑ branch’, × denotes removing the Ref↓↑ branch in Figure 4
while

√
denotes reserving this branch. ‘Aligned attention’ is the basis of ‘Enhanced

attention’, which means the existence of enhanced attention depends on the existence of
aligned attention in Figure 4.

It can be seen from the first row and second row within Table 4 that the existence
of aligned attention contributes to an improvement among all scores significantly where
LPIPS, PSNR, and SSIM are improved by 13.8%, 3.27%, and 2.70%, respectively. Moreover,
given a considerable improvement among all metrics from the second and third row, it
verifies the necessity of the Ref↓↑ branch. Furthermore, based on the third row and last row,
the existence of aligned and enhanced attention leads to further improvements in LPIPS
and SSIM despite a slight and acceptable decrease in PSNR. It indicates that the proposed
aligned and enhanced attention fully exploit and utilize the feature space to release the
potential for a more effective alignment process.
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Table 4. Ablation study on the Ref↓↑ branch; aligned and enhanced attention. Ref↓↑ branch denotes
the existence of Ref↓↑ in Figure 4 while aligned attention and enhanced attention denotes correspon-
dence in Figure 4. Evaluation metrics are estimated on the first test set from RRSSRD. For LPIPS, a
lower score indicates a better result whereas for PSNR and SSIM, a higher score indicates a better
result. The best results are highlighted in bold.

Module Evaluation Metrics

Ref↓↑ Branch Aligned Attention Enhanced Attention LPIPS PSNR SSIM

× × × 0.1580 30.9693 0.8171
×

√
× 0.1362 31.9833 0.8392√ √
× 0.1139 32.4702 0.8396√ √ √

0.1035 32.4519 0.8470

5.3. Effectiveness of Dynamic Transfer Module

To further verify the effectiveness of transfer process (in this study in DTM), ablation
study is carried out on transfer module. There’re many fusion-based and transfer-based
methods currently [36–38]. Different from these studies, the proposed DTM consists of
sigmoid module and convolution module, while DTM is used in each level of aligned
Ref features transferring. In this way, ablation study is carried out on sigmoid part (for
generating a learning mask) and convolution part (for extracting and rein-forcing features).
It’s observable from Table 5 that removing sigmoid part leads to approximately 13.5%
decrease in terms of LPIPS, 4.4% decrease in PSNR, and 5.5% decrease in SSIM. It’s also
observable that removing convolution part leads to a slightly mild decrease. It verifies the
necessity and effectiveness of the components within DTM.

Table 5. Ablation study of transfer module. The first row denotes features concatenation in channel
without further operations. The last row denotes the proposed DTM. For LPIPS and PI, a lower score
indicates better, whereas for PSNR and SSIM, a higher score indicates better. Evaluation metrics are
estimated on the first test set from RRSSRD. The best results are highlighted in bold.

Module within Transfer Module Evaluation Metrics

Sigmoid Module Convolution Module LPIPS PI PSNR SSIM

× × 0.2495 6.2780 32.3798 0.8320
×

√
0.1896 6.1993 32.7164 0.8426√

× 0.2098 6.3817 32.9354 0.8371√ √
0.1639 5.5191 34.2224 0.8915

6. Conclusions

This study presents a novel method for achieving better RefSR performance in the
field of remote sensing by exploring a novel imaging mode, namely ZCS, and a novel
algorithm, namely AEFormer, in which ZCS serves as the structural basis for implementing
AEFormer. On one hand, ZCS utilizes the magnification performance of the zoom camera
to obtain a high-quality Ref image with the least temporal and spatial redundancy. On the
other hand, AEFormer, with highlights in aligned and enhanced attention and dynamic
transfer, achieves state-of-the-art performance among the selected SISR and RefSR methods.
Aligned and enhanced attention prove superior to previous alignment modules which
should be an enlightenment for future alignment module design. This study, with its blend
of theoretical innovation and engineering applicability, proves potentially impactful for
future remote sensing imaging.

In the future, efforts will be made towards optimizing the model, for example, introduc-
ing a semi-supervised mechanism into the loss function for improved learning effectiveness.
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Abbreviations
The following abbreviations are used in this paper:

Abbreviation Full Name
SR Super resolution
LR Low resolution
Ref Reference (image)
HR High resolution
GT Ground truth
ViT Vision transformer
LTE Learnable texture extractor
ZCS Zoom camera structure
FOV Field of view
SISR Single-image super resolution
Ref-SR Reference-based super resolution
CNN Convolutional neural network
GAN Generative adversarial network
AEFormer Reference-based super-resolution network via aligned and enhanced attention
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