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Abstract: In various regions worldwide, people rely heavily on groundwater as a significant water
source for daily usage. The resulting large-scale depletion of groundwater has triggered surface
deformation in densely populated urban areas. This paper aims to employ Persistent Scattered
Interferometry Synthetic Aperture Radar (PS-InSAR) techniques to monitor and quantify the land
surface deformation (LSD), assess the relationships between LSD and groundwater levels (GWL), and
provide insights for urban planning in Lahore, Pakistan, as the research area. A series of Sentinel-1
images from the ascending track between 2017 and 2020 were analyzed. Moreover, the Mann–Kendall
(MK) test and coefficient of determination were computed to analyze the long-term trends and spatial
relationships between GWL depletion and line of sight (LOS) displacement. Our findings reveal
significant increases in land subsidence (LS) and GWL from 2017 to 2020, particularly in the city
center of Lahore. Notably, the annual mean subsidence during this period rose from −27 mm/year
to −106 mm/year, indicating an accelerating trend with an average subsidence of −20 mm/year.
Furthermore, the MK test indicated a declining trend in GWL, averaging 0.49 m/year from 2003 to
2020, exacerbating LS. Regions with significant groundwater discharge are particularly susceptible
to subsidence rates up to −100 mm. The LS variation was positively correlated with the GWL at
a significant level (p < 0.05) and accounted for a high positive correlation at the center of the city,
where the urban load was high. Overall, the adopted methodology effectively detects, maps, and
monitors land surfaces vulnerable to subsidence, offering valuable insights into efficient sustainable
urban planning, surface infrastructure design, and subsidence-induced hazard mitigation in large
urban areas.
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1. Introduction

Water resources are a significant source for living organisms [1,2]. Environmental
factors, population growth, rapid socioeconomic progress, and intensified agricultural
and industrial practices have resulted in growing water demand under massive stress in
many cities worldwide [3,4]. Moreover, as a result of the existing circumstances, due to
substantial growth in population and urban development, the demand for groundwater has
dramatically increased in recent decades [5]. It is estimated that approximately 982 billion
cubic meters (BCM) of groundwater are withdrawn globally each year, 70% of which is used
for agriculture [6]. In addition, climate change is causing reduced surface water supplies in
certain areas, which leads to the increased pumping of groundwater to meet demand [7].
Groundwater and other underlying natural fluids play significant roles in maintaining the
Earth’s aquifer system [5]. The large-scale excessive extraction of groundwater reduces
pore pressure and causes compaction, resulting in land surface deformation (LSD) and
sinkhole formation [5].

This was coupled with a lower recharge of underground aquifers, which resulted
in groundwater depletion. When the rate of groundwater extraction exceeds the rate
of replenishment, land subsidence (LS) and sinkholes may occur, posing a significant
threat to infrastructure and the environment [8,9]. The increasing global population and
uncontrolled groundwater extraction exacerbate these hazards worldwide [10–13]. LS is
frequently reported worldwide, particularly in urban areas with high population densities
and coastal regions. The overexploitation of groundwater has significant consequences
in all major urban areas, especially in developing countries, such as Pakistan, where
environmental legislation has not been adequately implemented. Groundwater is an
essential resource for Pakistan, and it is estimated that approximately 60–70% of the total
population in Pakistan relies directly or indirectly on groundwater for their livelihood [14].

Pakistan has exceeded the sustainable limit of safe yield by extracting 61 billion m3 of
water (50 million acre-feet; MAF) from aquifers [15], while the demand for domestic ground-
water increasing from 5.20 to 9.70 million acres [16]. The Indus Basin aquifer, which is vital
to the country’s water supply, is ranked as the second most overstressed groundwater re-
serve globally. Over 60% of irrigation, 90% of urban water supply, and 100% of industries in
the country depend on groundwater [14]. The over-exploitation of groundwater in densely
populated areas with extensive confined aquifers leads to LS [13,17,18]. Pakistan, with a
population of over 175 million and a population growth rate of 2.1%, faces this problem,
particularly in urban areas such as Lahore. During the 1950s, the groundwater level (GWL)
in Lahore, Pakistan, was shallow, at approximately 4.58–4.88 m. However, because of rapid
population growth and urbanization, the GWL has now dropped to 21.34 m, declining
by an average of 15.24 m from 1959 to 1989 [19]. To access groundwater for domestic,
agricultural, and industrial purposes, the water table is depleting at an alarming rate. There
is an urgent need to assess the impact of groundwater depletion and aquifer degradation on
LS in these urban regions of developing countries. Recent advancements in radio detection
and ranging (RADAR) interferometry, specifically Interferometric Synthetic Aperture Radar
(InSAR), have been demonstrated to be both efficient and cost-effective for monitoring
LSD and LS [20]. InSAR is a powerful technique that enables the measurement of surface
topography and its temporal changes [21], particularly in relation to the geological and
hydrological factors that characterize aquifer systems [22].

However, InSAR has limitations due to its spatial and temporal decorrelation, atmo-
spheric delays, and acquisition intervals. Persistent Scatterer Interferometric Synthetic
Aperture Radar (PS-InSAR) was developed to address these issues and improve subsidence
assessment by reducing its ranges from 10–20 mm to 2–3 mm [23]. Advanced methodolo-
gies, such as PS-InSAR, are multi-temporal InSAR methods that allow the highly accurate
recovery of ground displacement at millimeter precision in urban areas [24,25]. The pres-
ence of artificial structures and buildings increases the density of Persistent Scatterer (PS)
locations and significantly improves the signal-to-noise ratio of interferograms, making
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PS-InSAR particularly advantageous for LS detections. In general, the previous studies [26],
focused on land subsidence by groundwater extraction in Lahore.

This study aims to investigate the potential environmental threats caused by LS
resulting from large-scale groundwater extraction and recommend mitigation strategies for
groundwater management challenges, and it represents a substantial advancement in the
field of land subsidence analysis in Lahore, Pakistan. It utilizes diverse datasets of long-
term InSAR measurements to capture detailed line of sight (LOS) displacement over time
from 2017 to 2020. The results of this study would have important implications for effective
planning, risk management, subsidence hazard management, and water management
strategies in the research area. Additionally, this study sheds light on the extent and nature
of subsidence in similar urban areas worldwide, which can help policymakers and urban
planners make informed decisions.

2. Study Area

Lahore is located in the eastern part of the country in the Punjab province in the upper
Indus plain on the Ravi River, a tributary of the Indus. It is the second largest city in
Pakistan and is located in the capital city of Punjab the province [27]. It is situated within
the geographical coordinates of 31◦13′–31◦43′N latitude and 74◦0′–74◦39.5′E longitude, at
an elevation of 150 to 200 m above sea level. The city covers a total area of 1842 sq. km, and
is located on the left bank of the Ravi River (Figure 1). Lahore has a warm semi-arid steppe
climate characterized by significant fluctuations in both temperature and rainfall. The city
experiences winters from November to March, with the coldest months being December
and January, with temperatures ranging from 0 ◦C to 3 ◦C. The summer season continues
from April to September, with an annual mean temperature varying from 18 ◦C to 38.8 ◦C.
The city is entirely groundwater-dependent and has experienced rapid urbanization and
migration of people to Lahore [28]. According to Pakistan bureau of statistics from the
2017 census, the total population of Lahore reached 11.2 million, with an annual growth
rate of 3% per year (https://www.pbs.gov.pk/ last accessed: 13 February 2023). This
growth led to the division of the city into nine administration zones managed by the
Town Municipal Administration (TMA), along with the Lahore cantonment area. Lahore’s
population is primarily concentrated in urban areas, with more than 98% of the population
living there.
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The city’s average annual rainfall is approximately 628.7 mm, with July and Au-
gust being the wettest months, contributing approximately 40 mm of rainfall, which aids
in groundwater recharge in a normal year [29]. The city of Lahore in Pakistan extracts
6.31 million cubic meters of groundwater per day to fulfill its urban, industrial, and agricul-
tural water supply needs. However, the excessive extraction of groundwater combined with
land development and decreased aquifer recharge have caused a significant decline in the
groundwater table [30]. Currently, the GWL has declined to more than 30.48 m at many loca-
tions owing to overexploitation, which has resulted in LS and socio-environmental issues.

Geological Conditions

The Lahore region is mainly characterized by sedimentary rocks, which are overlaid
by a significant thickness of alluvial deposits, reaching up to 300 m in depth [31]. They were
formed millions of years ago when the area was covered by shallow seas and rivers [32].
These rocks are of different ages and formed during different geological periods. In contrast,
alluvial deposits were formed by the Indus and its tributaries, which carried sediment
from the Himalayas and deposited it in the Punjab plain (Figure 2). The deposits consist
mainly of sand, silt, and clay, and are fertile, making Lahore a major agricultural region [33].
Additionally, Lahore lies in a seismically active zone with the potential for earthquakes
because of its location on the Indian plate. However, as it is primarily composed of soft
alluvial soil, the region is susceptible to geohazards [34]. The presence of old channels in the
Ravi River indicates that there have been periods of excessive flooding during which earlier
channels were filled with sediment and the stream was forced to create new channels. This
abrupt migration indicates that the stream had to adapt to changes in its environment, such
as increased water flow or sediment load.
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3. Materials and Methods
3.1. Remote Sensing SAR Dataset

In this study, we utilized Synthetic Aperture Radar (SAR) data obtained from Sentinel-
1A satellites operating in Interferometric Wide Swath (IW) mode to acquire SAR images
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with vertical co-polarization (VV) and C-band (5.6 cm wavelength). The ground resolution
of each image was approximately 4 m × 14 m in the range and azimuthal directions, cover-
ing an area of approximately 250 km × 200 km. The satellite has a revisit time of 12 days. A
total of 128 images were used from the ascending orbit tracks of the Alaska Satellite Facility
(https://asf.alaska.edu/about-asf, accessed on 17 September 2022), covering the period
from 6 March 2017 to 6 June 2020. The SAR images were processed using the PS-InSAR
approach in the SARPROZ 6.1 (https://www.sarproz.com/sarproz-faq) software package,
which has been demonstrated to be highly beneficial for InSAR data studies and has been
successfully employed in previous studies on LSD [35–44], including data preparation,
preliminary analysis, estimation of atmospheric phase screen (APS), and PS processing of
multiple images [45]. To analyze the C-band data, at least 20 SAR images were required
using the PS-InSAR method, which can monitor LS over months or years while accounting
for factors such as signal noise, atmospheric conditions, and topographic influences. The
sensor exhibited a ground resolution of approximately 5 m in the range direction and 20 m
in the azimuth direction. It offers diverse acquisition modes, including IW, extra wide
swath (EW), strip map (SM), and wave modes. Comparatively, the IW mode requires more
data processing to achieve a precise co-registration of images with a high accuracy of up to
0.001 pixels. All images used in this study were obtained in the IW acquisition mode. This
mode covers a single scene encompassing an area of 250 km2 and is further divided into
three sub-swaths using the Terrain observation by progressive scans (TOPS) mode. With
a combination of high spatial and temporal resolutions and a short revisiting time, SAR
images allow for the investigation of subsidence phenomena from space.

3.2. Research Methodology

The research methodology workflow depicted in Figure 3 consists of four distinct
phases: data acquisition, preprocessing, analysis, and classification.
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Data Preparation

The research methodology primarily focused on the data preparation steps, importing
all the single look complex (SLC) data with accurate orbits, and selecting images with the
same rotation of the ascending track. Initially, the images were polarized based on path
information, and both slave and master images were chosen. This is a very important step,
where orbit and track information were geolocated on Google Earth to remove SAR images
of different tracks or different area coverages to create interferograms [46]. To conduct
the analysis, we retrieved master images that covered the study region of Lahore, and
subsequently acquired slave images covering the same common area as the master image
(Figure 4). Subsequently, a star graph was generated, connecting the slave images to the
master image for in-depth analysis.
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3.3. Groundwater and PS-InSAR
3.3.1. PS-InSAR Data Analysis

The multi-temporal InSAR of PS-InSAR techniques utilizes more than 20 SAR images
captured at different times to estimate the surface velocity over a year with a single master
image. This technique involves selecting stable pixels as (PS points) points with stable
amplitudes and phases. These points are typically dense in rock outcrops and urban areas,
but are dispersed in forest and agricultural areas. In total, 128 images of the ascending-order
track were used for this process. The processing of this technique was performed using
SARPROZ 6.1 software, with the workflow detailed in Figure 3. To better understand
the factors influencing surface displacement, this study utilized observational data from
36 groundwater wells and geological features of the study area. Additionally, population
and rainfall data from the study region were used to examine the impact of groundwater
depletion on the LSD. The co-registration phase, which involves aligning different images
to ensure they match accurately a specific region within that specific area, is evaluated and
co-registered to achieve precise geometric accuracy [47,48].

3.3.2. Preliminary Analysis

To estimate and remove the Atmosphere Phase Screen (APS) and orbit errors, the phase
stability was assessed. Amplitude values are largely insensitive and cause disturbances
during processing [49]. Therefore, it was anticipated that the amplitude of the pixels would
be consistent across all acquisitions, and that the phase dispersion would be reduced. In
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SARPROZ data processing, the selection of PS points is based on the amplitude stability
index (ASI).

Here, DA is the amplitude dispersion, mA represents amplitude the average deviation
over time, and the standard deviation of amplitudes in time is given by σA.

ASI = 1−DA = 1− σA/mA (1)

3.3.3. Atmosphere Phase Screen (APS) Estimation

The estimation of APS using SAR data is a crucial step in radar remote sensing. SAR
images can be affected by various atmospheric phases during data acquisition, resulting
in signal interruptions. To mitigate these various disruptions and ensure data integrity, a
multi-spatiotemporal filtering technique in SARPROZ is employed to calculate the APS [50].
In all InSAR methods, the fundamental observable is referred to as an interferogram, which
represents the phase difference per pixel between two radar acquisitions. It is important to
note that in InSAR, the displacement of each PS is measured relative to a reference PS. Once
the PS points are selected using the amplitude dispersion index (ADI), the observed phase
change in a given interferogram can be expressed by taking into account the influence of
topography, atmospheric path delay, orbital error, and other thermal noise errors given in
Equation (2).

∅int = ∅topography +∅movement +∅orbit +∅atmospheric +∅noise (2)

In Equation (2), ∅topography represents the phase variation caused by height errors,
∅orbit represents the error induced by phase discrepancies due to orbit estimation errors,
∅atmospheric represents the component generated by terrain displacement along the LOS
path between two SAR acquisitions, and ∅topography represents the phase component re-
sulting from variations in atmospheric phase delay. Finally, ∅noise refers to phase noise,
encompassing thermal noise and other error components.

APS estimation is essential in PS-InSAR applications as it enables the calculation
of linear deformation velocities and compensates for topographic height effects [51]. To
estimate accurate APS, it is recommended to use an appropriate threshold of ASI > 0.75 as
a reference for selecting the initial PS points. ASI is a derived metric that combines the
amplitude coherence and amplitude information of each pixel that is often used as a thresh-
olding criterion for selecting PS candidates, and an acceptable threshold of ASI > 0.6 was
used in our case. Although this stringent parameter selection results in a limited number
of PS points, it is necessary to accurately estimate the APS. After selecting the initial PS,
a reference network was built using Delaunay triangulation, and the linear model was
removed to derive the APS estimates from the phase residual using an inverse network
approach. A reference point was established and the velocity was determined.

Temporal coherence analysis is a crucial step in ensuring the accuracy and reliability
of APS-corrected SAR data for applications like land subsidence monitoring, infrastructure
stability assessment, and geological hazard detection. The temporal coherence analysis
of PS was performed to evaluate APS integrity, resulting in acceptable outcomes when
the coherence exceeds the 0.6 threshold, as illustrated in Figure 5. During the Multi-
Image Sparse Point Processing stage, the identification and selection of second-order
PS points is performed using the same criteria of ASI > 0.6 to obtain denser PS points.
Similar parameters and reference points were employed to remove APS during the APS
estimation process. Finally, the PS points were geocoded and overlaid onto Google Earth,
and only points with a coherence threshold of 0.7 or above were utilized for generating the
subsidence map.
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Figure 5. Relationship between connections and temporal coherence for ascending track data over
the study region of Lahore, Pakistan.

The deformation regions were then converted to geographical coordinates and com-
bined with geological and groundwater extraction data in a geographic information system
(GIS) study to validate the subsidence regions observed using PS-InSAR techniques. The
results have been assessed within the geological context of Lahore and integrated with
additional information layers in ArcGIS to evaluate the relationships between geological
formations, groundwater extraction, and PS-InSAR-estimated subsidence. Furthermore,
to identify and quantify the movement in the study area, we selected a stable point as a
reference point and compared it with the motion of other points in the region. This was
because the reference point served as a monitoring point for movement using PS-InSAR in
the study region of Lahore.

3.3.4. Groundwater Level

To evaluate variations in GWL within the region, seasonal GWL data were gathered
from monitoring wells by the Punjab Irrigation Department in Pakistan (https://irrigation.
punjab.gov.pk, accessed on 23 September 2022) for the years 2003–2020, spanning both the
pre- and post-monsoon seasons. The Punjab Irrigation Department of Pakistan monitors
the seasonal GWL of groundwater wells in different locations in the province of Panjab,
Pakistan. The data included GWL measurements taken at regular intervals over the 17 years,
as well as information on the locations and characteristics of each well. However, there are
many sporadic gaps in the data record; therefore, only the continuous measurements from
2003 to 2020 of both wet and dry seasons of 36 wells were carefully selected based on their
appropriate records (Figure 1).

Subsequently, GWL data were employed to examine the long- and short-term conse-
quences of groundwater variations on LSD measured by PS-InSAR techniques between
2017 and 2020, which coincides with the availability of sentinel-1 data, to examine the influ-
ence of GWL changes over time on surface displacement. We evaluate how the land surface
responds to long-term variations and analyze the correlation between GWL depletion and
surface displacement. Statistical methods, such as regression analysis, may be used for
this purpose.

3.3.5. Spatial Interpolation

The data for the unmonitored locations were estimated using geostatistical techniques.
The temporal interpolation step yielded a yearly dataset for each groundwater observation

https://irrigation.punjab.gov.pk
https://irrigation.punjab.gov.pk
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well. We spatially interpolated these annual data to generate raster grids with groundwater
table values for each grid cell using the Kriging method. This resulted in a raster map for
the years 2003, 2008, 2012, 2016, and 2020. We used the spatial interpolation method of
ordinary Kriging in ArcGIS 10.8. Kriging is a local estimation technique offering the best
linear unbiased estimator of unknown values of spatial and temporal variables [52–56].

Kriging is expressed as:

Z*
k =

n

∑
i=1

λizi (3)

where Z∗k is an estimate by Kriging, λi is a weight for zi , and zi is a variable. The weight
is determined to ensure that the estimator is unbiased and the estimation variance
is minimal [57].

The unbiased condition of Kriging is:

E
{

zv − z*
k
}
= 0 (4)

where zv is an actual value and z∗k is an estimated value.
The sum of weights is:

n

∑
i=1

λi = 1.0 (5)

The estimation variance of Kriging variance is:

σ2
k = E

{[
zv − z*

k
]2}

= C(V, V) + µ−
n

∑
i=1

λiC(vi, V) (6)

where C(V, V) signifies the covariance between sample variables, µ indicates the Lagrange
parameter, and C(vi, V) represents the covariance between the sample variable and the
estimates. Several types of Kriging techniques have been developed to align suitable
characteristics of user data, that is, ordinary Kriging is applied to stationary data, universal
Kriging to nonstationary data, and co-Kriging is suitable for a group of correlated data.
Ordinary Kriging was used to generate a graphical representation of GWL data.

3.4. Trend Analysis

Groundwater data from Lahore were analyzed using the Mann–Kendall (MK) test to
identify spatiotemporal variations. The test determined both negative and positive trends,
allowing the detection of slope values and changes in trends related to GWL depletion in
the study area. The MK test was applied to account for the inhomogeneity of the time-
series data, revealing spatial and temporal patterns. The calculations involved the use of
mathematical equations to compute the MK statistics, V(S), and S, and the standardized
test statistic Z.

S =
n−1

∑
i=1
·

n

∑
j=i+1

sign
(
xj − xi

)
, (7)

where n is the number of data points, and xj and xi refer to the data points at times j
and i, respectively:

sign(xj− xi) =


+1, if

(
xj − xi

)
> 0

0, if
(
xj − xi

)
= 0

−1, if
(
xj − xi

)
< 10

(8)

VAR(S) = [n (n− 1)(2n + 5)−
q

∑
p=1

tp
(
tp − 1

)(
2tp + 5 )] , (9)
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Z =


s−1√

VAR(R)
if S > 0

0 if S = 0
S+1√

VAR(R)
if S < 0,

(10)

where n represents the length of time, tp signifies the tied values for the pth value, and
q denotes the number of tied values. Meanwhile xj and xi denote the data values in
chronological order. In the present study, the statistical significance of the trend was tested
using a Z-critical value > 1.96 with a significance level of 0.05.

To support the null hypothesis of no trend, the condition must be satisfied if
−1.96 < ZMK < 1.96.

3.5. Correlation Analysis

To better understand the main factors affecting LS in Lahore, Pakistan, between
2017 and 2020, a correlation analysis between LS and GWL was performed using the
PS-InSAR time series and groundwater wells data. To determine the accuracy of the PS-
InSAR measurements, the subsidence values obtained from InSAR and the corresponding
groundwater observations were compared. This is due to the possibility of a misalignment
between the centers of the PS, point pixels, and groundwater observation benchmarks.
We employed a 100 m radius of each groundwater observation, using buffer analysis in
ArcGIS 10.8, to identify the average subsidence rate in the particular region. Subsequently,
we calculated the mean LOS displacement values of the selected InSAR pixels within a
100 m radius, which were regarded as the InSAR measurements at the precise locations
of the groundwater observations. To conduct the correlation analysis, we computed the
coefficient of determination using an equation following a systematic analytical approach.

R2 =
n(xy)− (Σx)(Σy)√[

n ∗
(

Σx2 − Σx)2] ∗ [n ∗ (Σy2 − Σy
)2] (11)

4. Results
4.1. Spatio-Temporal Variations in Land Subsidence
4.1.1. Land Surface Subsidence Scenario

Figure 6 displays the subsidence map obtained from the ascending track orbit (track
number 100) during the analysis period, and shows a sufficient number of PS points in the
study area. The subsidence map was overlaid onto a base map using ArcGIS 10.5. Figure 6
shows a cluster of points representing ground movement in Lahore.

The blue color indicates comparatively stable regions in the study area of the LS
scenario, with a minimal LOS displacement of between +0 and +43 mm/year. This suggests
that this particular area has no significant LS, indicating a minor change in land surface
without any significant downward subsidence. These areas are primarily rural settlements
and farmlands on the outskirts of Lahore. The red color represents urban areas within
Lahore, experiencing high subsidence ranging from−217 mm to−325 mm. The color ramp
helps visualize the ground movement, with red indicating high subsidence, blue indicating
stability, and yellow/light green indicating low subsidence. Overall, urban areas exhibited
significant ground sinking compared to more stable rural regions.

4.1.2. Spatial Pattern of Land Surface LOS Displacement

The subsidence area depicted in Figure 7, represented by red dots, reveals notable
variations in LS from place to place during the analysis period between 2017 and 2020. To
comprehensively evaluate the cumulative displacement of LS in Lahore, we conducted a
detailed examination of various subsidence profiles within the study area. To achieve this,
we selected 12 PS points in a region highly vulnerable to LS of the study region where the
values are in between −0 mm and −325 mm/year. By overlaying on a Google Earth image,
we carefully placed the selected points covering the center part of urban areas and close to
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the existing groundwater well locations. The subsidence profiles were plotted to evaluate
the cumulative displacement of the LS. We deliberately selected PS points indicated as P1
to P4, situated in the lower part of the study area from east to west, as shown in Figure 7a.
Here, the recorded subsidence values were as follows: P1 (−50.26 mm), P2 (6.45 mm), P3
(−74.79 mm), and P4 (−222.34 mm).
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Figure 6. Cumulative land surface displacement in the study area from 2017 to 2020. The central city
of Lahore’s urban area shows high subsidence ranging between −50 mm and −325 mm, while the
outer region of the city of agricultural green land has less subsidence. A total of twelve PS reference
points of green dots have been selected within the highly affected region of the study area. These
green dots represent the locations of each Persistent Scatterer (PS) point.

Moreover, the subsidence trend observed in the north–southwest direction along PS
points P5 (0.54 mm), P6 (−55.47) mm), P7 (−77.59 mm), and P8 (−111.55 mm) are high-
lighted in Figure 7b. Similarly, we plotted subsidence profiles in the northernmost part of
the study area, moving from west to east for PS points P9, P10, P11, and P12. The corre-
sponding observed subsidence trend values recorded at these points were −168.81 mm,
−176.7 mm, −04.5 mm, and 5.26 mm, respectively, as shown in Figure 7c.

However, Figure 7d exhibits a clear description of the subsidence trend at each point
from 2017 to 2020. These comprehensive subsidence profiles offer valuable insights into
the spatial and temporal dynamics of land subsidence in the study area.
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color indicates within the figure the significant subsidence rate in the high-risk area—
about −50 mm to −325 mm of subsidence was recorded during the study year. For a better 
understanding of the LOS displacement in the study area, the final subsidence maps for 
each year of the time series (2017, 2018, 2019, and 2020) have been visualized.  
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Figure 7. (a) The land subsidence (LS) and rate of Persistent Scatterer (PS) points (P1, P2, P3 and P4)
were selected in the lower part of the study area from east to west. (b) The LS and rate of PS points
(P2, P3, P4, and P5) were selected in the north–southwest direction of the study area. (c) The LS and
rate of PS points (P9, P10, P11 and P12) were selected in the north part of the study area, west to east.
(d) The time series variations in subsidence of the PS points (P1 to P12) over the period from 2017
to 2020. These variations are visually represented through changes in ground level over time for
each specific point. PS points (P4, P9, and P10) show the highest rate of subsidence, which is above
−150 mm in the study area.
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4.1.3. Mean Annual Spatial Pattern in Land Subsidence

Figure 6 (Section 4.1.1) above illustrates the cumulative subsidence within the study
area from 2017 to 2020, ranging approximately from +43 mm to −325 mm. Notably the red
color indicates within the figure the significant subsidence rate in the high-risk area—about
−50 mm to −325 mm of subsidence was recorded during the study year. For a better
understanding of the LOS displacement in the study area, the final subsidence maps for
each year of the time series (2017, 2018, 2019, and 2020) have been visualized.

The subsidence graph of the time series analysis of PS-InSAR-based LS in Figure 8a
represents the observed LS for the year 2017, indicating an annual mean subsidence rate
of approximately −39.14 mm/year, with the recorded subsidence measurements rate of
about −88 mm/year. As shown in Figure 8b, the LS rates of the same monitoring PS
points from 2018 reveal notable fluctuations in readings, with a mean subsidence rate of
nearly −42.705 mm/year and an overall subsidence rate of approximately −98 mm/year.
Figure 8c illustrates the LS for the year 2019, with an overall subsidence observed at
−95 mm/year and a mean subsidence rate of −39.76 mm/year. Meanwhile, in Figure 8d,
we see an LS rate of approximately −141 mm/year, and a mean annual subsidence trend
of −61.95 mm/year. These graphical representations collectively demonstrate an increase
in the LS over the years in Lahore, with an overall subsidence rate of approximately
−45.86 mm/year from 2017 to 2020.
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Figure 8. The spatial pattern of the annual deformation trend of LOS displacement in the study area
can be observed through the colors displayed on the map for the years 2017 (a), 2018 (b), 2019 (c),
and 2020 (d). In this case, the map uses a color gradient to represent the magnitude of deformation in
millimeters (mm), where red indicates the highest rate of subsidence, while blue indicates the low
range of subsidence. The increasing intensity of the red color over time indicates a high trend of
subsidence rate of land surface movement in the study area of Lahore during the years 2017 to 2020.
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However, in the map, the highest deformation rates are indicated in red in the study
area. These areas of high deformation were primarily concentrated in the central region
of Lahore. Furthermore, the map illustrates that, over time, the extent and intensity of
deformation in the central region of Lahore gradually increased and expanded, which is an
alarming situation for the sustainable development of urban cities.

4.2. Land Subsidence in Relationship with Subsurface Geology

The subsidence observed in various regions around the world is often attributed to the
consolidation properties of soils. Within the study area, it has been observed that urban de-
velopment has taken place over alluvium deposits, particularly in the region characterized
by the Qcu-Mender deposit belt, which was once an ancient stream channel. A literature
review revealed that the city’s structures, including residential and commercial buildings,
have been erected on alluvium deposits and dolomites, which occupy the lowland region
between the ridges. Owing to the growing numbers of settlements and unplanned construc-
tion, water channels have been blocked, leading to water stagnation on roads and streets
during the rainy season. Furthermore, the blockage of drainage in a relatively broad basin,
where different streams originate from the surrounding areas, causes water to percolate
into the subsurface layers of the basin. The study results indicate that there is a higher
occurrence of LS in the geographical regions of Lahore City, specifically the Qcu-Mender
deposit belt and Qcl-Chung areas, which are characterized by soft soil layers consisting of a
mixture of sand, silt, and clay. Notably, the observed subsidence rates ranged from −110 to
−310 mm during the study period from 2017 to 2020 (Figure 9). This subsidence can be
attributed to the saturation of the subsurface layers caused by groundwater fluctuations,
which is exacerbated by the additional load exerted by infrastructure elements within the
confines of the study area.

Remote Sens. 2023, 15, x FOR PEER REVIEW 16 of 26 
 

 

relatively broad basin, where different streams originate from the surrounding areas, 
causes water to percolate into the subsurface layers of the basin. The study results indicate 
that there is a higher occurrence of LS in the geographical regions of Lahore City, specifi-
cally the Qcu-Mender deposit belt and Qcl-Chung areas, which are characterized by soft 
soil layers consisting of a mixture of sand, silt, and clay. Notably, the observed subsidence 
rates ranged from −110 to −310 mm during the study period from 2017 to 2020 (Figure 9). 
This subsidence can be attributed to the saturation of the subsurface layers caused by 
groundwater fluctuations, which is exacerbated by the additional load exerted by infra-
structure elements within the confines of the study area. 

 
Figure 9. The LOS displacement in the years 2017–2020 over geological aspects of the study area, 
where the red dots indicate high subsidence in the region, mostly in the Qcu-Mender deposit belt, 
while the Qcl-Chung fun and Qss-younger flood plain deposits showed comparatively low subsid-
ence. 

4.3. Spatio-Temporal Variations in Groundwater Level 
To analyze the potential impacts of groundwater depletion on surface land and the 

occurrence of LS in Lahore, Pakistan, we selected a sample of 36 monitoring wells whereat 
we recorded the annual GWL during 2003, 2008, 2012, 2016, and 2020, and derived the 
temporal change of GWL, as shown in Figure 10. Our results indicate a clear distinction 
in the Kriging analysis of the GWL that shows variations between the central and south-
west regions of the district, with greater groundwater depletion and lower GWL observed 
in the northwest and southwest areas. Additionally, the Mk test results exacerbate the de-
clining trend in GWL depth in each well across the region, with approximately 0.4 m/year 
depletion rate during the study period. In 2003, the maximum GWL depth was approxi-
mately 9.19 to 35.22 m. In 2020, the GWL depth increased up to 12.56 to 48.15 m in the 
study region.  

Figure 9. The LOS displacement in the years 2017–2020 over geological aspects of the study
area, where the red dots indicate high subsidence in the region, mostly in the Qcu-Mender de-
posit belt, while the Qcl-Chung fun and Qss-younger flood plain deposits showed comparatively
low subsidence.
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4.3. Spatio-Temporal Variations in Groundwater Level

To analyze the potential impacts of groundwater depletion on surface land and the
occurrence of LS in Lahore, Pakistan, we selected a sample of 36 monitoring wells whereat
we recorded the annual GWL during 2003, 2008, 2012, 2016, and 2020, and derived the
temporal change of GWL, as shown in Figure 10. Our results indicate a clear distinction in
the Kriging analysis of the GWL that shows variations between the central and southwest
regions of the district, with greater groundwater depletion and lower GWL observed in
the northwest and southwest areas. Additionally, the Mk test results exacerbate the de-
clining trend in GWL depth in each well across the region, with approximately 0.4 m/year
depletion rate during the study period. In 2003, the maximum GWL depth was approx-
imately 9.19 to 35.22 m. In 2020, the GWL depth increased up to 12.56 to 48.15 m in the
study region.
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2020 (e). The color scheme in the map represents the depth of the GWL change, with darker red
shades indicating deeper levels and lighter shades in blue representing shallower levels.

These findings suggest that the densely populated central region may require more
water consumption, and that groundwater depletion has worsened progressively between
2003 and 2020, with an average GWL decrease of approximately 0.49 m/year. The annual
variation in groundwater also revealed fluctuations in the GWL over this time, indicating
the occurrence of groundwater depletion.

4.4. Exploring Groundwater Depletion and Its Influential Factors

In Lahore, rainfall, the Ravi River, and irrigation branch canals are potential sources of
aquifer recharge. However, the river has recently remained dry, except during the monsoon
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season. Therefore, the major population of Lahore relies on groundwater to meet its basic
needs. This has significantly impacted groundwater resources.

The climate research unit gridded observation time series (CRU TSv4.05) is a com-
monly used climate dataset derived from a 0.5◦ latitude × 0.5◦ longitude grid over all land
areas worldwide, except for Antarctica [58]. In this study, we used meteorological datasets
of annually observed gridded precipitation from the climate research unit (CRU) with a
resolution of 0.5◦ × 0.5◦ to compare the annual precipitation at each GWL observation loca-
tion of the 36 monitoring wells in the study area (https://crudata.uea.ac.uk/cru/data/hrg
last access: 25 March 2023). Our study indicates a significant GWL depletion at an average
rate of 0.49 m/year from 2003 to 2020 (Figure 11a); however, the study also found that
precipitation has been increasing significantly over the last two decades. Nevertheless, the
recharge rate in the study area is much lower than the rate of groundwater extraction.
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The city of Lahore has undergone significant changes in its land use patterns, owing
to extensive industrialization and fast-growing trends in heavy construction. Consequently,
the city has experienced a reduction in the number of irrigation fields, which has led
to a decrease in infiltration. This reduction played a significant, albeit indirect, role in
aquifer depletion. The population of Lahore grew from approximately 3.5 million in
1980 to approximately 9 million in 2010, and population growth has been a significant
factor contributing to the increased groundwater consumption (Figure 11b). The growth of
urban areas in Lahore has led to an increase in water demand for domestic and commercial
use, which has put a strain on the already limited groundwater resources. Unplanned
urbanization and the reduction in green spaces have created impermeable surfaces that
impede aquifer recharge, which is essential for replenishing groundwater. According to the
World Population Review, Lahore, with an estimated population of 13.1 million as of 2021
and a high population density of 6815 people per square kilometer, has been experiencing
rapid population growth (https://data.worldbank.org last access: 5 April 2023).

Lahore’s rapidly growing population has likely led to increased demand for ground-
water extraction from aquifers. The challenges of overpopulation and the large extraction
of groundwater can lead to a lowering of the water level, which has led to significant
subsurface arable land. With the notable decline in the groundwater level of aquifers,
the land above them can sink, leading to land subsidence. This can result in damage
to infrastructure and risk the lives of the urban population. Simultaneously, unplanned
urbanization and the reduction in green spaces have created impermeable surfaces that
impede aquifer recharge, which is essential for replenishing groundwater. These issues
collectively result in a range of negative impacts, including aquifer depletion and land
surface deformation. To address these challenges, it is imperative to implement sustainable
urban land use planning and groundwater management strategies.

https://crudata.uea.ac.uk/cru/data/hrg
https://data.worldbank.org
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4.5. Correlation Analysis between Land Subsidence and GWL

To understand the spatial relationship, the coefficient of determination was computed
based on the cumulative displacement of PS-InSAR and annual average GWL values.
Figure 12 shows the coefficients of determination for mean annual GWL and LS. The central
part of the city, which showed a strong positive correlation between LS and GWL, was
statistically significant at p < 0.05. Based on the spatial pattern of Kriging interpolation for
better visualization of the correlation analysis, the northeastern part of the area showed a
strong correlation with the GWL. The weakest positive correlation was observed in south
and southwest Lahore.
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These areas, prone to LS due to the over-extraction of groundwater, are shown in red.

The impact of groundwater depletion and environmental degradation is strongly felt
in Lahore’s central area, where high population density and aging infrastructure exacerbate
LSD. The risk to the safety of residents is increasing because of concerns about the collapse
of buildings and infrastructure. The rapid growth of unregulated urban settlements has
exacerbated the strain on groundwater resources and has become a major cause of concern.
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5. Discussion
5.1. The Relationship between Groundwater and Land Subsidence

The city of Lahore in Pakistan is facing severe groundwater depletion [59,60] primarily
because of the excessive and unwise use of water for domestic and industrial purposes [61].
In response to this issue, the Water and Sanitation Agency (WASA) authorities have started
installing more tube wells to address growing public water demands [19]. However,
these tube wells were installed at depths ranging from 182.88 to 213.36 m in Lahore. This
excessive groundwater extraction resulted in a continued decline in the groundwater table,
and threatened the underlying aquifer of Lahore.

The rate of groundwater extraction in Lahore is estimated to be approximately
1.45 million cubic meters per day [62]. According to a WASA report, the water table in
Lahore has decreased by an average of 18.59 m since 1961 [19]. In a study conducted
by Basharat, Muhammad, and Sultan Ahmad Rizvi (2011), water table depletion has
been reported to vary across the different areas of Lahore. This study also found that
the average GWL depletion in Lahore was approximately 0.62 m/year [63]. At present,
the GWL in Lahore is receding at a faster rate of approximately 0.92 m/year, which is a
matter of great concern for the city’s water security [8].

Before 1876, the primary water source in the region was groundwater extracted from
open wells. However, currently, the major source of water supply to the public is the
groundwater supply system of the WASA tube wells installed in different parts of the city. It
is estimated that the total volume of groundwater extracted by the WASA is 280–290 million
gallons per day, whereas a significant amount of water (approximately 150 million gallons
per day) is extracted by the private sector. The amplified pumping rates resulted in a more
substantial decline in water. As a result, the excessive extraction of groundwater has caused
significant LS, characterized by an anomalously shaped depression cone that has formed,
particularly in the high urban development areas of the city.

The regions where the LOS displacement is lower are represented by blue and green
colors, indicating shallow GWL depth and the lower depletion of groundwater. Recent
findings from both PS-InSAR and groundwater observations in Lahore are alarming. They
reveal a substantial decline in the GWL and a significant occurrence of subsidence over
the past few years. Particularly in the northern region of the city center of Lahore, con-
sisting of densely urbanized areas for commercial, industrial and residential purposes,
the groundwater level (GWL) variations are the result of a complex interplay of multiple
factors; this area, the GW level depth has declined from 35.22 to 48.15 m between 2013 and
2020. Meanwhile, the subsidence rate observed between 2017 and 2020 indicated a range
of −100–−325 mm predominantly observed in areas with severe groundwater depletion
(Figure 13). The fact that the subsidence rate increased during this period is alarming,
as it suggests that the problem worsened over time. This can have a range of negative
consequences for sustainable development in the region. The groundwater depletion rate
(0.49 m/year) is also a cause for concern, because it indicates a significant loss of ground-
water resources in the area. This could have serious consequences for the local population,
as well as for agriculture in regions that rely on groundwater. Authorities must take action
to address these issues as soon as possible. This could involve implementing measures
to reduce groundwater use, such as encouraging the adoption of water-efficient practices
in agriculture and industry or promoting the use of alternative sources of water. It may
also be necessary to closely monitor the situation to ensure that further subsidence and
groundwater depletion do not occur.

5.2. Main Contribution of This Study

This study mainly investigated groundwater depletion associated with LSD and
climatic factors, as well as the geological aspects and population of the Lahore region
of Pakistan under different groundwater observation points. The findings of this study
indicate that groundwater depletion is primarily linked to the rapid growth of urbanization
and rainfall variations over time, leading to groundwater demand scenarios. However,
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the study highlights that LSD and LS occurrences in urban areas are primarily associated
with excessive groundwater extraction and the reduction in rainwater infiltration into
the aquifer.
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The major influencing factors of the LSD identified in this study align with those in
prior studies associated with groundwater extraction and geological factors. For example,
Blasco et al. (2019) reported a subsidence rate of around −10 to 2 mm/year and −12 to
−3 mm/year in the urban areas of Rome. This subsidence was observed particularly
along road networks and coastal regions because of extensive urban development and
groundwater exploitation [64]. Similarly, a linear correlation between LS with groundwater
abstraction, along with the geological structure of Mexico City, was reported, leading to a
significant land deformation rate of −20 cm year-1 between 2015 and 2016 [65]. Notably,
this phenomenon has also been observed in the coastal regions of Venice and Bangkok,
which recorded subsidence rates of up to 1.4 cm y−1 [17] and 12 cm y−1 [66], respectively,
in response to groundwater extraction. Overall, various factors, such as the excessive
extraction of groundwater, the rapid growth of urbanization, the amount of local rainfall,
geological factors, soil conditions, and climatic conditions, could jointly influence the oc-
currence of ground surface deformation and further determine the extent of environmental
degradation. In addition, the majority of coastal cities, such as Shanghai and Tianjin,
Karachi, Los Angeles, and Dangjin, have also reported significant LSD [11,18,67,68].

Our study analyzes the LOS displacement in Lahore from 2017 to 2020, using diverse
datasets, including long-term InSAR measurements and their driving factors, to compre-
hensively study subsidence trends over time as they correlate with groundwater level
(GWL) depth, in order to provide a completed perspective of land subsidence factors in
Lahore. By combining these datasets, we uncover complex relationships between geol-
ogy, groundwater extraction, and land subsidence, offering new insights not explored in
prior studies [26,69]. The results also indicate that densely populated and largely con-
structed areas of Lahore experienced a higher rate of LS than the green areas. This indicates
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that rainwater infiltration in the green areas was comparatively higher, allowing for the
recharge of the GWL. The use of PS-InSAR techniques enables the optimization of the
time-series analysis of land surface LOS displacement in a specific region, facilitating in-
spection and monitoring for the sustainable development of cities, and risk mitigation of
existing infrastructure in urban areas, as well as the construction of new cities, such as
the ongoing RUDA (Ravi Urban Development Authority) (https://ruda.gov.pk, accessed
on 13 April 2023), project in Lahore. The project examines feasibility studies related to
geotechnical investigations and assessing soil and groundwater conditions in the region,
as well as the potential LS concerns, which can help in assessing the associated risks and
possible consequences of such issues. It also considers the effects of urbanization and
development on the local environment and natural resources of groundwater availability
in the region, and identifies strategies to mitigate these challenges to ensure sustainable
and resilient new city development.

To minimize the adverse effects of groundwater depletion on surface land, the gov-
ernment must establish and implement policies that mandate strict risk management
practices. Additionally, policies should incorporate the effective management of ground-
water recharge, such as constructing more check dams along canals and rivers. The RUDA
Authority proposed the construction of small water reservoirs on the Ravi River to control
monsoon floods during the development of new cities. These projects could also aid in
managing the groundwater recharge process in the Lahore region.

5.3. Uncertainties and Limitations

In this study, we evaluated the relationship between GWL and LSD using PS-InSAR
techniques in Lahore. Generally, geological aspects and groundwater depletion are consid-
ered to be major sources of LSD [70]. Similarly, the LS scenario in Lahore is influenced by
various factors, including excessive groundwater pumping, rapid urbanization, subsurface
geological conditions, and rapid population growth. Hence, in the absence of other known
tectonic and geological processes, and based on the above correlations, we suggest that
rising GWL depletion is the major factor resulting in LS in Lahore, which requires more
effort to mitigate LSD. To this end, there is a need to analyze the most influential factors
for LS, such as the rate of groundwater abstraction, rapid urbanization, surface runoff,
soil conditions, and rapid population growth. As a limitation of the current study, it is
recommended that multiscale research be conducted in the future to comprehensively
examine LS conditions in major cities by incorporating the abovementioned factors to
achieve the United Nations sustainable development goals for cities and communities.
Moreover, geotechnical and aquifer characteristics can be coupled to probe the geological
mechanisms behind the LS phenomena because these factors are the major sources of LS.

6. Conclusions

This study sheds valuable light on the critical issue of land subsidence in Lahore,
Pakistan, and its relationship to groundwater depletion and aquifer degradation. A re-
liable supply of groundwater in a particular area is not only becoming an urgent need,
but also a challenge for the sustainable development of cities around the world. After
the advancement of remote sensing data availability, there have been many studies con-
ducted on groundwater depletion and land surface deformation worldwide. However,
in conventional practices, groundwater management and conservation strategies rarely
consider aquifer recharge or land surface development in developing countries. In this
study, we monitored LS from 2017 to 2020, and highlighted the ability of PS-InSAR to
monitor time series subsidence in Lahore. The results indicate that groundwater and LSD
varied significantly depending on many factors, including the geological conditions of
the region, and spatial variations in local rainfall, water demand, groundwater pumping,
surface water availability, surface runoff and climatic conditions. This paper provides a
detailed explanation of the processing parameters used and the steps taken to minimize
noise and errors. The study also utilized Sentinel-1 SAR data and interferometric processing

https://ruda.gov.pk
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to analyze surface deformations, revealing heavy LS, at an average rate of −105 mm/year.
The correlation between the detected subsidence region and GWL from the selected ground-
water wells suggests that groundwater overexploitation is the main factor contributing
to LS. The findings indicate that, on average, GWL in the study area depleted at a rate
of 0.49 m/year between 2003 and 2020. Additionally, the results indicate that areas with
high land surface movement experienced significant groundwater depletion. Overall,
this study emphasizes the importance of integrating GWL measurements with PS-InSAR
technology to monitor the environmental impacts of groundwater overexploitation and
control groundwater abstraction. This research offers a crucial step in that direction, and
calls for collaboration among various stakeholders to ensure a more sustainable and secure
urban future.
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