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Abstract: Graph convolutional networks (GCNs) are a promising approach for addressing the
necessity for long-range information in hyperspectral image (HSI) classification. Researchers have
attempted to develop classification methods that combine strong generalizations with effective
classification. However, the current HSI classification methods based on GCN present two main
challenges. First, they overlook the multi-view features inherent in HSIs, whereas multi-view
information interacts with each other to facilitate classification tasks. Second, many algorithms
perform a rudimentary fusion of extracted features, which can result in information redundancy
and conflicts. To address these challenges and exploit the strengths of multiple features, this paper
introduces an adaptive multi-feature fusion GCN (AMF-GCN) for HSI classification. Initially, the
AMF-GCN algorithm extracts spectral and textural features from the HSIs and combines them to
create fusion features. Subsequently, these three features are employed to construct separate images,
which are then processed individually using multi-branch GCNs. The AMG-GCN aggregates node
information and utilizes an attention-based feature fusion method to selectively incorporate valuable
features. We evaluated the model on three widely used HSI datasets, i.e., Pavia University, Salinas,
and Houston-2013, and achieved accuracies of 97.45%, 98.03%, and 93.02%, respectively. Extensive
experimental results show that the classification performance of the AMF-GCN on benchmark HSI
datasets is comparable to those of state-of-the-art methods.

Keywords: attention mechanism; graph convolution network; hyperspectral image classification;
multi-view

1. Introduction

Hyperspectral images (HSIs) are characterized by abundant spectral and spatial infor-
mation comprising hundreds of contiguous spectral bands [1]. The combination of image
and spectral data in HSI, which is attributed to its distinctive characteristics [2], bestows
a substantial capacity for information extraction. Consequently, HSIs have been widely
employed across diverse domains, including military and civilian sectors, as well as in
applications pertaining to agriculture, mining, aviation, and national defense [3–6].

Recently, the classification of HSIs has been investigated extensively for HSI processing.
Nevertheless, the inherent complexity of HSI coupled with the challenge of acquiring
pertinent data attributes engenders some issues, including substantial noise levels, high
computational demands, high-dimensional intricacies, and complexities pertaining to
classifier training [7]. Furthermore, the scarcity of adequate sample sizes augments the
intricacy of HSI classification tasks [8,9].
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Various HSI classification approaches have been developed in recent decades. Early
methods primarily harnessed conventional machine learning (ML) techniques to categorize
pixels based on the spectral data embedded within HSIs. Examples include the K-nearest
neighbor (KNN) classification [10], support vector machines (SVM) [11], and random
forests [12]. However, when addressing HSIs characterized by intricate feature distribu-
tions, relying solely on spectral information can pose challenges in accurately discerning
diverse ground features. Consequently, some researchers have introduced methodolo-
gies based on morphology to effectively amalgamate the spatial and spectral information
within HSIs [13,14]. Similarly, techniques such as texture feature descriptors and Gabor
filtering [15,16] have been employed to extract joint spatial–spectral information from HSIs.

However, many of these methods require the manual extraction of spatial–spectral fea-
tures, thus rendering the quality of these features significantly reliant on expert judgment.
In this regard, deep learning offers an elegant solution to HSI feature extraction [17–19].
Specifically, deep learning techniques can automatically derive abstract high-level represen-
tations by progressively aggregating low-level features, thereby eliminating the necessity
for intricate feature engineering [20,21]. In the early stages of the adoption of deep learning,
Chen et al. [22] pioneered the use of a stacked autoencoder to extract high-level features
from HSIs. Subsequently, Mou et al. [23] employed a recurrent neural network model to
address HSI classification challenges. In recent years, classification networks based on
transformers have been investigated extensively. A transformer structure affords global
feature extraction by establishing long-distance dependencies. Studies based on transform-
ers for HSI classification have been performed. For example, He et al. [24] were the first to
apply a visual transformer for HSI classification, which resulted in an unexpectedly high
classification accuracy. Hong et al. [25] established a new transformer backbone network
based on spectral sequencing. However, the structure of the transformer model was rel-
atively complex and required significant amounts of computing resources and training
data. As a simple and conventional model, convolutional neural networks (CNNs) have
emerged as effective tools for HSI classification [26,27]. CNN-based approaches outper-
form conventional SVM methods in terms of classification performance [28]. For instance,
Makantasis et al. [29] utilized a CNN model to encode spatial and spectral information
simultaneously within an HSI by employing a multi-layer perceptron for pixel classification.
Similarly, Zhang et al. [30] introduced a multi-dimensional CNN to automatically extract
multi-level spatial–spectral features. Lee et al. [31] established an innovative contextual
deep CNN model that harnessed the spatial–spectral relationships among neighboring pix-
els to capture optimal contextual information. Zhu et al. [32] used the residual connection
method in neural networks to enable the underlying information to directly participate
in high-order convolution operations, which alleviated the degradation in classification
accuracy as the number of network layers increased. However, this method continuously
extracts spectral–spatial information, and the image texture content may not be available.
Despite the excellent performances demonstrated by CNNs, a few limitations remain. In
conventional CNN models, the convolution kernels typically operate on regular objects
within square areas. Consequently, these models cannot adaptively capture geometric
variations among different feature blocks within an HSI [33]. Moreover, conventional CNN
models cannot directly simulate long-distance spatial relationships in spectral images [34],
which constrains their representation capabilities [35,36].

To address the inherent limitations of CNNs in HSI classification tasks, researchers
have adopted a novel deep learning model known as graph convolutional neural networks
(GCNs) [37–40]. GCNs dynamically enhance node representations primarily by assimilating
insights from neighboring nodes, where the graph convolution operation is adaptively
guided by the underlying graph’s structural properties [41,42]. Consequently, the GCNs
exhibit compatibility with irregular data featuring non-Euclidean structures, thus enabling
them to effectively capture irregular class boundaries within HSIs. Furthermore, owing
to their appropriately designed graph structure, GCNs can directly capture pixel-to-pixel
distances and model spatial relationships.
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Exploiting the strengths of GCNs, Qin et al. [38] pioneered the incorporation of both
spectral and spatial information into the graph convolution process, although at the ex-
pense of increased computational complexity. He et al. introduced a two-branch GCN
approach [43] in which the first branch extracts sample-specific features and the second
branch engages in label distribution learning. Hong et al. [44] used a GCN to process irreg-
ular HSI data and implemented network training in small batches to effectively mitigate
the substantial computational demands associated with conventional GCNs. Liu et al. [45]
devised a CNN-enhanced graph convolutional network (CEGCN) to address issues arising
from the incongruity between the representation structures of CNNs and GCNs. To dynam-
ically adapt to the unique graph structure of HSIs, Yang et al. [46] introduced a deep graph
network equipped with an adaptive graph structure, which yielded favorable classification
results. Wang et al. [47] pioneered the development of a graph attention network that seam-
lessly integrated the attention mechanism to adaptively capture spatial and spectral feature
information. Yao et al. [48] developed a dual-branch deep hybrid multi-GCN customized
for HSI classification by proficiently applying spectral and autoregressive filters to extract
spectral features while suppressing graph-related noise. Finally, Bai et al. [49] formulated
a multitiered graph-learning network for HSI classification designed to reveal contextual
information in HSIs by seamlessly learning both local and global graph structures in an
end-to-end manner.

However, the existing HSIs based on graph convolution present two problems. On the
one hand, multi-feature fusion can indeed improve HSI classification accuracy [18,50,51],
but few algorithms consider combining the multi-view information of HSIs. For instance, a
multi-scale graph sample and aggregate network with context-aware learning (MSAGE-
Cal) [52] integrates multi-scale and global information from the graph. Meanwhile, mul-
tilevel superpixel structured graph U-Nets (MSSUG) [53] creates multilevel graphs by
combining adjacent regions in HSIs, capturing spatial topologies in a multi-scale hierar-
chical manner. However, these methods only consider information mining from a single
modality, without regard for the complementary value of multi-view data, i.e., textural
information. Textural information can complement spatial information to facilitate more
accurate classifications [54]. On the other hand, these algorithms extract multiple features
and then fuse them non-precisely, thus causing the retention of redundant information,
which may cause conflicts and affect classification. In this study, we introduce an adaptive
multi-feature fusion GCN to fully exploit the potential of multi-view data. First, we em-
ploy a rotation-invariant uniform local binary pattern (RULBP) to extract textural features,
which are then combined with spectral features. This fusion of two distinct feature sets
results in a multi-feature representation. To further enhance the integration of information
from different views while simultaneously eliminating redundancy, we precisely combine
multiple features in an adaptive fusion mechanism based on the attention mechanism,
following the feature aggregation of the GCN. The main contributions of this study are as
follows.

• This study introduces a novel framework for HSI classification, referred to as the
AMF-GCN, which focuses on extracting and adaptively fusing multi-branch features.

• Spectral and textural features are extracted and fused to achieve multiple GCNs, and
an attention-based adaptive feature fusion method is utilized to eliminate redundant
features.

• Extensive experimental results on three benchmark datasets demonstrate the effective-
ness and superiority of the AMF-GCN over its competitors.

2. Related Work
2.1. GCNs

The essential purpose of GCNs is to extract the spatial features of topological maps.
The convolution process of the graph can be regarded as the process of transmitting
messages in an entire HSI, which can be separated into two aspects: feature aggregation and
feature transformation. In feature aggregation, each node combines its own features with
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those of its neighboring nodes. The graph structure can be formally defined as G = (V, E),
where V denotes the set of nodes and E represents the set of edges. This structure is
typically represented using an adjacency matrix A and degree matrix D. Specifically, A
encodes the relationships among the pixels within the HSI, where N denotes the total
number of nodes. In the case of an undirected graph, A assumes the form of a symmetrical
square matrix, with its elements being either 0 or 1. A value of 1 signifies the presence
of edges connecting two nodes, whereas a value of 0 indicates their absence. The degree
matrix D assumes a diagonal matrix configuration. Its diagonal elements correspond to
the degrees of the individual vertices, thus signifying the number of edges associated with
each node.

In spectrogram analysis, the fundamental operator is a graph Laplacian matrix, which
is a symmetric positive semidefinite matrix. Based on the attributes of this symmetric
matrix, its n eigenvectors are linearly independent, and form a complete set of orthonormal
bases within an n-dimensional space. The graph Laplacian matrix can be represented as
L = D−A, and the symmetrically normalized version of this graph Laplacian matrix is
formally expressed as shown in Equation (1).

L = IN −D−1/2AD−1/2. (1)

The graph Fourier transform employs the eigenvectors of the Laplacian matrix as its
basis function. It expresses the eigenvectors of the nodes as linear combinations of these
basis functions, thus effectively transforming the convolution operation into a product
involving the coefficients of these basis functions. The convolution formula for the graph is
expressed as shown in Equation (2).

gθ · x = Ugθ(Λ)UTx, (2)

where U represents an orthogonal matrix whose column vector is composed of the eigen-
vectors of the symmetric normalized Laplacian matrix L and g(Λ) is a diagonal matrix
composed of parameters θ, which represent the parameters to be learned. The equation
above is the general form of spectrogram convolution; however, implementing Equation (2)
is computationally intensive because the complexity of the feature vector matrix U is O(N2).
Equation (3) can be obtained via the truncation fitting of the Chebyshev polynomial Tk(x).
To obtain the computational cost of the HSI composition, the first-order Chebyshev poly-
nomial Tk(x) up to the K-th truncated expansion [55] is used to approximate Equation (2).
The obtained calculation formula is:

gθ · x =
K

∑
k=0

θkTk(L̃)x. (3)

In this formula, L̃ = 2
λmax

L− IN , where λmax is the maximum eigenvalue of L and θk
is the Chebyshev coefficient vector. To reduce the amount of calculations, Kipf et al. [56]
only performed calculations based on K = 1 and a λmax of approximately 2; consequently,
Equation (4) is derived.

gθ · x ≈ θ
(

IN + D−1/2AD−1/2
)

x. (4)

In addition, to learn the features of the nodes and alleviate the vanishing gradient
problem in the multi-layer graph convolution process [57], self-normalization is introduced,
which yields Equation (5).

IN + D−1/2AD−1/2 → D̃−1/2ÃD̃−1/2, (5)

where Ã = A + IN , D̃ii = ∑j Ãij, and σ is the activation function.
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Finally, we obtain Equation (6).

Hl+1 = σ
(

D̃−1/2ÃD̃−1/2HlWl
)

, (6)

where Hl denotes the input of layer l, Hl+1 represents the output of layer l, and Wl

represents the weight parameter to be learned. Equation (6) is a typically used graph
convolution formula. The graph convolution layer realizes the transfer of neighborhood
relationships by continuously aggregating adjacent nodes.

2.2. HSI Classification Based on Superpixels

The conventional approach of directly employing pixels as nodes to compose images
results in substantial temporal and spatial complexities, which severely constrains the
feasibility of applying GCN models to extensive HSI datasets [18,33]. To address this issue,
researchers proposed the use of superpixels as nodes to establish graph structures. Super-
pixels typically denote irregular pixel clusters comprising neighboring pixels that share
similar attributes such as texture, color, and brightness. In HSIs, superpixels are typically
created by applying image-segmentation algorithms. More importantly, the number of
superpixels in an HSI is generally significantly smaller than the number of individual
pixels. Consequently, adopting superpixels as nodes for graph construction judiciously
limits graph size and significantly enhances the efficiency of graph convolution. Further-
more, leveraging superpixels to construct graph structures offers the added advantage of
preserving local structural information in HSIs.

Owing to these advantages, the practice of building graphs using superpixels as nodes
has been adopted extensively. In 2019, Wan et al. [33] were the first to introduce the multi-
scale dynamic GCN (MDGCN) algorithm, which signified the earliest use of superpixel
mappings in GCN methods. The MDGCN algorithm initiates this process by employing an
image-segmentation algorithm to partition the HSIs into compact superpixels. The mean
spectral feature value derived from all pixels within a specified superpixel defines its feature
representation. Subsequently, the graph structure is constructed based on the local spatial
neighborhood to facilitate the subsequent graph convolution operations. Since the intro-
duction of the MDGCN algorithm, constructing graph structures based on superpixels has
become a standard practice [19,52], which subsequently resulted in a series of refinements.
For instance, to extract multi-scale spatial–spectral information from an HSI, the MSSGU
algorithm [53] employs regional fusion techniques to generate multi-scale spatial–spectral
information through superpixel segmentation. This approach classifies superpixels into
multiple levels and constructs the corresponding graph structures for graph convolution
operations. Additionally, a major feature of the algorithm is that the CNN is used in
both the pre-processing and post-processing steps of the algorithm to perform pixel-level
feature fusion operations, thus avoiding the more complex pixel-level image convolution
operations. The operating efficiency of the algorithm is improved to a certain extent. To
preserve fine-grained spatial–spectral information at the pixel level, the graph-in-graph
convolutional network (GiGCN) algorithm [58] creates both pixel-level and superpixel-
level graph structures. These are then fused to yield multi-scale spatial–spectral features
through different levels of graph convolution. The model’s structure sufficiently represents
the local and global information of objects and reflects their relationships. Moreover, in a
bid to further enhance the efficiency of graph convolution operations, the automatic graph
learning convolutional network (Auto-GCN) algorithm [59] subdivides the original image
into larger grid-shaped superpixels, thereby reducing the number of graph nodes.

In summary, adopting GCNs with superpixels as nodes offers convenience and allows
precomputations, thus resulting in efficient resource utilization. Hence, superpixels were
used as nodes in the current study. However, the aforementioned algorithms only take into
account the spectral information of HSIs, neglecting other pertinent views like texture. As a
result, they are unable to precisely represent the interdependency between ground objects
within HSIs. This constrained, to some degree, the capacity to further enhance classification
accuracy for HSIs.
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3. Methodology

In this section, we provide a comprehensive overview of the fundamental architecture
of the AMF-GCN. Figure 1 shows the overall network structure. We begin by detailing the
processing of HSIs, which encompasses the extraction and fusion of spatial and textural
features. Subsequently, we present the creation of multi-view features to compose separate
images. Finally, we investigate the utilization of multi-branch GCNs for feature extraction
and the application of an attention mechanism for feature fusion. Furthermore, we describe
the detailed process of the AMF-GCN in Algorithm 1.

RULBP

G1

···

Spatial Features

Texture Features

KNN

G2

···

···
···

……

······

···
···

……

···
···

KNN

KNN
G3

Category

Adaptive Features
Fusion

Hyperspectral Image Process Multi-Branch Graph Constructioni Adaptive Multi-Branch GCNi

PCA

KNN: K-nearest neighbor
: Activation funciton
: Weighted summation

Figure 1. AMF-GCN architecture diagram. The model process is divided into three main parts. First,
the hyperspectral image undergoes a series of preprocessing, including dimensionality reduction,
superpixel segmentation, and texture feature extraction. Second, the spectral features are extracted
from the hyperspectral image after superpixel segmentation, the texture features are combined to
obtain the fusion features, and then the k-nearest neighbor algorithm is used to compose features.
Finally, the graph convolution network is used to extract features of G1, G2, and G3, and then the
attention-based fusion algorithm is used to fuse the features.

Algorithm 1 Learning Procedure for AMF-GCN

Input: HSI original data X, number of epoch T, number of superpixels N, number of graph
node neighbors k

1: Obtain N superpixels by using SLIC to perform superpixel segmentation on HSI.
2: Obtain spectral features zs and texture features zt by Equation (8) and Equation (12),

respectively.
3: Obtain the fused feature z f by fusing zs and zt

4: while epoch ≤ T do
5: Use Equation (14) to construct adjacency matrices As, At and A f with k-nearest

neighbors for features zs, zt, and z f .
6: Obtain deep features ZS, ZT , and ZF by Equation (15) using (zs, As), (zt, At) and

(z f , A f )
7: Obtain final feature F through adaptive fusion by using Equations (16) and (17).
8: Obtain the predicted label Y by Equation (18).
9: end while

10: Label prediction is performed for each pixel.
Output: each pixel label
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3.1. HSI Preprocessing

In this study, hyperspectral data are denoted as XH ∈ RH×W×C, where H and W
represent the height and width of an HSI in pixels, respectively, and C denotes the number of
spectral bands in the HSI. Before proceeding with subsequent operations, we preprocessed
the HSI. First, we performed principal component analysis [60] to reduce the dimensionality
of the HSI. Dimensionality reduction eliminates redundant information from the original
hyperspectral data. Excessive dimensions can impede the training and prediction speed of
a model, thus potentially resulting in issues such as overfitting. Subsequently, we applied
the simple linear iterative clustering (SLIC) [61] algorithm for superpixel segmentation.
This step is essential to circumvent the substantial computational burden associated with
regarding each pixel as a graph node during the composition process. The number of
superpixels N obtained after the segmentation can be expressed as follows:

N =

⌈
H ×W

λ

⌉
, (7)

where the scale parameter denoted by λ is used to control the number of superpixels, λ ≥ 1.

We represent the set of all superpixels in the image as S = {Si}n
i=1, where each Si =

{
xi

j

}Ni

j=1

corresponds to the ith superpixel. Here, xi
j represents the jth original pixel in superpixel

Si, and Ni denotes the total number of original pixels encompassed by superpixel Si. We
converted all the superpixels into nodes in the topological graph. Each node Vi corresponds
to a superpixel Si. To complete the construction of the topological map, we must acquire
hyperspectral features zs, texture features zt, and fusion features z f , in addition to an
adjacency matrix representing the connection relationships between the nodes.

3.1.1. Spectral Feature Extraction

The original HSI may contain redundant information and noise, which can adversely
affect feature extraction. To mitigate this issue, we employed a 1 × 1 CNN to preprocess
individual pixels, and the model was shown in Figure 2. Subsequently, based on the
results of the superpixel segmentation, we incorporated the spectral information of the
pixels into the spectral features of the graph nodes. Specifically, the output X(l) = {x̃i}
obtained after the l-th convolutional layer within the node feature network structure is
expressed as follows:

X(l) = σ
(

W(l) ∗ BN
(

X(l−1)
)
+ b(l)

)
, (8)

where ∗ represents the convolution operator; X(l−1) signifies the input of the layer; BN(·)
denotes batch normalization; σ(·) is the activation function; W(l) and b(l) represent the
learnable parameters and offsets, respectively. For a 1 × 1 convolution kernel size, the
network output size remains identical to that of the input. Even after the aforementioned
operation is performed, pixel-level features remain in the resulting X(l) = {x̃i}.
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LU BN Co
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Node 
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Encode
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Figure 2. Simple flowchart of model AMF-GCN.
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To achieve feature-level transformation while preserving the spatial information of the
original image, superpixel-based feature aggregation must be performed. Let zs

k denote the
spectral features of the k-th node. Hence, feature aggregation can be expressed as follows:

zs
k =

1
Nk

Nk

∑
j=1

x̃j, (9)

where Nk denotes the number of pixels in the superpixel corresponding to a node. This
feature aggregation method, which utilizes the average values, mitigates the effects of
outlier pixels when the segmentation accuracy is compromised. By amalgamating all the
node feature vectors, we obtain the spectral feature matrix zs = [zs

1, zs
2, · · ·, zs

n] for the nodes,
where n denotes the number of nodes.

3.1.2. Texture Feature Extraction

To further enhance the image classification accuracy, we incorporate texture features
extracted from images using the local binary pattern (LBP) technique, which are then
combined with spectral features for classification. The LBP model, which was originally
introduced by Ojala et al. [62,63], operates on image pixels by comparing the grayscale
values of a central pixel and its neighboring pixels to form a binary bit string. Formally, the
fundamental LBP operator at a specified center pixel is defined as follows:

LBPP,R =
P−1

∑
i=0

s(gi − gc)× 2i, (10)

s(x) =
{

1, x ≥ 0,
0, x < 0,

(11)

where R denotes the radius of the sampling circle; P denotes the number of sampling points
situated along the circumference of the circle; gc represents the gray value attributed to
the central pixel; and gi represents the gray value assigned to the ith adjacent point pixel
along the sampling circle, where i ranges from 0 to P− 1. Additionally, s(x) corresponds to
the threshold function employed to binarize the grayscale disparity between gc and gi. In
scenarios where the sampling point does not align precisely with an actual pixel, the gray
level is typically estimated using standard bilinear interpolation.

By encoding all actual pixels using the LBP model expressed in Equation (10), an
m ∗ n texture image can be encoded as an LBP-encoded image. Subsequently, a statistical
frequency histogram of the encoded image is generated to construct a feature vector. To
maintain rotation invariance and reduce the dimensionality of the LBP, Ojala et al. [63]
proposed a rotation-invariant uniform LBP (RULBP). Through mapping, this method
obtains rotation invariance and further reduces the feature dimensions. The gradient
descriptor ud of the RULBP is expressed as follows:

ud−LBPriu2
P,R =

{
∑P−1

i=0 s(gi − gc), U(LBPP,R) ≤ 2,
P + 1, U(LBPP,R) > 2,

(12)

U(LBPP,R) =
P−1

∑
i=1

∣∣∣s(gi − gc)− s
(

g mod (i+1,p) − gc

)∣∣∣, (13)

where U(LBPP,R) is a uniformity measure that counts the number of transitions between 0
and 1 in binary.

In HSIs, every affected spectral band can be regarded as an individual grayscale image.
The RULBP model was applied directly to each band, which yielded RULBP codes for every
pixel. Subsequently, a statistical histogram of the central pixel image block was employed
as the RULBP feature for a specific pixel. Figure 3 illustrates the process of generating
RULBP features. The extracted features encompassed both primary spectral features and
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local texture features derived from the RULBP. This approach effectively leverages both the
spatial and spectral information inherent in HSIs.

Figure 3. The process of generating rotation-invariant uniform local binary pattern (RULBP) features
in HSI.

3.2. Multi-Branch Graph Construction

After obtaining the spectral feature zs and texture feature zt, we used a fully connected
layer to unify their lengths. Subsequently, we used the element-by-element multiplication
method to fuse the two features to obtain a fused feature z f . Once the feature vector
z = {zs, zt, z f } is defined, connections between the edges must be established. This
involves determining the adjacency matrix A based on the interactions between nodes. To
maximize the preservation of the spatial information in the original image, we adopted
an adjacency relationship derived from superpixels. In simpler terms, a weight of 1 was
assigned to the border connecting two adjacent superpixels, whereas the weights of all
other edges were set to 0 to indicate the absence of any edge connection. This can be
expressed as follows:

Aij =

{
1, zj ∈ Nk(zi),
0, otherwise ,

(14)

where Aij denotes the element positioned at (i, j) within the adjacency matrix A and
zj ∈ Nk(zi) represents the set of neighbors which are selected by KNN in the view that
contains z . Employing the aforementioned approach, we can obtain the adjacency matrices
A = {AS, AT , AF} that represent the spectral, texture, and fusion adjacency matrix. There-
fore, the spectral, texture, and fusion graph can be expressed as Gs = (zs, As), Gt = (zt, At)
and G f = (z f , A f ).

3.3. Adaptive Multi-Branch GCN
3.3.1. Multi-Branch GCN

After acquiring the multi-branch features of HSIs and their corresponding adjacency
matrices, we employed a GCN to aggregate adjacent node features, thereby enhancing the
model’s feature extraction capabilities. As discussed previously, we introduced the GCN,
and each layer of the GCN can be expressed mathematically as follows:

Gs
1 = G Conv(Gs) + b1,

Gt
1 = G Conv

(
Gt)+ b2,

G f
1 = G Conv

(
G f
)
+ b3.

(15)

The number of graph convolution layers was set to three. This is because employing
additional graph convolution operations may result in network degradation, whereas
fewer layers may not capture the full spectrum of data features effectively. After graph
convolution operations were completed in the three layers, we obtained deep features,
labeled as ZS, ZT , and ZF, respectively.
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Upon completing the multi-branch feature extraction, the features from each branch
were fused. Furthermore, to generate the final category map, the features were remapped
to the pixel level to extract the pixel-level features, thereby enabling the retrieval of category
information for each individual pixel. After the dual views and their fused features were
mapped back to the size of the original image based on the corresponding relationship
during the superpixel segmentation, they were converted into PS, PT , and PF.

3.3.2. Adaptive Feature Fusion

The fusion of the three features can introduce redundancy and mutual interference. To
address this issue, we employed an adaptive feature fusion method. First, we consider the
feature ps of any node in Gs as an illustrative example. Initially, the feature was subjected
to a nonlinear transformation; subsequently, an attention vector q ∈ Rh′×1 was used to
compute the attention weight ωi

S as follows:

ωi
S = qT · tanh

(
WS ·

(
pi

S

)T
+ bS

)
, (16)

where ωS ∈ Rh′×h and bS ∈ Rh′×1 represent the weight matrix and bias vector, respectively.
In a similar fashion, we can calculate the attention values ωi

T and ωi
F for node i in the

spectral graph and fusion graph, respectively. Subsequently, we normalize these values
using the softmax function to derive the ultimate weights:

αi
S = softmax

(
ωT = Si

)
=

exp
(
ωi

S
)

exp
(
ωi

S
)
+ exp

(
ωi

T
)
+ exp

(
ωi

F
) . (17)

A higher value of αi
S implies greater importance for the corresponding embedding.

Finally, we employed a weight vector to adaptively amalgamate the features from each
component, which resulted in the ultimate fusion feature. Subsequently, the resultant final
features, which contain information across multiple scales, were input into a classifier
comprising a fully connected network and a softmax function to predict the category for
each pixel, as depicted in Equation (18).

Y = softmax(FC(FC(F))), (18)

where Y denotes the category vector output by the network. The network employs the
typically used cross-entropy loss as its loss function in classification tasks.

4. Results
4.1. HSI Datasets

To provide a fair assessment of the model’s effectiveness, it is crucial to employ
a diverse dataset. This paper evaluates the model’s classification prowess using three
widely recognized HSI datasets: Pavia University, Salinas, and Houston-2013. It is worth
mentioning that in the experiments, the division of the training set and test set of each
dataset is not fixed. Each experiment randomly selects a fixed number of sample points
from the dataset as the training set and the remaining as the test set.

Pavia University dataset: The Pavia University dataset was captured by the ROSIS
imaging spectrometer, operated by the German National Aeronautics and Space Admin-
istration, in 2003. The data collection took place in the city of Pavia, Italy. Subsequently,
Pavia University processed the HSI obtained from the city. The dataset, after extraction,
comprises dimensions of 610 × 340 × 115, incorporating 610 × 340 pixels and 115 spectral
bands per pixel. The spatial resolution of the Pavia University dataset stands at 1.3 m per
pixel, encompassing nine distinct labels. Figure 4 provides a pseudo-color representation of
this dataset, with each color corresponding to a specific label category, and Table 1 shows
its detailed information.

Salinas dataset: The Salinas dataset was gathered in California’s Salinas Valley back in
1992, utilizing an AVIRIS sensor. It boasts dimensions of 512 × 217 × 224, with each pixel
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measuring 512 × 217 and equipped with 224 spectral bands, including 20 bands related to
water absorption. Spatially, the Salinas dataset has a resolution of approximately 3.7 m per
pixel and incorporates 16 categories of labels. Figure 5 presents a pseudo-color image of
the dataset, along with corresponding category labels represented by distinct colors, and
Table 2 shows its detailed information.

Houston dataset: It was collected by the ITRES CASI-1500 sensor at the Houston
University campus in Texas, USA, and its adjacent rural areas in 2013. After deleting
the noise bands, the remaining 144 valid spectral bands were used for experiments. The
Houston dataset has 349 × 1905 pixels, a spatial resolution of 2.5mpp, and contains 15 land
cover categories, such as tree, soil, water, healthy grass, running track, tennis court, etc. The
pseudo-color images, standard classification maps, and color category labels corresponding
to the Houston dataset are shown in Figure 6 and Table 2 shows its detailed information.

Figure 4. Pavia University dataset pseudo-color images and corresponding category labels for each
color. (a) False colour image. (b) Ground-truth map.

Table 1. Detailed information of Pavia University datasets.

Pavia University Dataset

No. Class Name Training Testing

1 Asphalt 30 6601
2 Meadows 30 18,619
3 Gravel 30 2069
4 Trees 30 3034
5 Painted-metal-sheets 30 1315
6 Bare-soil 30 4999
7 Bitumen 30 1300
8 Self-blocking-bricks 30 3652
9 Shadows 30 917
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Figure 5. Salinas dataset pseudo-color images and corresponding category labels for each color.
(a) False colour image. (b) Ground-truth map.

Figure 6. Houston dataset pseudo-color images and corresponding category labels for each color.
(a) False colour image. (b) Ground-truth map.

Table 2. Detailed information of Salinas and Houston datasets.

Salinas Dataset Houston Dataset

No. Class Name Training Testing No. Class Name Training Testing

1 Broccoli-green-weed 1 30 1979 1 Healthy-grass 30 1221
2 Broccoli-green-weed 2 30 3696 2 Stressed-grass 30 1224
3 Fallow 30 1946 3 Synthetic-grass 30 667
4 Fallow-rough-plow 30 1364 4 Trees 30 1214
5 Fallow-smooth 30 2648 5 Soil 30 1212
6 Stubble 30 3929 6 Water 30 295
7 Celery 30 3549 7 Residential 30 1238
8 Grapes-untrained 30 11,241 8 Commercial 30 1214
9 Soil-vineyard-develop 30 6137 9 Road 30 1222
10 Corn-Senesced-green-weeds 30 3248 10 Highway 30 1197
11 Lettuce-romianes-4 wk 30 1038 11 Railway 30 1205
12 Lettuce-romianes-5 wk 30 1897 12 Parking-Lot-1 30 1203
13 Lettuce-romianes-6 wk 30 886 13 Parking-Lot-2 30 439
14 Lettuce-romianes-7 wk 30 1040 14 Tennis-Court 30 398
15 Vineyard-untrained 30 7238 15 Running-Track 30 630
16 Vineyard-vertical-trellis 30 1777
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4.2. Setup
4.2.1. Evaluation Indices

To quantitatively analyze the advantages and disadvantages of the algorithm con-
structed in this article and the comparison algorithm, we use three commonly used evalu-
ation indicators to evaluate the model proposed in this article. The following evaluation
indicators can effectively evaluate the performance of the algorithm from different aspects:
overall accuracy (OA), average accuracy (AA), and kappa coefficient (Kappa). The values
of these three indicators are positively related to the classification effect.

(1) Overall accuracy

Overall accuracy refers to the proportion of the number of correctly classified samples
to the total number of samples after the model predicts the dataset. The higher the OA, the
better the classification effect, and its mathematical definition is expressed as Equation (19).

OA =
∑m

i=1 hii

N
, (19)

where N represents the total number of samples, hii represents the number correctly
classified into category i.

(2) Average accuracy

Average accuracy refers to the average classification accuracy of each category, which
can describe the classification difference in each category. Its mathematical definition is
expressed as Equation (20).

AA =
1
m

m

∑
i=1

hii
Ni

. (20)

(3) Kappa coefficient

The Kappa coefficient can be used to evaluate the consistency between the classification
map and the reference image, can comprehensively evaluate the classification, and is
defined as follows

Kappa =
N ∑m

i=1 hii −∑m
i=1(hi+h+i)

N2 −∑m
i=1(hi+h+i)

, (21)

where hi+ represents the total number of samples of the i-th category, and h+i represents
the number of samples classified as i-th. N is the total number of class samples.

4.2.2. Compared Methods

To verify the capability of the algorithm, a variety of existing advanced methods
were selected for comparison in the experiment. They are ML-based algorithms: joint
collaborative representation, SVM with decision fusion (JSDF) [64], and multiband compact
texture units (MBCTU) [65]; CNN-based algorithms: hybrid spectral CNN (HybridSN) [66]
and the diverse region-based deep CNN (DR-CNN) [67]; and algorithms based on GNN:
graph sample and aggregate attention (SAGE-A) [68] and MDGCN [33]. All comparative
experiments were run five times using the optimal parameters given in the article and
then averaged.

4.2.3. Experimental Environment and Parameter Settings

The experiments in this article were conducted using Python version 3.9 and the
PyTorch deep learning framework version 1.13. All experiments were run five times on
a machine equipped with a 24 GB RTX 3090 GPU and 64 GB of RAM, with the results
subsequently averaged to reduce errors. Furthermore, the Adam optimizer was employed
with a learning rate set to 0.0005 for model optimization. Various parameters, such as
the number of iteration steps (T), k-nearest neighbor composition (k), and the number of
superpixels (N), were adjusted to different values depending on the specific dataset under
consideration. Specific information can be found in Table 3.
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Table 3. Hyperparameter settings applied for different datasets. T, lr, respectively, code the number of
epochs and learning rate of model training. N and k, respectively, represent the number of superpixels
and the value of k-nearest neighbor composition.

Dataset T lr N k

Pavia University 100 0.0005 7000 300
Salinas 200 0.0005 5000 250

Houston 200 0.0005 9000 500

4.3. Comparison Results
4.3.1. Quantitative Results

Tables 4–6 present the classification accuracy for each category and the results of three
evaluation indices for various methods on the Pavia University, Salinas, and Houston
datasets. AMF-GCN consistently achieved the highest classification results across all datasets.
In the three datasets, the OA reached remarkable levels of 91% and 92%, respectively.

Table 4. Classification results of different methods in terms of per-class accuracy, OA, AA, and Kappa
for Pavia University dataset (%). The optimal result is shown in bold.

Class
ML-Based Methods CNN-Based Methods GNN-Based Methods

JSDF MBCUT HybridSN DR-CNN SAGE-A MDGCN AMF-GCN

1 82.40 ± 4.07 87.49 ± 3.99 78.05 ± 1.21 92.10 ± 3.67 96.50 ± 1.28 93.55 ± 0.37 98.86 ± 2.14
2 90.76 ± 3.74 89.11 ± 5.58 93.02 ± 1.53 96.39 ± 1.85 99.17 ± 0.62 99.25 ± 0.23 99.65 ± 0.29
3 86.71 ± 4.14 86.24 ± 4.23 84.59 ± 2.24 84.23 ± 4.21 98.26 ± 1.77 92.03 ± 0.24 97.64 ± 1.23
4 92.88 ± 2.16 90.61 ± 3.39 96.43 ± 2.91 95.26 ± 1.43 92.85 ± 2.92 83.78 ± 1.55 99.21 ± 0.36
5 100.00 ± 0.00 97.18 ± 1.28 100.00 ± 0.00 97.77 ± 1.66 97.49 ± 2.43 99.47 ± 0.09 100.00 ± 0.00
6 94.30 ± 4.55 93.25 ± 2.93 92.25 ± 0.39 90.44 ± 4.28 94.78 ± 1.62 95.26 ± 0.50 98.67 ± 0.89
7 96.62 ± 1.37 93.49 ± 2.47 99.46 ± 0.09 89.05 ± 2.85 97.92 ± 1.48 98.92 ± 1.04 90.66 ± 3.62
8 94.69 ± 3.74 84.14 ± 4.78 81.30 ± 4.71 78.49 ± 4.71 89.84 ± 4.29 94.99 ± 1.33 88.68 ± 1.07
9 99.56 ± 0.36 96.57 ± 1.22 98.89 ± 0.42 96.34 ± 1.09 98.80 ± 0.82 81.03 ± 0.49 98.51 ± 0.52

OA 90.82 ± 1.30 89.43 ± 2.14 89.99 ± 1.71 92.62 ± 1.83 96.19 ± 1.21 95.68 ± 0.22 97.45 ± 1.11
AA 93.10 ± 0.65 90.90 ± 0.89 91.67 ± 1.52 91.12 ± 1.58 96.18 ± 0.92 93.15 ± 0.28 96.77 ± 1.26

Kappa 88.02 ± 1.62 86.24 ± 2.62 86.87 ± 2.51 90.26 ± 1.72 96.24 ± 0.98 94.25 ± 0.29 96.63 ± 1.45

As observed in Table 4, the proposed AMF-GCN method demonstrates clear superior-
ity over GNN-based approaches and all other classifiers in the Pavia dataset. AMF-GCN
notably outperforms SAGE-A and MDGCN by 1.26% and 1.77% in terms of OA, respec-
tively. When compared to CNN-based methods, AMF-GCN exhibits a remarkable 4.83%
and 7.46% OA advantage. Although the Salinas dataset contains numerous categories
and a substantial amount of data, the AMF-GCN method presented in this article still
achieved the highest OA and kappa accuracy. As evident from Table 5, the ML-based
method delivered impressive results. The 3DCNN method leverages three-dimensional
convolutional kernels to concurrently capture the spatial–spectral features of HSI, resulting
in enhanced classification accuracy. However, these methods tend to overlook node features
within the image and may not emphasize important information. Consequently, AMF-
GCN achieves significant gains in the range of 5.89–8.48% in Kappa on the Salinas dataset.
In the classification of broccoli green weed1, broccoli green weed2, and fallow species,
AMF-GCN achieved 100% classification results. In contrast to the previous two datasets,
the Houston dataset features more dispersed labeled areas with smaller scales. In such
scenarios, relying solely on shallow spectral information from the HSI may not suffice for
intricate and fine-grained classification. SAGE-A and MDGCN achieved OA of 89.58%
and 91.40%, respectively, which, although respectable, did not reach exceptional accuracy.
However, AMF-GCN achieved an impressive OA of 93.02%, underscoring the benefit of
extracting and fusing multiple features to enhance network performance.
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Table 5. Classification results of different methods in terms of per-class accuracy, OA, AA, and Kappa
for Salinas dataset (%). The optimal result is shown in bold.

Class
ML-Based Methods CNN-Based Methods GNN-Based Methods

JSDF MBCUT HybridSN DR-CNN SAGE-A MDGCN AMF-GCN

1 100.00 ± 0.00 99.18 ± 0.80 100.00 ± 0.00 99.40 ± 0.42 99.78 ± 0.21 99.98 ± 0.03 100.00 ± 0.00
2 100.00 ± 0.00 99.76 ± 0.33 100.00 ± 0.00 99.46 ± 0.39 100.00 ± 0.00 99.90 ± 0.28 100.00 ± 0.00
3 100.00 ± 0.00 99.13 ± 1.04 52.53 ± 5.13 98.58 ± 1.42 99.45 ± 0.35 99.80 ± 0.21 100.00 ± 0.00
4 99.93 ± 0.09 97.61 ± 0.82 100.00 ± 0.00 99.70 ± 0.17 100.00 ± 0.00 97.49 ± 2.16 99.18 ± 0.28
5 99.77 ± 0.31 96.54 ± 1.01 97.78 ± 1.47 98.90 ± 1.01 98.75 ± 1.17 97.96 ± 0.77 93.23 ± 2.59
6 100.00 + 0.00 99.74 ± 0.32 99.97 ± 0.01 99.57 ± 0.38 89.72 ± 3.62 99.10 ± 0.67 96.67 ± 1.37
7 99.99 ± 0.01 98.26 ± 1.64 99.72 ± 0.11 99.50 ± 0.42 100.00 ± 0.00 98.18 ± 1.49 99.29 ± 0.34
8 87.79 ± 4.89 81.98 ± 4.32 88.59 ± 1.28 75.59 ± 6.72 85.25 ± 5.27 92.78 ± 4.61 99.74 ± 0.13
9 99.67 ± 0.33 99.47 ± 0.51 99.95 ± 0.01 99.75 ± 0.19 95.31 ± 2.41 100.00 ± 0.00 92.98 ± 2.41

10 96.53 ± 2.55 92.21 ± 2.75 92.49 ± 1.89 94.29 ± 1.90 97.18 ± 0.82 98.31 ± 1.29 93.91 ± 1.19
11 99.71 ± 0.21 96.24 ± 2.68 99.24 ± 0.22 97.57 ± 0.91 96.36 ± 1.42 99.39 ± 0.55 99.75 ± 0.12
12 100.00 ± 0.00 98.98 ± 0.45 99.20 ± 0.17 99.99 ± 0.01 99.18 ± 0.27 99.01 ± 0.78 95.30 ± 0.99
13 100.00 ± 0.00 96.73 ± 1.66 97.49 ± 1.33 99.95 ± 0.05 97.26 ± 1.63 97.59 ± 1.32 90.15 ± 1.26
14 98.71 ± 0.72 96.50 ± 3.05 88.67 ± 5.91 98.57 ± 0.28 99.13 ± 0.46 97.92 ± 1.72 95.61 ± 2.88
15 81.86 ± 5.26 79.41 ± 5.67 87.63 ± 6.29 72.18 ± 4.97 87.23 ± 3.77 95.71 ± 4.57 96.39 ± 2.28
16 98.99 ± 0.63 96.89 ± 2.19 99.78 ± 0.19 98.45 ± 0.83 98.47 ± 0.81 98.18 ± 2.92 99.85 ± 0.06

OA 94.67 ± 0.77 92.14 ± 0.86 93.35 ± 1.26 90.35 ± 1.67 92.82 ± 1.00 97.25 ± 0.87 98.03 ± 1.02
AA 97.69 ± 0.34 95.54 ± 0.56 94.06 ± 2.41 95.72 ± 0.41 96.12 ± 0.82 98.21 ± 0.30 97.82 ± 0.58

Kappa 94.06 ± 0.85 91.25 ± 0.95 92.59 ± 1.71 89.26 ± 1.30 93.26 ± 0.76 96.94 ± 0.96 97.74 ± 1.05

Table 6. Classification results of different methods in terms of per-class accuracy, OA, AA, and Kappa
for Houston dataset (%). The optimal result is shown in bold.

Class
ML-Based Methods CNN-Based Methods GNN-Based Methods

JSDF MBCUT HybridSN DR-CNN SAGE-A MDGCN AMF-GCN

1 97.41 ± 1.21 92.86 ± 3.83 95.66 ± 1.17 95.62 ± 1.31 90.64 ±0.49 93.42 ± 4.25 97.51 ± 2.42
2 99.84 ± 0.25 92.18 ± 2.79 96.41 ± 2.26 96.78 ± 2.38 85.43 ± 0.34 93.67 ± 3.60 95.29 ± 1.86
3 99.57 ± 0.22 97.42 ± 1.19 99.55 ± 0.24 96.75 ± 1.40 99.25 ± 0.53 98.12 ± 1.09 99.85 ± 0.12
4 98.22 ± 2.80 90.96 ± 1.98 92.59 ± 1.67 93.41 ± 3.62 83.91 ± 2.42 95.58 ± 1.85 94.98 ± 4.13
5 100.00 ± 0.00 97.17 ± 1.29 98.68 ± 1.14 99.15 ± 0.57 99.17 ± 0.18 99.00 ± 1.30 96.12 ± 0.30
6 99.12 ± 1.09 91.78 ± 3.22 98.26 ± 0.96 93.83 ± 1.82 90.10 ± 0.20 93.28 ± 6.08 98.68 ± 0.57
7 91.32 ± 4.91 82.88 ± 3.81 82.55 ± 2.98 80.71 ± 5.81 85.04 ± 4.12 87.68 ± 4.41 94.54 ± 3.53
8 68.82 ± 6.16 71.85 ± 5.64 96.24 ± 2.21 78.32 ± 4.65 84.32 ± 2.29 80.45 ± 6.12 89.28 ± 2.01
9 69.47 ± 8.56 81.94 ± 4.25 84.35 ± 3.79 76.90 ± 3.86 75.08 ± 4.13 89.64 ± 2.26 91.12 ± 5.31

10 85.63 ± 9.32 87.31 ± 5.08 80.18 ± 3.78 81.99 ± 2.61 99.83 ± 0.09 90.06 ± 6.41 83.99 ± 1.92
11 94.51 ± 3.82 77.41 ± 6.46 89.30 ± 5.98 84.04 ± 0.88 100.00 ± 0.00 86.73 ± 3.22 94.30 ± 1.52
12 84.33 ± 5.33 86.35 ± 5.85 69.24 ± 8.55 81.92 ± 1.37 86.68 ± 3.52 89.44 ± 5.69 90.15 ± 0.87
13 98.10 ± 1.28 85.58 ± 5.35 93.80 ± 4.27 86.54 ± 4.17 91.30 ± 1.23 92.78 ± 4.45 88.04 ± 3.98
14 100.00 ± 0.00 96.85 ± 1.85 99.21 ± 0.19 99.31 ± 0.16 100.00 ± 0.00 99.43 ± 0.97 100.00 ± 0.00
15 99.86 ± 0.36 92.27 ± 3.32 99.73 ± 0.14 99.60 ± 0.29 100.00 ± 0.00 96.27 ± 1.72 96.92 ± 1.23

OA 90.51 ± 0.95 87.07 ± 1.12 87.85 ± 1.36 88.08 ± 1.47 89.58 ± 2.39 91.40 ± 0.92 93.02 ± 0.49
AA 92.46 ± 0.75 89.32 ± 1.08 89.93 ± 0.78 89.66 ± 1.17 90.18 ± 0.11 92.37 ± 0.89 93.84 ± 0.34

Kappa 89.74 ± 1.03 86.01 ± 1.21 86.87 ± 1.94 87.10 ± 0.99 87.52 ± 1.26 90.70 ± 1.00 92.83 ± 0.53

4.3.2. Visual Results

To facilitate a more intuitive comparison of the classification accuracy among different
algorithms, this experiment includes visualizations of the classification results for three
datasets: Pavia, Salinas, and Houston, as depicted in Figures 7–9. An immediate observa-
tion is that the ground object classification map generated by AMF-GCN exhibits the most
impressive display, with fewer instances of misclassification and a smoother appearance
compared to the two convolutional neural network methods. Furthermore, it is noticeable
that on the Pavia and Salinas datasets, the ML-based method excels in classifying certain



Remote Sens. 2023, 15, 5483 16 of 25

category blocks but introduces larger errors in certain neighborhoods, particularly involv-
ing self-blocking bricks and trees. This suggests that the ML-based method may struggle
with complex scenarios involving smaller blocks. However, the approach presented in this
chapter demonstrates competence not only in handling complex situations within larger
classification blocks but also in dealing effectively with intricate scenarios within smaller
classification blocks. When compared to the CNN-based method, it is evident that both
methods perform admirably when utilizing neighborhood information. Nonetheless, it is
worth noting that at the boundaries, the CNN-based method lags behind AMF-GCN, indi-
cating that AMF-GCN offers greater flexibility than CNN-based methods. In conclusion,
compared to other methods, this approach leverages the attention mechanism to make
more effective use of spatial information. It displays very few instances of misclassification
points internally, and simultaneously, it accurately captures details within the black boxes,
outperforming other methods by a considerable margin. This further underscores the
distinct advantages of the attention mechanism in harnessing spatial information.

(a) GT (b) JSDF (c) MBCUT (d) HybridSN

(e) DR-CNN (f) SAGE-A (g) MDGCN (h) AMF-GCN

Figure 7. The classification maps of different methods on the Pavia University dataset.
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(a) GT (b) JSDF (c) MBCUT (d) HybridSN

(e) DR-CNN (f) SAGE-A (g) MDGCN (h) AMF-GCN

Figure 8. The classification maps of different methods on the Salinas dataset.

(a) (b) (c) (d) (e) (f) (g) (h)

Figure 9. The classification maps of different methods on the Houston dataset. The red box is an
enlarged version of the partial picture. (a) GT, (b) JSDF, (c) MBCUT (d) HybridSN (e) DR-CNN
(f) SAGE-A (g) MDGCN (h) AMF-GCN
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4.4. Parameter Analysis

In this section, we delve into a detailed investigation of the impacts of k and N. The
experiments systematically vary the sizes of k and N across the dataset scales, as illustrated
in Figure 10, showcasing the experimental results under different parameter combinations.
Specifically, k ranges from 100 to 600 at intervals of 100 for the Pavia University and Houston
datasets, and from 100 to 350 at intervals of 50 for the Salinas dataset. The resulting surface
reflects that using a smaller number of edges to construct the graph during information
aggregation may overlook important neighbor nodes containing crucial information. In
HSI, correlation information between pixels at both short and long distances can contribute
to improved classification results. Therefore, preserving the integrity of the graph data
is pivotal for model learning. However, it is evident that excessively large k values lead
to reduced model accuracy on all three datasets, indicating that an excessive number of
neighbor nodes can introduce noise. Consequently, selecting an appropriate number of
neighbor nodes is of paramount importance.

(a) Pavia University (b) Salinas (b) Houston(c) Houston

Figure 10. Sensitivity to the k and N parameters on three datasets. N and k, respectively, represent
the number of superpixels and the value of k-nearest neighbor composition.

Furthermore, the number of superpixels inversely affects the segmentation map size
obtained. Smaller numbers of superpixels retain larger objects while suppressing more
noise, whereas larger numbers of superpixels yield smaller segmentation maps, preserving
smaller objects but potentially introducing more noise. To analyze the impact of the number
of superpixel blocks on classification results, the experiment sets N to range from 1000
to 11,000 and tests the classification accuracy of AMF-GCN on each dataset. As depicted
in Figure 10, the classification accuracy on the Pavia University dataset demonstrates an
upward trend as N increases. This is attributed to the larger category scale within the
dataset, with increased segmentation contributing to overall accuracy improvement. The
pixel segmentation process effectively suppresses classification map noise resulting from
misclassification. However, it is important to note that this upward trend may not persist
indefinitely. To avoid excessively smooth classification maps, the number of segmentations
for different datasets was set to the most appropriate value during the experiments in
this chapter.

4.5. Ablation Study

To comprehensively evaluate the AMF-GCN algorithm introduced in this study, this
section conducts a series of rigorous ablation experiments. Firstly, AMF-GCN comprises
three branches, with each branch receiving inputs of spectral features, texture features,
and fusion features. In an effort to dissect the specific contributions of these three types
of features, we assessed their individual classification accuracy on the Pavia University,
Salinas, and Houston datasets. Secondly, we investigated the influence of the attention-
based feature fusion mechanism by testing the network’s accuracy without its inclusion.
The results of these experiments are presented in Table 7.
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Table 7. Classification results of different methods in terms of per-class accuracy, OA, AA, and Kappa
for the Houston dataset (%). The optimal result is shown in bold.

Pavia University

No. Spectral
Feature

Texture
Feature

Fusion
Feature

Attention
Fusion OA AA Kappa

1 X 95.74 ± 0.74 93.33 ± 1.19 94.36 ± 0.98
2 X 95.87 ± 0.48 94.58 ± 1.56 95.18 ± 0.64
3 X 96.39 ± 0.96 93.98 ± 1.10 95.01 ± 0.84
4 X X 96.49 ± 0.68 94.29 ± 0.71 95.37 ± 0.88
5 X X X 96.59 ± 0.65 94.04 ± 1.14 95.11 ± 0.84
6 X X X X 97.45 ± 1.11 96.77 ± 1.26 96.63 ± 1.45

Salinas

Spectral
Feature

Texture
Feature

Fusion
Feature

Attention
Fusion OA AA Kappa

1 X 94.49 ± 1.17 95.38 ± 1.40 94.10 ± 1.29
2 X 94.45 ± 3.01 95.14 ± 0.90 94.72 ± 3.35
3 X 96.37 ± 1.27 95.67 ± 0.65 96.14 ± 0.44
4 X X 96.42 ± 1.97 95.65 ± 0.41 96.02 ± 0.22
5 X X X 96.98 ± 0.51 96.54 ± 0.27 96.64 ± 0.56
6 X X X X 98.03 ± 1.02 97.82 ± 0.58 97.74 ± 1.05

Houston

Spectral
Feature

Texture
Feature

Fusion
Feature

Attention
Fusion OA AA Kappa

1 X 91.59 ± 1.22 92.88 ± 0.89 91.19 ± 1.32
2 X 90.33 ± 0.11 91.50 ± 0.12 90.17 ± 0.12
3 X 92.28 ± 0.47 92.18 ± 0.56 91.14 ± 0.80
4 X X 92.16 ± 0.72 92.26 ± 0.43 91.01 ± 0.78
5 X X X 92.66 ± 0.59 92.36 ± 0.98 91.26 ± 0.64
6 X X X X 93.02 ± 0.49 93.84 ± 0.34 92.83 ± 0.53

Upon reviewing the table, it becomes evident that the absence of any feature results
in a decline in overall classification accuracy. On the Salinas dataset, the network that
fused spatial–spectral and texture features outperformed individual features by 1.93% and
1.97%, respectively. This underscores the synergy between texture and spectral information
extracted from multiple perspectives, ultimately enhancing classification performance.
Furthermore, the omission of the attention mechanism led to reduced classification results,
with an OA drop of 0.86%, 0.86%, and 0.36% for the three datasets, respectively. Otherwise,
multi-feature fusion variant 5 exhibited 0.20%, 0.61%, and 0.38% greater overall accuracy on
the three datasets compared to variant 3, which utilized exclusively fused representations.
This highlights the significance of incorporating an attention-based feature fusion mecha-
nism, enabling the model to assign varying degrees of importance to different features and
thereby improving classification outcomes.

5. Discussion
5.1. Comparison with Various Graph-Based Models

To further demonstrate the advantages of our model, we compare it with advanced
methods in recent years on the Pavia University and Salinas datasets, namely MSAGE-
Cal [52], MSSUG [53], SSG [50], SSPGAT [51], and MARP [18], respectively. Several
algorithms mentioned above incorporate multi-feature fusion techniques. For instance,
SSPGAT employs the graph attention network to seamlessly merge pixel and superpixel
features, enhancing hyperspectral classification. MSAGE-Cal integrates multi-scale and
global information from the graph, whereas MSSUG creates multilevel graphs by combining
adjacent regions in HSIs, capturing spatial topologies in a multi-scale hierarchical fashion.
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Additionally, MARP discerns the importance weights of various hop neighborhoods and
aggregates nodes selectively and automatically. From Table 8, it is evident that AMF-GCN
consistently achieves optimal performance across various evaluation metrics. In the case of
the Pavia dataset, the OA accuracy of AMF-GCN surpasses other models MARP, SSPGAT,
SSG, MSSUG, and MSAGE-Cal by 0.36%, 1.1%, 2.63%, 5.39%, and 1.06%, respectively. When
considering the Salinas dataset, the accuracy of AMF-GCN outperforms other models by
0.22%, 0.45%, 0.39%, 0.04%, and 0.42%, respectively. There are two key factors contributing
to the superior accuracy of AMF-GCN. Firstly, AMF-GCN effectively aggregates multi-view
features, leveraging their complementary information. Additionally, unlike other models
that simply fuse features, AMF-GCN employs an attention-based feature fusion mechanism,
adaptively selecting features and reducing redundancy to a significant extent.

Table 8. Classification results of different methods in terms OA, AA, and Kappa for Pavia University
and Salinas datasets (%). The optimal result is shown in bold.

Datasets Matrix MSAGE-Cal MSSUG SSG SSPGAT MARP AMF-GCN
JSTARS 2021 TGRS 2022 RS 2021 IGARSS 2023 ESWA 2023 Ours

Pavia University
OA 96.39 ± 1.27 92.06 ± 1.01 94.82 ± 0.94 96.35 ± 0.74 97.09 ± 1.24 97.45 ± 1.11
AA 96.22 ± 1.84 97.65 ± 0.26 94.24 ± 0.63 95.88 ± 1.09 97.12 ± 1.35 96.77 ± 1.26

Kappa 95.24 ± 1.59 89.81 ± 1.26 94.69 ± 0.35 95.59 ± 0.67 96.12 ± 0.58 96.63 ± 1.45

Salinas
OA 97.61 ± 1.19 97.99 ± 1.14 97.64 ± 0.58 97.58 ± 0.84 97.81 ± 0.80 98.03 ± 1.02
AA 96.94 ± 0.98 97.87 ± 0.85 96.82 ± 1.12 97.39 ± 0.91 98.04 ± 0.29 97.82 ± 0.58

Kappa 97.34 ± 0.87 97.43±0.79 97.15 ± 1.09 97.25 ± 0.78 97.12 ± 0.55 97.74 ± 1.05

5.2. Impact of the Number of Training Samples

The number of training samples plays a crucial role in determining the classification
performance of a network. Generally, a higher number of samples correlates positively
with improved model performance. Increasing the number of samples allows the model to
more accurately learn data features and reduces the risk of network overfitting. To assess
the impact of sample size on AMF-GCN and other methods, we varied the number of
training samples for each class in the three datasets, ranging from 5 to 30 with intervals of
5 increments. Figure 11 presents the overall classification accuracy achieved by four meth-
ods (HybridSN, SAGE-A, MDGCN, and AMF-GCN) on the three datasets. It is evident
that increasing the number of samples enhances the classification accuracy of each method.
This underscores the significance of sample size in influencing classification results. No-
tably, AFM-GCN outperforms other methods in classification accuracy, demonstrating its
robustness and advantages, especially in scenarios with limited samples. These advantages
are attributed to its ability to extract multi-view features and the incorporation of modules
such as superpixel segmentation and attention-based feature fusion. In contrast, HybridSN
exhibits the lowest classification results, primarily due to its heavy reliance on training
data. GCN performs better than HybridSN with a small number of samples because the
relationship features obtained through the graph structure help mitigate the challenge of
having an insufficient number of HSI training samples. GCN effectively captures global
relationships among nodes in the graph data, and classification tasks are performed based
on these relationship features.
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(a) Pavia University (b) Salinas (c) Houston

Figure 11. Effect of different number of samples on classification results.

5.3. Influence of Different Texture Feature Extraction Methods

We are already aware of the significant role that texture information in HSI plays in
complementing and enhancing the accuracy of downstream tasks. The effectiveness of
texture information extraction also directly influences the quality of the extracted features.
Consequently, this section delves into the impact of various texture feature extraction
methods on our experiments, with the results presented in Table 9. The chosen texture
feature extraction algorithms encompass extended morphological profile (EMP) [14], LBP,
and RULBP. The EMP represents a structural approach that characterizes texture primitives
and their spatial arrangements while reducing noise through morphological operations.
The results reveal that the EMP algorithm successfully eliminates misclassified patches
within ground objects via morphological transformations, achieving commendable accuracy.
However, it falls slightly behind the LBP-based method. Notably, RULBP emerges as the
top-performing approach, outperforming other methods by 1.43%/0.56%, 1.85%/0.79%,
and 1.92%/1.17% on the Pavia University, Salinas, and Houston datasets, showcasing
its effectiveness.

Table 9. OA (%) indices of AMF-GCN with different texture feature extraction on four datasets.
The methods used are extended morphological profiles (EMP), local binary pattern (LBP), and
rotation-invariant uniform LBP (RULBP).

Dataset EMP LBP RULBP

Pavia University 96.02 ± 2.21 96.89 ± 1.05 97.45 ± 1.11
Salinas 96.18 ± 1.60 97.24 ± 1.33 98.03 ± 1.02

Houston 91.11 ± 0.97 91.85 ± 0.72 93.02 ± 0.49

5.4. Influence of the Number of Encoder Layer

To some extent, the performance of a neural network is positively correlated with the
number of layers it possesses. However, increasing the number of layers can lead to issues
like gradient vanishing or explosion, which can hinder convergence, slow down training,
and even degrade performance. Consequently, determining the appropriate number of
network layers must be guided by the specific problem and dataset feature. To evaluate the
impact of network depth on AMF-CGN, this section conducts experiments with different
depths, setting the number of network layers to 1, 2, 3, 4, and 5, and assessing AMF-CGN’s
performance under these various depths. The results are presented in Figure 12. Upon
examining the results for the Pavia University dataset, it is evident that the performance
is quite similar when the network depth is 2 and 3. This is because deeper GCN layers
tend to produce smoother classification maps. Given that the Pavia University dataset
consists of relatively large-scale ground object categories, this smoothing effect does not
significantly impact its performance. However, deeper network layers enable the model
to extract richer features. For the Salinas and Houston datasets, optimal performance is
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achieved with a network depth of 3. Taking into account the network’s performance across
all three datasets, a network depth of 3 is selected for this chapter.

Figure 12. Effect of a different number of encoder layer on classification results.

5.5. Complete Image Visualization

To further validate the consistency and robustness of our classification model, we ap-
plied it to fully test unseen images containing both labeled reference samples and unlabeled
background pixels. As shown in Figure 13, we compare our model against three graph-
based approaches. Our model demonstrates the best performance for classes like grape
untrained and vineyard untrained, exhibiting minimal impact from noisy backgrounds.
This can be attributed to the incorporation of texture information, which enhances the
model’s feature extraction abilities and robustness.

(a) GT (b) FuNet (c) SAGE-A (d) MDGCN (e) AMF-GCN

Figure 13. The complete classification maps of different methods on the Salinas dataset.

6. Conclusions

In this paper, we introduce a novel HSI classification approach known as AMF-GCN.
This method involves the extraction and fusion of spectral and texture features to create
multi-view features. It utilizes three separate branches for graph convolution operations to
consolidate node information and employs an attention mechanism-based feature fusion
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technique for adaptive feature fusion. Extensive ablation experiments and discussions are
conducted to thoroughly evaluate the proposed method. The results, obtained from experi-
ments on three commonly used datasets, demonstrate the efficacy and advantages of the
proposed AMF-GCN. They also demonstrate that AMF-GCN outperforms all comparative
methods and achieves outstanding performance.

However, there are two limitations to our model. Firstly, constructing multiple views
comes at the cost of computational efficiency. Secondly, our superpixel division method is
static and only utilizes shallow spectral information. Going forward, we aim to explore
dynamic superpixel generation techniques that can co-evolve with model training for even
stronger performance. Furthermore, in future work, we plan to explore unsupervised learn-
ing techniques for clustering tasks on HSI and delve deeper into the spatial autocorrelation
aspects of HSI.

Author Contributions: Experiment, J.L. and Z.L.; investigation, J.L., J.Z. and Y.H.; methodology, R.G.;
project administration, R.G.; software, Z.L. and Y.H.; supervision, R.G. and X.W.; validation, J.L. and
J.Z.; visualization, J.L. and Z.L.; writing—original draft, J.L. and R.G.; writing—review and editing,
R.G. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported in part by the College Students’ Innovative Entrepreneurial
Training Plan Program (202310491003) and the Fundamental Research Founds for National University,
China University of Geosciences (Wuhan) (No. CUGDCJJ202227).

Data Availability Statement: Data are contained within the article.

Acknowledgments: The authors would like to thank the editor and reviewers for their insights
and comments.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. He, L.; Li, J.; Liu, C.; Li, S. Recent advances on spectral-spatial hyperspectral image classification: An overview and new

guidelines. IEEE Trans. Geosci. Remote Sens. 2018, 56, 1579–1597. [CrossRef]
2. Chen, Y.; Zhao, X.; Jia, X. Spectral-spatial classification of hyperspectral data based on deep belief network. IEEE J. Sel. Top. Appl.

Earth Obs. Remote Sens. 2015, 8, 2381–2392. [CrossRef]
3. Kruse, F. Identification and mapping of minerals in drill core using hyperspectral image analysis of infrared reflectance spectra.

Int. J. Remote Sens. 1996, 17, 1623–1632. [CrossRef]
4. Liu, Z.; Guan, R.; Hu, J.; Chen, W.; Li, X. Remote Sensing Scene Data Generation Using Element Geometric Transformation and

GAN-Based Texture Synthesis. Appl. Sci. 2022, 12, 3972. [CrossRef]
5. Guan, R.; Li, Z.; Li, T.; Li, X.; Yang, J.; Chen, W. Classification of Heterogeneous Mining Areas Based on ResCapsNet and Gaofen-5

Imagery. Remote Sens. 2022, 14, 3216. [CrossRef]
6. Peng, J.; Li, L.; Tang, Y.Y. Maximum Likelihood Estimation-Based Joint Sparse Representation for the Classification of Hyperspec-

tral Remote Sensing Images. IEEE Trans. Neural Netw. Learn. Syst. 2019, 30, 1790–1802. [CrossRef]
7. Chen, W.; Ouyang, S.; Yang, J.; Li, X.; Zhou, G.; Wang, L. JAGAN: A Framework for Complex Land Cover Classification Using

Gaofen-5 AHSI Images. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2022, 15, 1591–1603. [CrossRef]
8. Bioucas-Dias, J.; Plaza, A.; Camps-Valls, G.; Scheunders, P.; Nasrabadi, N.; Chanussot, J. Hyperspectral remote sensing data

analysis and future challenges. IEEE Geosci. Remote Sens. Mag. 2013, 1, 6–36. [CrossRef]
9. Audebert, N.; Le, B.; Lefevre, S. Deep learning for classification of hyperspectral data: A comparative review. IEEE Geosci. Remote

Sens. Mag. 2019, 7, 159–173. [CrossRef]
10. Ma, L.; Crawford, M.M.; Tian, J. Local manifold learning-based k-nearest-neighbor for hyperspectral image classification. IEEE

Trans. Geosci. Remote Sens. 2010, 48, 4099–4109. [CrossRef]
11. Melgani, F.; Bruzzone, L. Classification of hyperspectral remote sensing images with support vector machines. IEEE Trans. Geosci.

Remote Sens. 2004, 42, 1778–1790. [CrossRef]
12. Ham, J.; Chen, Y.; Crawford, M.M.; Ghosh, J. Investigation of the random forest framework for classification of hyperspectral

data. IEEE Trans. Geosci. Remote Sens. 2005, 43, 492–501. [CrossRef]
13. Gu, Y.; Liu, T.; Jia, X.; Benediktsson, J.A.; Chanussot, J. Nonlinear multiple kernel learning with multiple-structure-element

extended morphological profiles for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2016, 54, 3235–3247.
[CrossRef]

14. Benediktsson, J.A.; Palmason, J.A.; Sveinsson, J.R. Classification of hyperspectral data from urban areas based on extended
morphological profiles. IEEE Trans. Geosci. Remote Sens. 2005, 43, 480–491. [CrossRef]

http://doi.org/10.1109/TGRS.2017.2765364
http://dx.doi.org/10.1109/JSTARS.2015.2388577
http://dx.doi.org/10.1080/01431169608948728
http://dx.doi.org/10.3390/app12083972
http://dx.doi.org/10.3390/rs14133216
http://dx.doi.org/10.1109/TNNLS.2018.2874432
http://dx.doi.org/10.1109/JSTARS.2022.3144339
http://dx.doi.org/10.1109/MGRS.2013.2244672
http://dx.doi.org/10.1109/MGRS.2019.2912563
http://dx.doi.org/10.1109/TGRS.2010.2055876
http://dx.doi.org/10.1109/TGRS.2004.831865
http://dx.doi.org/10.1109/TGRS.2004.842481
http://dx.doi.org/10.1109/TGRS.2015.2514161
http://dx.doi.org/10.1109/TGRS.2004.842478


Remote Sens. 2023, 15, 5483 24 of 25

15. Li, J.J.; Xi, B.B.; Li, Y.S.; Du, Q.; Wang, K.Y. Hyperspectral Classification Based on Texture Feature Enhancement and Deep Belief
Networks. Remote Sens. 2018, 10, 396. [CrossRef]

16. Bhatti, U.A.; Yu, Z.; Chanussot, J.; Zeeshan, Z.; Yuan, L.; Luo, W.; Nawaz, S.A.; Bhatti, M.A.; Ain, Q.U.; Mehmood, A. Local
Similarity-Based Spatial–Spectral Fusion Hyperspectral Image Classification with Deep CNN and Gabor Filtering. IEEE Trans.
Geosci. Remote Sens. 2021, 60, 5514215. [CrossRef]

17. Ding, Y.; Zhang, Z.; Zhao, X.; Hong, D.; Cai, W.; Yu, C.; Yang, N.; Cai, W. Multi-feature fusion: Graph neural network and CNN
combining for hyperspectral image classification. Neurocomputing 2022, 501, 246–257. [CrossRef]

18. Zhang, Z.; Ding, Y.; Zhao, X.; Siye, L.; Yang, N.; Cai, Y.; Zhan, Y. Multireceptive field: An adaptive path aggregation graph neural
framework for hyperspectral image classification. Expert Syst. Appl. 2023, 217, 119508. [CrossRef]

19. Ding, Y.; Zhao, X.; Zhang, Z.; Cai, W.; Yang, N.; Zhan, Y. Semi-supervised locality preserving dense graph neural network with
ARMA filters and context-aware learning for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2021, 60, 5511812.
[CrossRef]

20. Yang, X.; Ye, Y.; Li, X.; Lau, R.Y.K.; Zhang, X.; Huang, X. Hyperspectral Image Classification with Deep Learning Models. IEEE
Trans. Geosci. Remote Sens. 2018, 56, 5408–5423. [CrossRef]

21. Fang, L.; Liu, Z.; Song, W. Deep hashing neural networks for hyperspectral image feature extraction. IEEE Geosci. Remote. Sens.
Lett. 2019, 16, 1412–1416. [CrossRef]

22. Chen, Y.; Lin, Z.; Zhao, X.; Wang, G.; Gu, Y. Deep learning-based classification of hyperspectral data. IEEE J. Sel. Top. Appl. Earth
Obs. Remote Sens. 2014, 7, 2094–2107. [CrossRef]

23. Mou, L.; Ghamisi, P.; Zhu, X.X. Deep recurrent neural networks for hyperspectral image classification. IEEE Trans. Geosci. Remote
Sens. 2017, 55, 3639–3655. [CrossRef]

24. He, J.; Zhao, L.; Yang, H. HSI-BERT: Hyperspectral image classification using the bidirectional encoder representation from
transformers. IEEE Trans. Geosci. Remote Sens 2019, 58, 165–178. [CrossRef]

25. Hong, D.; Han, Z.; Yao, J. SpectralFormer: Rethinking hyperspectral image classification with transformers. IEEE Trans. Geosci.
Remote Sens. 2021, 60, 1–15. [CrossRef]

26. Li, X.; Ding, M.; Pižurica, A. Deep Feature Fusion via Two-Stream Convolutional Neural Network for Hyperspectral Image
Classification. IEEE Trans. Geosci. Remote Sens. 2020, 58, 2615–2629. [CrossRef]

27. Yu, S.; Jia, S.; Xu, C. Convolutional neural networks for hyperspectral image classification. Neurocomputing 2017, 219, 88–98.
[CrossRef]

28. Jia, P.; Zhang, M.; Yu, W.; Shen, F.; Shen, Y. Convolutional neural network based classification for hyperspectral data. In
Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 10–15 July 2016;
pp. 5075–5078.

29. Makantasis, K.; Karantzalos, K.; Doulamis, A.; Doulamis, N. Deep Supervised Learning for Hyperspectral Data Classification
through Convolutional Neural Networks. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium
(IGARSS), Milan, Italy, 26–31 July 2015; pp. 4959–4962.

30. Ma, X.; Wang, H.; Geng, J. Spectral–spatial classification of hyperspectral image based on deep auto-encoder. IEEE J. Sel. Top.
Appl. Earth Obs. Remote Sens. 2016, 9, 4073–4085. [CrossRef]

31. Lee, H.; Kwon, H. Going deeper with contextual CNN for hyperspectral image classification. IEEE Trans. Image Process. 2017, 26,
4843–4855. [CrossRef]

32. Zhu, M.; Jiao, L.; Liu, F.; Yang, S.; Wang, J. Residual spectral-spatial attention network for hyperspectral image classification. IEEE
Trans. Geosci. Remote Sens. 2021, 59, 449–462. [CrossRef]

33. Wan, S.; Gong, C.; Zhong, P.; Du, B.; Zhang, L.; Yang, J. Multiscale dynamic graph convolutional network for hyperspectral image
classification. IEEE Trans. Geosci. Remote Sens. 2019, 58, 3162–3177. [CrossRef]

34. Liang, L.; Zhang, Y.; Zhang, S.; Li, J.; Plaza, A.; Kang, X. Fast Hyperspectral Image Classification Combining Transformers and
SimAM-based CNNs. IEEE Trans. Geosci. Remote Sens. 2023, 61, 5522219. [CrossRef]

35. Liu, W.; Liu, B.; He, P.; Hu, Q.; Gao, K.; Li, H. Masked Graph Convolutional Network for Small Sample Classification of
Hyperspectral Images. Remote Sens. 2023, 15, 1869. [CrossRef]

36. Xu, Z.; Su, C.; Wang, S.; Zhang, X. Local and Global Spectral Features for Hyperspectral Image Classification. Remote Sens. 2023,
15, 1803. [CrossRef]

37. Wu, Z.; Pan, S.; Chen, F.; Long, G.; Zhang, C.; Yu, P.S. A Comprehensive Survey on Graph Neural Networks. IEEE Trans. Neural
Netw. Learn. Syst. 2021, 32, 4–24. [CrossRef] [PubMed]

38. Qin, A.; Shang, Z.; Tian, J.; Wang, Y.; Zhang, T.; Tang, Y. Spectral–spatial graph convolutional networks for semisupervised
hyperspectral image classification. IEEE Geosci. Remote Sens. Lett. 2018, 16, 241–245. [CrossRef]

39. Mou, L.; Lu, X.; Li, X.; Zhu, X.X. Nonlocal graph convolutional networks for hyperspectral image classification. IEEE Trans. Geosci.
Remote Sens. 2020, 58, 8246–8257. [CrossRef]

40. Zhang, S.; Tong, H.; Xu, J.; Maciejewski, R. Graph convolutional networks: A comprehensive review. Comput. Soc. Netw. 2019,
6, 11. [CrossRef]

41. Liu, Y.; Tu, W.; Zhou, S.; Liu, X.; Song, L.; Yang, X.; Zhu, E. Deep graph clustering via dual correlation reduction. In Proceedings
of the AAAI Conference on Artificial Intelligence, Virtual, 22 February–1 March 2022; Volume 36, pp. 7603–7611.

http://dx.doi.org/10.3390/rs10030396
http://dx.doi.org/10.1109/TGRS.2021.3090410
http://dx.doi.org/10.1016/j.neucom.2022.06.031
http://dx.doi.org/10.1016/j.eswa.2023.119508
http://dx.doi.org/10.1109/TGRS.2021.3100578
http://dx.doi.org/10.1109/TGRS.2018.2815613
http://dx.doi.org/10.1109/LGRS.2019.2899823
http://dx.doi.org/10.1109/JSTARS.2014.2329330
http://dx.doi.org/10.1109/TGRS.2016.2636241
http://dx.doi.org/10.1109/TGRS.2019.2934760
http://dx.doi.org/10.1109/TGRS.2022.3172371
http://dx.doi.org/10.1109/TGRS.2019.2952758
http://dx.doi.org/10.1016/j.neucom.2016.09.010
http://dx.doi.org/10.1109/JSTARS.2016.2517204
http://dx.doi.org/10.1109/TIP.2017.2725580
http://dx.doi.org/10.1109/TGRS.2020.2994057
http://dx.doi.org/10.1109/TGRS.2019.2949180
http://dx.doi.org/10.1109/TGRS.2023.3309245
http://dx.doi.org/10.3390/rs15071869
http://dx.doi.org/10.3390/rs15071803
http://dx.doi.org/10.1109/TNNLS.2020.2978386
http://www.ncbi.nlm.nih.gov/pubmed/32217482
http://dx.doi.org/10.1109/LGRS.2018.2869563
http://dx.doi.org/10.1109/TGRS.2020.2973363
http://dx.doi.org/10.1186/s40649-019-0069-y


Remote Sens. 2023, 15, 5483 25 of 25

42. Tu, W.; Zhou, S.; Liu, X.; Ge, C.; Cai, Z.; Liu, Y. Hierarchically Contrastive Hard Sample Mining for Graph Self-Supervised
Pretraining. IEEE Trans. Neural Netw. Learn. Syst. 2023, early access.

43. He, X.; Chen, Y.; Ghamisi, P. Dual Graph Convolutional Network for Hyperspectral Image Classification with Limited Training
Samples. IEEE Trans. Geosci. Remote Sens. 2021, 60, 5502418. [CrossRef]

44. Hong, D.; Gao, L.; Yao, J.; Zhang, B.; Plaza, A.; Chanussot, J. Graph Convolutional Networks for Hyperspectral Image Classifica-
tion. IEEE Trans. Geosci. Remote Sens. 2021, 59, 5966–5978. [CrossRef]

45. Liu, Q.; Xiao, L.; Yang, J.; Wei, Z. CNN-Enhanced Graph Convolutional Network with Pixel- and Superpixel-Level Feature Fusion
for Hyperspectral Image Classification. IEEE Trans. Geosci. Remote Sens. 2021, 59, 8657–8671. [CrossRef]

46. Yang, B.; Cao, F.; Ye, H. A Novel Method for Hyperspectral Image Classification: Deep Network with Adaptive Graph Structure
Integration. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5523512. [CrossRef]

47. Wang, J.; Sun, J.; Zhang, E.; Zhang, T.; Yu, K.; Peng, J. Hyperspectral image classification via deep network with attention
mechanism and multigroup strategy. Expert Syst. Appl. 2023, 224, 119904. [CrossRef]

48. Ding, Y.; Zhang, Z.-L.; Zhao, X.-F.; Cai, W.; He, F.; Cai, Y.-M.; Cai, W. Deep hybrid: Multi-graph neural network collaboration for
hyperspectral image classification. Def. Technol. 2022, 23, 164–176.

49. Bai, J.; Shi, W.; Xiao, Z.; Regan, A.C.; Ali, T.A.A.; Zhu, Y.; Zhang, R.; Jiao, L. Hyperspectral Image Classification Based on
Superpixel Feature Subdivision and Adaptive Graph Structure. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5524415. [CrossRef]

50. Zhao, Y.; Yan, F. Hyperspectral Image Classification Based on Sparse Superpixel Graph. Remote Sens. 2021, 13, 3592. [CrossRef]
51. Ma, L.; Wang, Q.; Zhang, J.; Wang, Y. Parallel Graph Attention Network Model Based on Pixel and Superpixel Feature Fusion

for Hyperspectral Image Classification. In Proceedings of the IGARSS 2023—2023 IEEE International Geoscience and Remote
Sensing Symposium, Pasadena, CA, USA, 16–21 July 2023; pp. 7226–7229.

52. Ding, Y.; Zhao, X.; Zhang, Z.; Cai, W.; Yang, N. Multiscale graph sample and aggregate network with context-aware learning for
hyperspectral image classification. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 4561–4572. [CrossRef]

53. Liu, Q.; Xiao, L.; Yang, J.; Wei, Z. Multilevel Superpixel Structured Graph U-Nets for Hyperspectral Image Classification. IEEE
Trans. Geosci. Remote Sens. 2022, 60, 5516115. [CrossRef]

54. Zhang, W.; Li, Z.; Sun, H.-H.; Zhang, Q.; Zhuang, P.; Li, C. SSTNet: Spatial, Spectral, and Texture Aware Attention Network Using
Hyperspectral Image for Corn Variety Identification. IEEE Geosci. Remote Sens. Lett. 2022, 19, 5514205. [CrossRef]

55. Hammond, D.V.; Ergheynst, P.; Gribonval, R. Wavelets on graphs via spectral graph theory. Appl. Comput. Harmon. Anal. 2011, 30,
129–150. [CrossRef]

56. Kipf, T.; Welling, M. Semi-Supervised Classification with Graph Convolutional Networks. In Proceedings of the International
Conference on Learning Representations, San Juan, Puerto Rico, 2–4 May 2016.

57. Izenman, A.J. Linear Discriminant Analysis. In Modern Multivariate Statistical Techniques: Regression, Classification, and Manifold
Learning; Springer: New York, NY, USA, 2013; pp. 237–280.

58. Jia, S.; Jiang, S.; Zhang, S.; Xu, M.; Jia, X. Graph-in-Graph Convolutional Network for Hyperspectral Image Classification. IEEE
Trans. Neural Netw. Learn. Syst. 2022, 59, 5966–5978. [CrossRef] [PubMed]

59. Chen, J.; Jiao, L.; Liu, X. Automatic Graph Learning Convolutional Networks for Hyperspectral Image Classification. IEEE Trans.
Geosci. Remote Sens. 2022, 60, 5520716. [CrossRef]

60. Rodarmel, C.; Shan, J. Principal Component Analysis for Hyperspectral Image Classification. Surv. Land. Inf. Syst. 2002, 62,
115–122.

61. Achanta, R.; Shaji, A.; Smith, K.; Lucchi, A.; Fua, P.; Süsstrunk, S. SLIC superpixels compared to state-of-the-art superpixel
methods. IEEE Trans. Pattern Anal. Mach. Intell. 2012, 34, 2274–2282. [CrossRef] [PubMed]

62. Ojala, T.; Valkealahti, K.; Oja, E.; Pietikäinen, M. Texture Discrimination with Multidimensional Distributions of Signed Gray
Level Differences. Pattern Recognit. 2001, 34, 727–739. [CrossRef]

63. Ojala, T.; Pietikainen, M.; Maenpaa, T. Multiresolution gray-scale and rotation invariant texture classification with local binary
patterns. IEEE Trans. Pattern Anal. Mach. Intell. 2002, 24, 971–987. [CrossRef]

64. Li, W.; Wu, G.; Zhang, F.; Du, Q. Hyperspectral image classification using deep pixel-pair features. IEEE Trans. Geosci. Remote
Sens. 2017, 55, 844–853. [CrossRef]

65. Djerriri, K.; Safia, A.; Adjoudj, R.; Karoui, M.S. Improving hyperspectral image classification by combining spectral and
multiband compact texture features. In Proceedings of the IGARSS 2019—2019 IEEE International Geoscience and Remote
Sensing Symposium, Yokohama, Japan, 28 July–2 August 2019; pp. 465–468.

66. Roy, S.K.; Krishna, G.; Dubey, S.R.; Chaudhuri, B.B. HybridSN: Exploring 3-D-2-D CNN Feature Hierarchy for Hyperspectral
Image Classification. IEEE Geosci. Remote Sens. Lett. 2020, 17, 277–281. [CrossRef]

67. Zhang, M.; Li, W.; Du, Q. Diverse Region-Based CNN for Hyperspectral Image Classification. IEEE Trans. Image Process. 2018, 27,
2623–2634. [CrossRef]

68. Ding, Y.; Zhao, X.; Zhang, Z.; Cai, W.; Yang, N. Graph sample and aggregate-attention network for hyperspectral image
classification. IEEE Geosci. Remote Sens. Lett. 2022, 19, 5504205. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/TGRS.2021.3061088
http://dx.doi.org/10.1109/TGRS.2020.3015157
http://dx.doi.org/10.1109/TGRS.2020.3037361
http://dx.doi.org/10.1109/TGRS.2022.3150349
http://dx.doi.org/10.1016/j.eswa.2023.119904
http://dx.doi.org/10.1109/TGRS.2022.3153446
http://dx.doi.org/10.3390/rs13183592
http://dx.doi.org/10.1109/JSTARS.2021.3074469
http://dx.doi.org/10.1109/TGRS.2021.3112586
http://dx.doi.org/10.1109/LGRS.2022.3225215
http://dx.doi.org/10.1016/j.acha.2010.04.005
http://dx.doi.org/10.1109/TNNLS.2022.3182715
http://www.ncbi.nlm.nih.gov/pubmed/35724277
http://dx.doi.org/10.1109/TGRS.2021.3135084
http://dx.doi.org/10.1109/TPAMI.2012.120
http://www.ncbi.nlm.nih.gov/pubmed/22641706
http://dx.doi.org/10.1016/S0031-3203(00)00010-8
http://dx.doi.org/10.1109/TPAMI.2002.1017623
http://dx.doi.org/10.1109/TGRS.2016.2616355
http://dx.doi.org/10.1109/LGRS.2019.2918719
http://dx.doi.org/10.1109/TIP.2018.2809606
http://dx.doi.org/10.1109/LGRS.2021.3062944

	Introduction
	Related Work
	GCNs
	HSI Classification Based on Superpixels

	Methodology
	HSI Preprocessing
	Spectral Feature Extraction
	Texture Feature Extraction

	Multi-Branch Graph Construction
	Adaptive Multi-Branch GCN
	Multi-Branch GCN
	Adaptive Feature Fusion


	Results
	HSI Datasets
	Setup
	Evaluation Indices
	Compared Methods
	Experimental Environment and Parameter Settings

	Comparison Results
	Quantitative Results
	Visual Results

	Parameter Analysis
	Ablation Study

	Discussion
	Comparison with Various Graph-Based Models
	Impact of the Number of Training Samples
	Influence of Different Texture Feature Extraction Methods
	Influence of the Number of Encoder Layer
	Complete Image Visualization

	Conclusions
	References

