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Abstract: Semantic segmentation techniques for remote sensing images (RSIs) have been widely
developed and applied. However, most segmentation methods depend on sufficiently annotated
data for specific scenarios. When a large change occurs in the target scenes, model performance
drops significantly. Therefore, unsupervised domain adaptation (UDA) for semantic segmentation
is proposed to alleviate the reliance on expensive per-pixel densely labeled data. In this paper,
two key issues of existing domain adaptive (DA) methods are considered: (1) the factors that
cause data distribution shifts in RSIs may be complex and diverse, and existing DA approaches
cannot adaptively optimize for different domain discrepancy scenarios; (2) domain-invariant feature
alignment, based on adversarial training (AT), is prone to excessive feature perturbation, leading to
over robust models. To address these issues, we propose an AdvCDA method that guides the model
to adapt adversarial perturbation consistency. We combine consistency regularization to consider
interdomain feature alignment as perturbation information in the feature space, and thus propose
a joint AT and self-training (ST) DA method to further promote the generalization performance of
the model. Additionally, we propose a confidence estimation mechanism that determines network
stream training weights so that the model can adaptively adjust the optimization direction. Extensive
experiments have been conducted on Potsdam, Vaihingen, and LoveDA remote sensing datasets, and
the results demonstrate that the proposed method can significantly improve the UDA performance
in various cross-domain scenarios.

Keywords: unsupervised domain adaptation; adversarial perturbation consistency; self-training;
semantic segmentation; remote sensing

1. Introduction

Image segmentation has been widely researched as a basic remote sensing intelligent
interpretation task [1–4]. In particular, semantic segmentation based on deep learning plays
an important role as a pixel-level classification method in remote sensing interpretation
tasks, such as building extraction [5], landcover classification [6] and change detection [7,8].
However, the prerequisite for good performance in existing fully supervised deep learning
approaches is sufficiently annotated data. It is also essential that the training and test
data follow the identical distributions [9]. Once applied to unseen scenarios with different
data distributions, model performance can degrade significantly [10–12]. This means new
data might be annotated and retrained for performance requirements, which requires
considerable labor and time [13].

In practical applications, the domain discrepancy problem is prevalent in remote
sensing images (RSIs) [14,15]. Different remote sensing platforms, payload imaging mech-
anisms, and photographic angles will induce variations in image spatial resolution and
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object features [16]. Due to the variation in seasons, geographic locations, illumination,
and atmospheric radiation conditions, the same source images may also show significant
feature distribution differences [17]. The data distribution shift caused by the mix of these
complex factors leads the segmentation network to behave poorly in the unseen target
domain.

As a transfer learning paradigm [18], unsupervised domain adaptation (UDA) can
improve the domain generalization performance of the model by transferring knowledge
from the source domain data with annotations to the target domain [19]. This method
has been extensively researched in computer vision to address the domain discrepancy
issue in natural image scenes [20]. Domain adaptive (DA) methods have also gained
intensive attention in remote sensing [21]. Compared with natural images, RSIs contain
more complex spatial detail information and object boundary situation, and homogeneous
and heterogeneous phenomena are more common in images. Additionally, the factors
that generate domain discrepancies are more complex and diverse. Thus, solving the
problem of domain discrepancies in RSIs became more challenging. Currently, existing
research works focus on three main approaches: UDA based on image transfer [17,22],
UDA based on deep adversarial training (AT), and UDA based on self-training (ST) [23,24].
Image transfer methods achieve image-level alignment based on generative adversarial
networks. AT-based methods (as shown in Figure 1a) reduce the feature distribution
in the source and target domains by minimizing the adversarial loss to achieve feature-
level alignment [25]. The ST approach (as shown in Figure 1b) focuses on generating
high-confidence pseudolabels in the target domain and then participating in the iterative
training of the model to achieve the progressive transfer process [26,27].
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One general conclusion about the DA performance of the model is: AT + ST > ST >
AT [27]. However, as shown in Figure 1c, combining ST and AT methods typically requires
strong coupling between submodules, which leads to a poorly stabilized model during
training [28]. Therefore, fine-tuning the network structure and the submodules parameters
is generally needed, so that model performance depends on specific scenarios and loses its
scalability and flexibility. Recently, several studies have been conducted to optimize and
improve the process, such as decoupling AT and ST methods functionally by constructing
dual-stream networks [28], and using exponential moving average (EMA) techniques
to construct teacher networks to smooth instable features in the training process [29].
However, it also complicates the network architecture, increasing the spatial computational
complexity, and reducing training efficiency.

This paper combines the consistency regularization idea in semi-supervised learning
and proposes a DA semantic segmentation method based on adversarial perturbation
consistency to overcome the limitations of the aforementioned methods. Inspired by
FixMatch [30], our approach first generates pseudolabels using weak augmentation to
predict target domain images. The same images are strongly augmented with the Ran-
dAugment(RA) [31] and ClassMix [32] techniques and then fed into the model for training.
The supervised information comes from generating higher quality pseudolabels using the
weakly augmented branch, thus preserving output prediction consistency in the case of
diverse input perturbations. This process is termed the weak-to-strong consistency stream.
Critically, AdvCDA provides feature-level perturbations in the feature space by AT for
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interdomain alignment, while leveraging the same weakly augmented branch to provide
high-quality pseudolabels for supervised constraints. In this way, the model generalization
is improved by reducing the interdomain discrepancies while maintaining model training
stability through the supervisory constraints of the pseudolabel information. This process
is termed the adversarial perturbation consistency stream. In addition, the confidence esti-
mation mechanism is designed to assess the reliability of the two consistent perturbation
processes, and thus the model can adaptively optimize the learning direction according to
the training scenes.

In this paper, the main contributions are summarized as follows:

1. We propose an AdvCDA method for high-resolution RSIs based on adversarial per-
turbation consistency. The method combines AT and ST strategies to provide feature
perturbation information through interdomain alignment in order to improve the
domain generalization of the model during the ST process. Moreover, the ST method
provides high-quality labels that maintain the predictive consistency of the model
during AT, thus alleviating the over robustness that is prone to arise during domain
alignment.

2. We propose a confidence estimation mechanism to determine the learning weights of
the weak-to-strong consistency stream and the adversarial perturbation consistency
stream so that the model can adaptively adjust the optimization direction according to
different scenarios. Our method has been effectively demonstrated in various domain
discrepancy scenarios of high-resolution RSIs.

2. Related Works
2.1. Image-Level Alignment for UDA

Image-level alignment reduces the data distribution shift between the source and
target domains through image transfer methods [33,34]. This scheme generates pseudo
images that are semantically identical to the source images, but whose spectral distribution
is similar to that of the target images [17]. Cycle-consistent adversarial domain adapta-
tion (CyCADA) improves the semantic consistency of the image transfer process through
cycle consistency loss [35]. To preserve the semantic invariance of RSIs after being trans-
ferred, ColorMapGAN designs a color transformation method without a convolutional
structure [17]. Many UDA schemes adopt GAN-based style transfer methods [36] to align
data distributions in the source and target domains. ResiDualGAN [22] introduces scale
information of RSIs based on DualGAN [37]. Some work also leverages non-adversarial
optimization transform methods, such as Fourier transform-based FDA [38] and Wallis
filtering methods [39], to reduce image domain discrepancies.

2.2. Feature-Level Alignment by AT

Adversarial-based feature alignment methods train additional domain discrimina-
tors [19,40] to distinguish target samples from source samples and then train the feature
network to fool the discriminator, thus generating a domain-invariant feature space [41].
Many works have made significant progress using AT to align the feature space distribution
to reduce the domain variance in RSIs. Wu et al. [42] focused on interdomain category
differences and proposed class-aware domain alignment. Deng et al. [23] designed a
scale discriminator to detect scale variation in RSIs. Considering regional diversity, Chen
et al. [43] focused on difficult-to-align regions through a region adaptive discriminator. Bai
et al. [20] leveraged contrast learning to align high-dimensional image representations be-
tween different domains. Lu et al. [44] designed global-local adversarial learning methods
to ensure local semantic consistency in different domains.

2.3. Self-Training for UDA

Self-training acts as a kind of semi-supervised learning [45], which involves high-
confidence prediction as easy-to-transfer pseudolabels, and participates in the next iteration
of training together with the corresponding target images, progressively realizing the
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knowledge transfer process [26,27]. Yao et al. [39] used the ST paradigm to improve the
performance of the model for building extraction on unseen data. CBST [26] designs class-
balanced selectors for pseudolabels to avoid the easy-to-predict classes becoming dominant.
ProDA [46] computes representation prototypes that represent the centers of category
features to correct pseudolabels. CLUDA [47] constructs contrast learning between different
classes and different domains by mixing source and target domain images. Additionally,
several works have attempted to combine ST and adversarial methods to improve domain
generalization performance. However, these models are difficult to optimize and often
require fine-tuning of the model parameters. Zhang et al. [48] established the two-stage
training process of AT followed by ST. DecoupleNet [28] decouples ST and AT through two
network branches to alleviate the difficulty of model training.

2.4. Consistency Regularization

Consistency regularization is generally employed to solve semi-supervised problems,
where the essential idea is to preserve the output consistency of the model under dif-
ferent versions of input perturbations, thus improving the generalization ability of the
model for test data [49,50]. FixMatch [30] establishes two network flows, which include
weak perturbation augmentation and strong perturbation augmentation at the image
level, using the weak perturbation to ensure the high quality of the output and using the
strong perturbation to provide better training of the model. FeatMatch [51] extracts class
representative prototypes for feature-level augmentation transformations. Liu et al. [52]
constructed dual-teacher networks to provide more rigorous pseudolabels for unlabeled
test data. UniMatch [50] provides an auxiliary feature perturbation stream using a simple
dropout mechanism. Several recent regularization models have been designed under the
ST paradigm, but fail to account for domain discrepancy scenes, which has led to the fact
that pure consistency regularization has not behaved remarkably well in cross-domain
scenes.

3. Materials and Methods

In this section, the general architecture of the proposed network is illustrated and each
component of our approach is elaborated. We attempt to improve the domain generaliza-
tion performance through a combination of AT and ST methods. However, distinguishing
from existing work [28,29,53], we are devoted to leveraging the idea of consistency reg-
ularization [52,54,55] to preserve the output prediction consistency during the feature
alignment process to mitigate the instability issues that are easily induced by the adver-
sarial perturbation. Simultaneously, a confidence estimation mechanism is established
to optimize the training direction for different complicated domain difference scenarios
in RSIs. First, some preliminary work is introduced in Section 3.1. Then, the proposed
adversarial perturbation with consistency is described in Section 3.2, and the proposed
confidence estimation mechanism is described in Section 3.3.

3.1. Preliminaries

In the DA semantic segmentation task, the source domain images are defined as
XS =

{
xi

s
}Ns

i=1, where xi
s ⊂ RH×W×3, and its corresponding one-hot ground truth is

YS =
{

yi
s
}
⊂ RH×W×C. Let us define the target domain images as XT =

{
xi

t
}Ns

i=1, where
xi

t ⊂ RH×W×3, and the ground truth of the target domain cannot access the model. Typically,
the annotated source domain data is used to train model G with parameters θ, and then the
trained weights are directly applied to the target domain. Supervisory losses are formulaic
as follows:

LS =
1

BS

BS

∑
i=1
H(yi

s, p(y|xi
s; θ)) (1)

where p(y|xi
s; θ) = G(xi

s) and BS is defined as the batch size of the source domain data
input to the model at each iteration. H represents the loss entropy of minimizing the
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ground truth with respect to the predicted probability distribution. This method is set up
as the multicategory cross-entropy. In general, the generalization ability of the model tends
to perform poorly if domain discrepancies exist between the source and target domains,
resulting in the model performance in the target domain usually being suboptimal.

Several strategies and methods [25,28,41,56] have been proposed to address the do-
main shift problem, among which AT and ST have become the two dominant DA meth-
ods [57]. In ST, the model generates pseudolabels for the target domain images and
iteratively transfers training for the model to be adapted to the target domain. The overall
objective function is the linear combination of the supervised loss in the source domain
and the unsupervised loss in the target domain L = LS + λLT .

LT =
1

BT

BT

∑
i=1

I
(

max(p(y|xi
t, θ)) ≥ τ

)
H(yi

t, p(y|xi
t, θ)) (2)

yi
t = argmax(p(y|xi

t, θ)) (3)

where BT is the batch size of the target domain data for the input model, τ is defined as the
default confidence threshold, which is usually set at 0.9 to select high-quality pseudolabels
for the target domain, and yi

t represents the candidate pseudolabels from the target domain.
As a common concept in semi-supervised learning [30,51,58], consistency regulariza-

tion [52,55] typically imposes random perturbation information on unannotated data while
constraining the model to maintain output prediction consistency. FixMatch [30] uses weak-
to-strong consistency regularization to assign different levels of perturbation augmentation,
dubbed weak perturbation Aw and strong perturbation As, to each unannotated target
domain images Xt. It is written as

pw
t (y|xi

t, θ) = Ĝ(Aw(xi
t)), ps

t(y|xi
t, θ) = G(As(Aw(xi

t))) (4)

where the teacher network Ĝ generates higher-quality pseudolabels from weakly perturbed
target images, and the student network G serves as a trainable segmentation network to
apply stronger perturbations to the same images for optimizing the model. In our method,
the teacher network Ĝ and the student network G are designed to share weights.

AT obtains the domain-invariant feature space of the source and target domains via
aligning the interdomain global feature distributions, which provides another effective
method to alleviate the domain discrepancy problem. It generally consists of segmentation
network G and discriminative network D. The segmentation network can be divided
into the feature extractor F and the classifier C, where G = F ◦ C. AT depends on the
discriminative network D to align the feature distributions extracted by the segmentation
network in the source and target domains. Specifically, the segmentation network G and
the discriminative network D are optimized alternately and iteratively by the following
two steps [25,28,40]:

(1) First, F and C of the segmentation network are frozen, and only the determination
network is optimized, which improves the domain discrimination ability of the
discriminator D to distinguish the output features of different domains:

min
D
LD = −(1− d) log P(d = 0| fs)− d log P(d = 1| ft) (5)

where fs and ft are feature extractors whose inputs are source images Xs and target images
Xt. d denotes the domain indicator, where 0 denotes the source domain, and 1 denotes the
target domain. P(d = 0| f ) and P(d = 1| f ) denote the output probability that discriminator
D determines; the input comes from the source and target domains, respectively.

(2) The segmentation network G not only conducts supervised training tasks with labeled
source domains, but also participates in the AT process. Specifically, the adversarial
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loss is as follows, and this process is achieved by fixing the discriminative network D
and optimizing F and C of the segmentation network.

Ladv = log P(d = 0| ft) (6)

min
F,C
Ls + λadvLadv (7)

The main purpose of adversarial loss Ladv is to confuse the discriminator and en-
courage the segmentation network to perform interdomain alignment and learn domain
invariant features.

In general, the ST method combined with consistency regularization shows better
stability with small discrepancies in data distributions between source and target domains.
However, in practical cases, the factors that cause the data distribution discrepancies in
RSIs are often complicated. For complex domain discrepancy scenarios, the generalization
performance of simple ST methods usually fails to meet the requirements due to the
impact of pseudolabel noise. Deep AT methods aim to reduce domain discrepancies
through feature space alignment. However, for the semantic segmentation task, fine-
grained feature alignment in high-dimensional space is needed, which is prone to induce
more noise disturbances causing the model to become over robust and affecting the stability
of adversarial learning.

Based on the above issues, we propose a novel DA method for high-resolution RSIs
based on adversarial perturbation consistency. We provide directional feature perturbation
through AT and align the source domain features with the target domain to improve
the domain generalization ability of the model. Additionally, combining consistency
regularization and the ST paradigm maintains the output prediction consistency after
feature perturbation and improves the stability of AT. Moreover, to adapt to the complex
domain discrepancy scenarios in RSIs, based on the complementary advantages of weak-to-
strong and adversarial perturbation consistency, we further develop a confidence estimation
mechanism for pseudolabels to constrain the direction of the decision boundary.

3.2. Adversarial Perturbations Consistency

To combine the AT and ST paradigms to improve the domain transfer performance of
the model, and simultaneously ensure model stability during the training process, inspired
by the consistency regularization idea of semi-supervised learning, we propose an adver-
sarial perturbation consistency-based DA semantic segmentation method. Consistency
regularization has achieved significant effects in the semi-supervised domain. However, it
is difficult to achieve breakthrough performance improvement when applied directly to
scenarios where large data distribution shifts exist between the source and target domains,
mainly due to the lack of an effective feature alignment mechanism to reduce the interdo-
main discrepancies. AT is an effective interdomain feature alignment method, but it relies
on fine-grained alignment in high-dimensional feature space, which is prone to generating
ineffective feature perturbations and causing instability in the training process. Hence,
AdvCDA considers the AT process as a single directional feature perturbation stream in
consistency regularization to reduce the interdomain variance. Simultaneously, the output
consistency is constrained by consistency loss to maintain AT stability.

The framework of AdvCDA is shown in Figure 2. For source images with ground
truth, we use supervised loss to train the segmentation network and improve the semantic
discrimination performance of the model for each category. For the target domain, we set up
three branches to achieve domain transfer between the source and target images to improve
the generalization of the model: the weak augmentation branch, the strong augmentation
branch, and the adversarial perturbation branch, respectively. Similar to some existing
semi-supervised methods [30,50], we provide different versions of input perturbations at
the input level through weak and strong augmentation to improve the generalization of the
model. However, due to domain shifts, consistency learning [51] at only the input image
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level is often insufficient and requires the model to maintain consistency at multiple levels
under various perturbations to fully exploit the ability of the model to learn generalized
features. In particular, it is important to note that the goal of UDA is to align the feature
space between different domains to reduce domain discrepancies.
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Figure 2. Overall framework of AdvCDA. The source images are fed into the feature extractor and
classifier, and the supervised loss is computed using the source predictions and the corresponding
ground truth to help the segmentation network learn task-specific knowledge. The target images pass
through a weak augmentation flow to obtain high-quality pseudolabels. The same target images are
put through a strong augmentation flow and an adversarial perturbation flow to obtain two target
predictions, which are used to minimize the consistency loss. The two consistency training processes
are weak-to-strong consistency and adversarial perturbation consistency. The domain discriminator
is part of the AT to generate feature perturbations to the network layer. The feature alignment of the
source and target domains is performed to minimize domain discrepancies.

Therefore, based on weak-to-strong perturbation consistency learning [30], as shown
in Figure 3a, we propose injecting adversarial perturbation information to maintain the
consistency of the output prediction with the adversarial perturbation. Specifically, as
shown in Figure 3b, we separate image- and feature-level perturbations into individual
network streams, allowing the model to directly achieve target consistency with each type
of perturbation information.
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Specifically, to reduce the domain discrepancies and improve the generalization per-
formance of the model in the target domain, we attempt to align the feature distributions 
of the source and target domains through AT methods. Therefore, we apply a discrimina-
tor in the shallow feature space of the model for adversarial learning. The adversarial loss 
is as follows: 

2
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1 ( ( ) 0)
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B

adv
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φ
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Training the discriminator is also required to improve the discriminant performance 
on source and target domains. Discriminatory loss is described as follows: 

2 2

1 1

1 1( ( ) 0) ( ( ) 1)
S TB B

d
iS

i i
t

T
s

i
D D

B B
φ φ

= =

= − + −   (11) 

where 0 denotes the source domain and 1 denotes the target domain. The feature space of 
the target domain gradually converges to the source domain through AT to obtain the 
domain-invariant feature space. The alignment process in the source and target domains 
can be regarded as injecting a feature perturbation in the shallow feature space of the 
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Figure 3. Comparison of consistency regularization pipelines. (a) Weak-to-strong consistency baseline
framework. (b) The proposed adversarial perturbation consistency framework.

First, we divide the model encoder into flow and fhigh parts, that is, f = flow ◦ fhigh. We
attempt to align the shallow feature space of the model in the source and target domains.
This design explains that the domain discrepancies between the source and target domains
are represented in the low-level feature information, such as spectral and textural differ-
ences, because of the geographic location, atmospheric radiation conditions, or seasons.
These features are generally captured by the shallow layer of the feature extractor, so we
decided to inject adversarial perturbation information into the shallow network features,
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which will capture domain-invariant features more accurately and simultaneously prevent
excessive invalid perturbation information from affecting the stability of the model training
process. The source and target domain images xi

s and xi
t are fed into the model to obtain

the corresponding shallow features φi
s, φi

t and the predicted results:

φi
s = flow

(
Aw(xi

s)
)

, pw
s (y|xi

s, θ) = C( fhigh(φ
i
s)) (8)

φi
t = flow

(
Aw(xi

t)
)

, pw
t (y|xi

t, θ) = C( fhigh(φ
i
t)) (9)

Specifically, to reduce the domain discrepancies and improve the generalization per-
formance of the model in the target domain, we attempt to align the feature distributions of
the source and target domains through AT methods. Therefore, we apply a discriminator
in the shallow feature space of the model for adversarial learning. The adversarial loss is as
follows:

Ladv =
1

BT

BT

∑
i=1

(D(φi
t)− 0)

2
(10)

Training the discriminator is also required to improve the discriminant performance
on source and target domains. Discriminatory loss is described as follows:

Ld =
1

BS

BS

∑
i=1

(D(φi
s)− 0)

2
+

1
BT

BT

∑
i=1

(D(φi
t)− 1)

2
(11)

where 0 denotes the source domain and 1 denotes the target domain. The feature space
of the target domain gradually converges to the source domain through AT to obtain the
domain-invariant feature space. The alignment process in the source and target domains
can be regarded as injecting a feature perturbation in the shallow feature space of the model
and obtaining the new feature parameter, which is f f p

low. Furthermore, we can obtain the
predicted results after feature perturbation by AT:

φ
f p
t = f f p

low

(
Aw(xi

t)
)

, p f p
t (y|xi

t, θ) = C( fhigh(φ
f p
t )) (12)

Fine-grained feature alignment in high-dimensional space can be more prone to
generate adversarial noise [59], leading to a lack of stability in training DA methods.
Therefore, we constrain the model to maintain the consistency of the output predictions
after noise perturbation based on the idea of consistency regularization, which helps to
improve the stability of the model. Eventually, the unsupervised loss in the target domain
is reformulated as Lw and L f p, where Lw denotes the weak-to-strong consistency loss and
L f p denotes the adversarial perturbation consistency loss.

Lw =
1

BT

BT

∑
i=1

I
(

max(pw
t (y|xi

t, θ)) ≥ τ
)
H(yi

t, ps
t(y|xi

t, θ)) (13)

L f p =
1

BT

BT

∑
i=1

I
(

max(pw
t (y|xi

t, θ)) ≥ τ
)
H(yi

t, p f p
t (y|xi

t, θ)) (14)

yi
t = argmax(pw

t (y|xi
t, θ)) (15)

To adapt to the complicated domain discrepancies in RSIs, one can find that our frame-
work is designed with a weak-to-strong consistency stream and an adversarial perturbation
consistency stream, which skillfully combines the ST and AT methods to improve domain
transfer performance while guaranteeing training stability. Specifically, AT plays a crucial
role in the network to conduct interdomain alignment to reduce domain discrepancies. On
the one hand, AT provides feature-level perturbations to allow the model to learn various
consistent features with more abundant perturbation information. On the other hand,
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feature alignment is used to reduce the domain discrepancies between the source and target
images to improve the domain generalization performance of the model. Meanwhile, con-
sistency regularization enables the model to maintain strong stability during the co-learning
process of ST and AT, which fully exploits the potential for domain generalization.

3.3. Confidence Estimation Mechanism

In general, for large domain discrepancy scenarios, feature alignment by AT plays the
primary role in reducing the interdomain discrepancy and improving the generalization
of the model. In contrast, ST methods are prone to pseudo-label noise that can lead to
performance degradation [46]. For scenarios with small domain discrepancies, such as
semi-supervised domains, the ST method can be sufficient to attain satisfactory results
for the model in the target domain. Therefore, for the weak-to-strong consistency and
adversarial perturbation consistency stream, it is better to allow the model to adaptively
optimize the learned weights of the two streams to meet uncertain domain discrepancy
scenarios.

The design key of this method is how to evaluate the confidence estimation of each
stream to guide the model for better transfer training. As we know, it is especially critical
for ST methods to design confidence thresholds for pseudolabels, where labels lower than
the confidence threshold are generally considered incorrect labels for prediction. In contrast,
labels higher than the threshold will be involved as candidate labels in the next iterative
training process to improve the performance of the model in the target domain. Based on
this, as shown in Figure 3b, we propose a confidence estimation mechanism that estimates
the training confidence of the two streams by calculating the similarity of the outputs
from the strong augmented branch, and the adversarial perturbation branch to the weakly
augmented branch, thus constraining the model to assign more training weights to the
higher-quality consistent network stream. In addition, it can be found that both of the
proposed consistency regularization streams conduct consistently supervised learning
based on weak augmentation. Intuitively, the weakly augmented branch is more prone to
produce high-quality prediction results. We define the final target domain loss as:

LT = λ1Lw + λ2L f p (16)

where λ1 and λ2 are the key weights for estimating the confidence of the two streams. The
weight values determine the influence level of the corresponding stream on the training
and gradient optimization, guiding the optimization direction of the model. When λ2 = 0,
the model degenerates into a semi-supervised model, FixMatch [30]. Specifically, we use
the similarity of the logit outputs from the strongly augmented branch and the adversarial
perturbation branch, with the weakly augmented branch, respectively, as a confidence
estimation for the two streams:

ci
ws =

1
H(yi

t, ps
t(y|xi

t, θ))
, ci

f p =
1

H(yi
t, p f p

t (y|xi
t, θ))

(17)

where ci
ws and ci

f p are the confidence weights assigned to the two streams of weak-to-strong
consistency and adversarial perturbation consistency, the higher weight value represents
the higher confidence assigned to the corresponding stream, and the model tends to learn
from the stream with high confidence. To avoid the instability problem caused by scale
variation in weight values, we normalize the final weight values:

λ1 =
ci

ws

ci
ws + ci

f p
, λ2 =

ci
f p

ci
ws + ci

f p
(18)

In this case, the final loss we use to train the segmentation network was L = LS + LT ,
and Ladv as an adversarial loss will inject interdomain feature alignment perturbation
information into the feature extractor before the gradient optimization of the segmentation
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network. The data distribution shifts between source and target images mainly manifest
in the shallow information, so Ladv focuses primarily on the domain-invariant features
in the shallow feature space, and Ld is employed to individually train and optimize the
discriminative network.

In addition, for weak-to-strong augmentation in consistency regularization learning,
we leverage the ClassMix [32] augmentation strategy in the strongly augmented pertur-
bations by mixing the foreground and background regions of the image to provide more
diverse information about the perturbations, as illustrated in Figure 4. Compared to the
commonly adopted CutMix [60] strategy, ClassMix has more advantages in maintaining
the semantic integrity and the boundary information of each object in the images.

Remote Sens. 2023, 15, 5498 10 of 21 
 

 

1 2T w fpλ λ= +    (16) 

where 1λ  and 2λ  are the key weights for estimating the confidence of the two streams. 
The weight values determine the influence level of the corresponding stream on the train-

ing and gradient optimization, guiding the optimization direction of the model. When 2λ  
= 0, the model degenerates into a semi-supervised model, FixMatch [30]. Specifically, we 
use the similarity of the logit outputs from the strongly augmented branch and the adver-
sarial perturbation branch, with the weakly augmented branch, respectively, as a confi-
dence estimation for the two streams: 

1
( , ( | , ))

i
ws i s i

t t t

c
y p y x θ

=


, 
1

( , ( | , ))
i
fp i fp i

t t t

c
y p y x θ

=


 (17) 

where 
i
wsc  and 

i
fpc  are the confidence weights assigned to the two streams of weak-to-

strong consistency and adversarial perturbation consistency, the higher weight value rep-
resents the higher confidence assigned to the corresponding stream, and the model tends 
to learn from the stream with high confidence. To avoid the instability problem caused by 
scale variation in weight values, we normalize the final weight values: 

1 2= , =
ii
fpws

i i i i
ws fp ws fp

cc
c c c c

λ λ
+ +  

(18) 

In this case, the final loss we use to train the segmentation network was S T= +   , 

and adv  as an adversarial loss will inject interdomain feature alignment perturbation 
information into the feature extractor before the gradient optimization of the segmenta-
tion network. The data distribution shifts between source and target images mainly man-

ifest in the shallow information, so adv  focuses primarily on the domain-invariant fea-

tures in the shallow feature space, and d  is employed to individually train and optimize 
the discriminative network. 

In addition, for weak-to-strong augmentation in consistency regularization learning, 
we leverage the ClassMix [32] augmentation strategy in the strongly augmented pertur-
bations by mixing the foreground and background regions of the image to provide more 
diverse information about the perturbations, as illustrated in Figure 4. Compared to the 
commonly adopted CutMix [60] strategy, ClassMix has more advantages in maintaining 
the semantic integrity and the boundary information of each object in the images. 

 
Figure 4. Weak-to-strong consistency with the introduction of ClassMix. 

4. Experimental Results and Discussion 

Figure 4. Weak-to-strong consistency with the introduction of ClassMix.

4. Experimental Results and Discussion
4.1. Dataset Description

To validate the segmentation performance of AdvCDA with different domain discrep-
ancy scenarios in RSIs, three benchmark datasets are used: the Potsdam dataset, Vaihingen
and LoveDA datasets.

Potsdam dataset: The Potsdam dataset consists of 38 pieces of 5 cm high-resolution
RSIs with a size of 6000 × 6000, and annotated data include six interpretation categories:
impervious surfaces, buildings, trees, cars, low vegetation, and background. The dataset
has red, green, blue, and near-infrared bands, and we use both IRRG and RGB imaging
modes in the experiments. In addition, we follow the same sample splitting method and
crop the image to 512 × 512 patch size [24]. A total of 4598 samples are generated and
divided into 2904 training sets and 1694 test sets [22,24,61].

Vaihingen dataset: The Vaihingen dataset contains the same interpretation categories
as the Potsdam dataset, with an image resolution of 9 cm and only IRRG imaging modes.
The dataset contains 33 VHR TOP images. During data preprocessing, we also crop the
images to 512 × 512 size and divide 1296 images as training data and 440 images as test
data [22,24,61].

LoveDA dataset: The LoveDA dataset provides both rural and urban land cover
scenes and contains seven interpretation categories: building, road, water, barren, forest,
agricultural land, and background. It contains 5987 0.3 m high-resolution images from
three different cities, with a size of 1024 × 1024. The urban scene in this dataset contains
1156 training images, 677 validation images, and 820 test images, while the rural scene
contains 2358 images, of which 1366 images are used for training and 976 are used for test
data [62,63]. On the LoveDA dataset, we focused our experiments on the remote sensing
cross-domain task for rural-to-urban scenes.

4.2. Experimental Settings and Evaluation Metrics

All the network architectures in our experiments were implemented using the PyTorch
framework. We primarily leveraged SegFormer [64] as our typical baseline segmentation
model. During the training process, the SegFormer model was optimized by AdamW [65]
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with the momentum parameter set to 0.9 and the weight decay set to 10−2. The initial
learning rates for the encoder and decoder were set to 6 × 10−5 and 6 × 10−4, respectively,
and then the learning rate decayed linearly with iterations. We set horizontal flipping and
random rotation as weak augmentation methods in consistency learning while adding
RandAugment [31] and ClassMix [32] as strong augmentation methods for the weak-to-
strong consistency branch.

We comprehensively evaluated the performance of the model using the mean inter-
section over union (mIoU), which was obtained by calculating the intersection over union
(IoU) for each category and then averaging them. As follows, we computed the IoU for
each category by a confusion matrix with three terms, true positive (TP), false positive (FP)
and false negative (FN), in the formulation:

IoU =
TP

TP + FP + FN
(19)

In addition, following the settings of [22,24,66], the F1 score was used to further
evaluate the proposed method, which is defined as:

F1 =
2× Precision× Recall

Precision + Recall
, Precision =

TP
TP + FP

, Recall =
TP

TP + FN
(20)

4.3. Comparisons with Other Methods

To verify the effectiveness of AdvCDA, we performed experiments in three kinds of
domain discrepancy scenarios that are commonly observed in RSIs, including cross-spectral
discrepancy scenarios, cross-space discrepancy scenarios, and complex domain discrepancy
scenarios.

4.3.1. Cross-Space Scenarios

We conducted experiments with the Potsdam (IRRG) dataset as the source domain
and the Vaihingen (IRRG) dataset as the target domain. We focused primarily on practically
meaningful goals, so five categories were evaluated: impervious surfaces, buildings, low
vegetation, trees, and cars [23,53,67]. One can find that objects in the two datasets have
significant characteristic differences, such that there are large buildings, narrow streets, and
dense residential structures within the Potsdam dataset images. In contrast, the Vaihingen
dataset images contain mostly free-standing structures and small buildings; the results
are shown in Table 1. Compared to the existing state-of-the-art (SOTA) method, AdvCDA
improves the mIoU performance by 2.84% and the mFscore performance by 2.01%. In terms
of each category, our method significantly improved the results for all categories. In terms
of categories, the best IoU and F1 performance of AdvCDA is achieved for impervious
surfaces, cars, buildings, and trees, indicating that the proposed DA method has a more
robust and stable domain transfer ability. Note that both ST-DASegNet and DAFormer,
the best performance among the compared methods, used transformer (SegFormer) as
the baseline, and an equally transformer-based model is used for the best performance of
AdvCDA. Furthermore, as shown in Figure 5 for the qualitative visualization, it can be
intuitively found that the proposed AdvCDA performed strongly in the Potsdam (IRRG)
→ Vaihingen (IRRG) cross-domain task.

Geographical discrepancies arising from urban and rural areas are also very common in
practical remote sensing applications. Urban areas cover many building clusters and dense
road grids compared to rural areas with more agricultural land, increasing the difficulty
of generalization of the model. As shown in Table 2, we give the type of architecture for
each method. Obviously, for this rural→urban cross-domain task, one can find that the
combination of ST and AT outperforms purely ST methods, while purely AT methods
show the lowest performance. Furthermore, using SegFormer as the baseline model, the
mIoU performance of our DA approach outperformed the baseline by 9.09%. Among the
compared DA methods, DAFormer, ST-DASegNet, and our method are all transformer-
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based networks, which obviously achieve a significant advantage over CNN-based DA
methods, while our method achieved the optimal comprehensive performance.

Table 1. Comparison results of AdvCDA with existing DA methods. The mIoU performance is
validated on the test set of the Potsdam (IRRG) → Vaihingen (IRRG) task. The best results are
highlighted in bold.

Method Architecture
Impervious

Surfaces Car Tree Low
Vegetation Building Overall

IoU F1 IoU F1 IoU F1 IoU F1 IoU F1 mIoU mFscore

AdaptSegNet [25]

ResNet-
Based

54.39 70.39 6.40 11.99 52.65 68.96 28.98 44.91 63.14 77.40 41.11 54.73
FADA [41] 60.01 75.00 26.79 42.25 58.06 73.46 47.23 64.16 70.96 83.01 52.61 67.58

DualGAN [37] 49.41 66.13 34.34 51.09 57.66 73.14 38.87 55.97 62.30 76.77 48.52 64.62
ResiDualGAN

[22] 72.29 83.89 57.01 72.51 63.81 77.88 49.69 66.29 80.57 89.23 64.67 77.96

Zhang et al. [66] 67.74 80.13 44.90 61.94 55.03 71.90 47.02 64.16 76.75 86.65 58.29 72.96

ST-DASegNet [24]
Transformer-

based

74.43 85.36 43.38 60.49 67.36 80.49 48.57 65.37 85.23 92.03 63.79 76.75
DAFormer [56] 76.01 86.54 51.40 70.69 68.43 80.62 51.23 67.81 81.99 88.40 65.81 78.81

AdvCDA 77.19 87.13 61.63 76.26 65.78 79.36 52.21 68.60 86.44 92.73 68.65 80.82
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Figure 5. Qualitative comparison of AdvCDA with other methods in the Potsdam (IRRG)→ Vai-
hingen (IRRG) task. (a) Target images. (b) AdaptSegNet. (c) FADA. (d) DAFormer. (e) AdvCDA.
(f) Ground truth.

We provide the visualization results for the rural→ urban task in Figure 6. Since the
ground truth is not available for the test set, we show the validation data for the LoveDA
dataset. It can be found that AdvCDA has more advantages in preserving the integrity and
edge accuracy of the objects.
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Table 2. Comparison results of AdvCDA with existing DA methods. The mIoU performance is
validated on the test set of the rural→ urban task. The best results are highlighted in bold.

Method Arch. BackgroundBuilding Road Water Barren Forest Agriculture mIoU

SegFormer [64] baseline 47.14 53.28 55.50 52.93 18.52 35.37 28.97 41.67

AdaptSegNet [25] AT 42.35 23.73 15.61 81.95 13.62 28.70 22.05 32.68
FADA [41] AT 43.89 12.62 12.76 80.37 12.70 32.76 24.79 31.41

PyCDA [68] ST 38.04 35.86 45.51 74.87 7.71 40.39 11.39 36.25
CBST [26] ST 48.37 46.10 35.79 80.05 19.18 29.69 30.05 41.32
IAST [27] ST 48.57 31.51 28.73 86.01 20.29 31.77 36.50 40.48
DCA [63] ST 45.82 49.60 51.65 80.88 16.70 42.93 36.92 46.36

DAFormer [56] ST 50.94 56.66 62.83 89.41 11.99 45.81 25.26 48.99
ST-DASegNet [24] AT + ST 51.01 54.23 60.52 87.31 15.18 47.43 36.26 50.28

AdvCDA AT + ST 50.81 56.12 58.38 87.87 15.85 41.88 44.40 50.76
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4.3.2. Cross-Spectral Scenarios

The different spectral bands of RSIs also cause large data distribution shifts, and thus
we conducted the Potsdam (RGB)→ Potsdam (IRRG) cross-spectral scene task for com-
parison experiments to validate the effectiveness of the model. Table 3 shows that spectral
variation produces large impacts on low vegetation and cars, with large performance differ-
ences between different DA methods, and small impacts on the performance of buildings.
Figure 7 shows the visualization results of different DA methods. In terms of visual fea-
tures, the differences in cross-band scenes are mainly shown in spectral features and color
variation, with less impact on the shape and texture of the target objects. This indicates
that the model focuses on different directions of feature learning for various classes, while
purely ST methods, such as IAST, or purely AT methods, such as AdaptSegNet, do not
perform well stably. In contrast, AdvCDA can constrain the model to adaptively optimize
the learning direction according to different scenarios by estimating the confidence of the
two streams, weak-to-strong consistency, and adversarial perturbation consistency, and
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it achieves the best performance for buildings, impervious surfaces, low vegetation, and
trees, with the overall performance of 1.61% and 1.13% for mIoU and mFscore better than
that of the best comparative method.

Table 3. Comparison results of AdvCDA with existing DA methods. The mIoU performance
is validated on the test set of the Potsdam (RGB) → Potsdam (IRRG) task. The best results are
highlighted in bold.

Method Architecture
Impervious

Surfaces Car Tree Low
Vegetation Building Overall

IoU F1 IoU F1 IoU F1 IoU F1 IoU F1 mIoU mFscore

AdaptSegNet [25]

ResNet-
Based

73.80 84.92 69.56 82.05 67.18 80.37 51.19 67.71 80.81 89.39 68.51 80.89
FADA [41] 75.91 86.31 66.83 80.12 68.77 81.49 62.06 76.59 83.97 91.28 71.51 83.16

PyCDA [68] 76.41 86.62 73.69 84.85 69.31 81.87 63.49 77.67 82.70 90.53 73.12 84.31
IAST [27] 76.20 86.49 66.81 80.10 68.26 81.14 54.29 70.37 83.67 91.11 69.85 81.84

DACS [69] 74.09 85.12 71.16 83.15 66.83 90.11 63.44 77.63 81.14 89.59 71.33 85.12
DecoupleNet [28] 76.21 86.50 72.97 84.37 68.10 81.02 59.50 74.61 82.25 90.26 71.81 83.35

DAFormer [56] Transformer-
based

77.94 87.28 86.59 90.02 71.57 83.80 67.94 81.99 80.23 90.09 76.85 86.64
AdvCDA 80.06 88.92 81.72 89.94 68.66 81.42 73.56 84.76 88.32 93.80 78.46 87.77
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4.3.3. Complex Domain Discrepancy Scenarios

To further validate the effectiveness of the model in complex domain discrepancy
scenarios that represent more difficult and large data distribution shifts, we conducted
experiments on the Potsdam (RGB)→ Vaihingen (IRRG) task. Note that this task involves
both cross-spectral and cross-spatial discrepancies, and the same classes also have large-
scale variations, which pose a greater challenge to the generalization and stability of the
model. As shown in Table 4, the quantitative comparison results between AdvCDA and
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several existing DA methods are presented. Compared to the simple cross-spectral and
cross-space scenarios, our approach has greater advantages in complex domain discrepancy
scenarios. AdvCDA outperforms the best comparison method by 4.03% for mIoU and
4.26% for mFscore. The experimental results demonstrate that AdvCDA also achieves the
best performance in cross-spectral and cross-spatial complex scenarios.

Table 4. Comparison results of AdvCDA with existing DA methods. The mIoU performance is
validated on the test set of the Potsdam (RGB) → Vaihingen (IRRG) task. The best results are
highlighted in bold.

Method Architecture
Impervious

Surfaces Car Tree Low
Vegetation Building Overall

IoU F1 IoU F1 IoU F1 IoU F1 IoU F1 mIoU mFscore

AdaptSegNet [25]

ResNet-
Based

51.26 67.77 10.25 18.54 51.51 68.02 12.75 22.61 60.72 75.55 37.30 50.50
FADA [41] 56.66 72.34 27.36 42.97 34.39 51.18 36.34 53.31 65.89 79.44 44.13 59.85
ProDA [46] 49.04 66.11 31.56 48.16 49.11 65.86 32.44 49.06 68.94 81.89 46.22 62.22

Bai et al. [56] 62.40 76.90 38.90 56.00 53.90 70.00 35.10 51.90 74.80 85.60 53.02 68.08
DualGAN [37] 49.16 61.33 40.31 57.88 55.82 70.66 27.85 42.17 65.44 83.00 47.72 63.01
ResiDualGAN

[22] 55.54 71.36 48.49 65.19 57.79 73.21 29.15 44.97 78.97 88.23 53.99 68.59

Zhang et al. [66] 64.47 77.76 43.43 60.05 52.83 69.62 38.37 55.94 76.87 86.95 55.19 70.06

DAFormer [56]
Transformer-

based

58.85 75.50 46.33 65.54 62.94 79.49 18.89 27.46 74.20 86.50 52.24 66.90
ST-DASegNet [24] 68.36 81.28 43.15 60.28 64.65 78.31 34.69 47.08 84.09 91.33 58.99 71.66

AdvCDA 72.31 83.93 61.69 76.31 61.54 76.19 34.34 51.12 85.25 92.04 63.02 75.92

4.4. Ablation Study and Analysis
4.4.1. Design of Feature Alignment

In the comparison experiments, AdvCDA achieves significant advantages in various
domain discrepancy scenarios that are common in RSIs, which proves the effectiveness of
AdvCDA and the stability that can be adapted to different remote sensing scenario tasks.
Intuitively, in contrast to the pure ST approach, the key component of the proposed joint
ST and AT paradigm is the additional adversarial alignment idea to capture the domain-
invariant feature space and promote the generalization ability of the model. Therefore,
we investigate the impact of the feature alignment module in the AT process when it acts
on different feature layers in the segmentation network architecture. With transformer-
based SegFormer [64] as the backbone, stage-1 to stage-4 of the backbone and the output
layers were used as inputs to the discriminative network. AT only updates the network
layer gradients prior to the current feature layer for feature alignment. The results shown
in Figure 8 indicate that conducting feature alignment at stage-2 achieves the best DA
results, whereas the model performance tends to decrease when the feature alignment
module is applied to the deep network, such as stage-3 and stage-4, which might be that
the AT overly interferes with the feature parameters, resulting in the over robustness of the
model. Feature alignment in the output space is commonly employed in AT methods to
maintain the consistency of the output layouts of the source and target domains. However,
experiments show that AdvCDA provides adversarial feature interference at stage-2 to
achieve the best DA performance.

4.4.2. Effectiveness Analysis of Each Component

To validate the effectiveness of each component for the proposed AdvCDA, we con-
ducted ablation experiments in Table 5. FixMatch leverages weak-to-strong consistency
regularization ideas for ST, while our approach generalizes consistency regularization ideas
to DA tasks. Therefore, the key idea is to leverage consistency regularization to improve
the stability of AT, thus combining ST and AT methods to boost DA performance, which
we dubbed adversarial perturbation consistency (AdvC). The adversarial perturbation
consistency acts on the feature layer of the model to complement the advantages of weak-
to-strong perturbation consistency at the input level, and the mIoU performance of the
model is improved by 3.26%. In addition, confidence estimation (CB) on the two streams of
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weak-to-strong and adversarial perturbation consistency from adaptive optimization learn-
ing is crucial for AdvCDA to maintain the stability of its performance in different domain
discrepancy scenarios, where the mIoU performance of the model is further improved to
68.65% in this Potsdam (IRRG)→ Vaihingen (IRRG) cross-domain task.
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Table 5. Ablation experiments on the effectiveness of each component with the proposed approach.

Methods FixMatch Lce Ladv AdvC CB mIoU

SourceOnly 4 56.30
FixMatch + ClassMix 4 4 61.43

AdvCDA (w/o AdvC) 4 4 4 62.29
AdvCDA (w/o CB) 4 4 4 4 65.55

AdvCDA 4 4 4 4 4 68.65

Target-only - - - - 76.10

4.4.3. Effectiveness of Augmentation Perturbation Strategies

Table 6 shows the performance obtained by imposing different augmentation per-
turbation strategies on strong augmentation branches for different cross-domain tasks.
The baseline is augmented with horizontal flipping, rotation, and other common augmen-
tation methods used in semantic segmentation models. One can find that although the
CutMix strategy can effectively improve the generalization ability of the model in the
semi-supervised learning task [52], it instead degrades the performance of the model in the
cross-domain scenes. We assume that CutMix augmentation corrupts the local semantic
integrity of the classes and that the loss of semantic information further enlarges the dis-
crepancies between the source and target domains. In contrast, ClassMix provides complete
object boundaries, which mix images from the source and target domains for augmentation,
and the model performance is further improved. In addition, the RA, which is a commonly
used strategy for weak-to-strong consistency learning, improves the mIoU performance by
2.48% and 1.02% in the Potsdam RGB→ Vaihingen IRRG and rural→ urban cross-domain
tasks, respectively.
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Table 6. The performance of applying different augmentation perturbation strategies to strong
augmentation branches in the tasks Potsdam RGB→ Vaihingen IRRG and rural→ urban.

Augmentation Strategy mIoUPotsdamRGB→VaihingenIRRG mIoUrural→urban(val)

Baseline 60.35 54.58
Baseline (w/CutMix) 59.83 54.15

Baseline (w/ClassMix) 61.18 55.33
RA (w/o ClassMix) 62.83 55.60
RA (w/ClassMix) 63.02 56. 17

5. Conclusions

In this paper, we propose a novel DA semantic segmentation method based on ad-
versarial perturbation consistency to solve the distribution discrepancies among different
domains in RSIs. In the network architecture, we design a weak-to-strong consistency
stream at the input level and an adversarial perturbation consistency stream at the feature
level, aiming to further improve the domain generalization performance of the model
through joint AT and ST. Crucially, considering the inherent instability problem of AT,
we use consistency regularization to provide high-quality pseudolabels to prevent over
robustness that can easily be induced by over-perturbation of the feature space for AT.
Furthermore, we propose a confidence estimation mechanism to adaptively assign the
optimization weights for each stream and thus guide the model to train better for do-
main transfer. The effectiveness of the proposed method is validated on three different
remote sensing benchmark datasets with cross-space, cross-spectral, and complex domain
difference scenarios. Extensive experiments demonstrate the performance superiority of
AdvCDA compared to existing UDA methods. Notably, AdvCDA improves mIoU per-
formance by 4.03% and mFscore performance by 4.26% in Potsdam (RGB)→ Vaihingen
(IRRG) complex domain discrepancy scenarios against existing SOTA methods, further
demonstrating that the design of the adversarial perturbation consistency and confidence
estimation mechanisms enables the model to obtain effectively adaptive optimization in
complex unseen scenarios. Nevertheless, it remains the case that our approach focuses on
specific target domains and mainly studies the transfer training process of domain-specific
knowledge in known target domains. In future work, we will further explore domain
generalized feature learning in the case of multi-target domains or unseen target domains.
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