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Abstract: Although existing anchor-based oriented object detection methods have achieved remark-
able results, they require manual preset boxes, which introduce additional hyper-parameters and
calculations. These methods often use more complex architectures for better performance, which
makes them difficult to deploy on computationally constrained embedded platforms, such as satel-
lites and unmanned aerial vehicles. We aim to design a high-performance algorithm that is simple,
fast, and easy to deploy for aerial image detection. In this article, we propose a one-stage anchor-free
rotated object detector, FCOSR, that can be deployed on most platforms and uses our well-defined
label assignment strategy for the features of the aerial image objects. We use the ellipse center
sampling method to define a suitable sampling region for an oriented bounding box (OBB). The fuzzy
sample assignment strategy provides reasonable labels for overlapping objects. To solve the problem
of insufficient sampling, we designed a multi-level sampling module. These strategies allocate more
appropriate labels to training samples. Our algorithm achieves an mean average precision (mAP) of
79.25, 75.41, and 90.13 on the DOTA-v1.0, DOTA-v1.5, and HRSC2016 datasets, respectively. FCOSR
demonstrates a performance superior to that of other methods in single-scale evaluation, where
the small model achieves an mAP of 74.05 at a speed of 23.7 FPS on an RTX 2080-Ti GPU. When
we convert the lightweight FCOSR model to the TensorRT format, it achieves an mAP of 73.93 on
DOTA-v1.0 at a speed of 17.76 FPS on a Jetson AGX Xavier device with a single scale.

Keywords: oriented object detection; aerial object detection; label assignment strategy

1. Introduction

The object detection task usually uses a horizontal bounding box (HBB) to circle the
target and identify its category. In recent years, many excellent HBB framework algorithms
have been proposed, including the YOLO series [1–5], R-CNN series [6–9], RetinaNet [10],
FCOS [11,12], CenterNet [13], and SSD [14]. These methods have achieved remarkable
results in object detection tasks. However, they face challenges in single-image aerial object
detection, such as arbitrary orientation, dense objects, and a wide resolution range. The
arbitrary orientation and the dense characteristics of the target make it easy to filter out valid
objects using non-maximum suppression (NMS) as a post-processing method, resulting in
missed detections. Moreover, the wide resolution range leads to large variation in the same
target scale. As a result, the HBB algorithm has difficulty detecting aerial objects effectively.
As such, the aerial object detection task converts the HBB into an oriented bounding box
(OBB) by adding a rotation angle.

At present, the oriented object detector is generally modified from HBB algorithms,
which are either anchor-based methods or anchor-free methods. Anchor-based meth-
ods usually require manual preset boxes, which is disadvantageous for two reasons: it
introduces additional hyper-parameters and more calculations, and it requires manual
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adjustment of the anchor box for different datasets. Representative OBB anchor-based
algorithms include ROI-transformer [15] and S2ANet [16]. Anchor-free methods remove
the preset box and reduce the prior information, which makes them more adaptable than
the anchor-based methods. Representative OBB anchor-free algorithms include BBAVec-
tors [17], PolarDet [18], and PIoU [19]. Of the oriented object detection algorithms, anchor-
based methods tend to perform better than anchor-free methods. ROI-transformer-based
methods such as ReDet [20] and Oriented R-CNN [15] achieve higher detection accuraciy
than all anchor-free methods.

However, current methods usually use a larger and more complex backbone to im-
prove performance, which results in anchor-free models with a larger number of parameters
than anchor-based models at the same accuracy level. Intuitively, this type of method is
slower than the anchor-based method. Similarly, we consider migrating the oriented
object detection system to an embedded platform, which is easy to deploy to satellites
and unmanned aerial vehicles. However, because embedded platforms are limited by
power, size, and weight, their computing capacity is much lower than that of large server
devices. This not only limits the number of parameters and the amount of computation
that can be used in the model, but also poses a challenge for mainstream oriented object
detection algorithms.

Because current anchor-based algorithms still have an advantage over anchor-free
algorithms in terms of detection performance, most mainstream oriented object detection
algorithms use anchor-based frameworks. This is the starting point of our work: to design
an anchor-free scheme with better performance than existing anchor-based schemes. The
model architecture needs to conform to simple design principles so that it can be easily
migrated to embedded platforms.

In this paper, we propose a one-stage anchor-free rotated object detector (FCOSR)
based on two-dimensional (2D) Gaussian distribution. Our method directly predicts the
center point, width, height, and angle of the object. Benefiting from the redesigned label
assignment strategy, our method can predict the OBB of the target directly and accurately
without introducing any additional computation to the inference phase. Moreover, this
new label assignment strategy enables the lightweight model to maintain high detection
accuracy. Overall, in terms of speed and accuracy, FCOSR clearly outperforms other
methods. Compared with refined two-step methods, our method is not only simpler but
also has only convolutional layers, so it is easier to deploy on most platforms. A series
of experiments on the DOTA [21] and HRSC2016 [22] datasets verify the effectiveness of
our method.

Our contributions are as follows:

1. We propose a one-stage anchor-free aerial oriented object detector, which is simple,
fast, and easy to deploy.

2. We design a set of label assignment strategies based on 2D Gaussian distribution and
aerial image characteristics. These strategies assign more appropriate labels to training
samples.

3. We convert the lightweight FCOSR to the TensorRT format and successfully migrate it
to Jetson Xavier NX, whose power is only 15 watts (W). The TensorRT model achieves
an mAP of 73.93 with 10.68 FPS on the DOTA-v1.0 test set.

4. Our method achieves an mAP of 79.25, 75.41, and 90.15 on the DOTA-v1.0, DOTA-v1.5,
and HRSC2016 datasets, respectively. Compared with other anchor-free methods,
FCOSR achieves better performance. FCOSR surpasses many two-stage methods in
terms of its single-scale performance. Our model greatly reduces the gap in speed
and accuracy between anchor-free and anchor-based methods. In terms of speed and
accuracy, FCOSR surpasses current mainstream models.
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2. Related Works
2.1. Anchor-Based Methods

Anchor-based methods need to manually preset a series of standard boxes (anchors)
for boundary regression and refinement. Earlier methods used anchors with multiple
angles and multiple aspect ratios to detect oriented objects [23–25]. However, the increase
in the preset angles leads to a rapid increase in anchors and calculations, which makes the
model difficult to train. As a two-stage method, ROI transformer [15] solves the problem
of the rapid expansion of rotating anchors by converting the horizontal proposal into the
OBB format through the RROI learning module. It then extracts the features in the rotation
proposal for subsequent classification and regression. This method replaces the preset
angles by giving the angle value through the network, which greatly reduces anchors and
calculations. Many ROI-transformer-based methods have emerged and achieved good
results. ReDet [20] introduces rotation invariant convolution (e2cnn) [26] to the entire
model and extracts rotation invariant features by using RiROI alignment. Oriented R-
CNN [27] replaces the RROI learning module in an ROI transformer [15] with a lighter
and simpler oriented region proposal network (orientation RPN). R3Det [28] is a refined
one-stage oriented object detection method that obtains the OBB result by fine-tuning
the anchor in HBB format through the feature innovation module (FRM). S2ANet [16]
is composed of a feature alignment module (FAM) and an oriented detection module
(ODM). The FAM generates a high-quality OBB anchor. The ODM uses active rotating
filters to produce orientation-sensitive and orientation-invariant features to alleviate the
inconsistency between the classification score and localization accuracy. CSL [29] converts
angle prediction into a classification task to solve the problem of discontinuous rotation
angles. DCL [30] uses dense coding on the basis of CSL [29] to improve training speed. It
also uses the angle distance and aspect ratio sensitive weighting to improve accuracy.

Because anchor-based methods need to adjust anchor boxes for different datasets,
they have limitations. However, anchor-based methods are faster and more accurate than
anchor-free methods, and they are still the mainstream aerial object detection algorithm.

2.2. Anchor-Free Methods

Unlike anchor-based object detection methods that require manually preset intermedi-
ate parameters, anchor-free algorithms predict the OBB directly. Because they eliminate the
hand-designed anchor, anchor-free methods have less a priori information than anchor-
based methods. This is the main advantage of anchor-free algorithms over anchor-based
algorithms. However, with the conversion of the HBB to an OBB, the anchor-free model
has more difficulty converging during training, and the actual performance is not as good
as that of the anchor-based algorithm in the same period.

Current anchor-free methods are mostly one-stage architecture. For example, IENet [31]
develops a branch interactive module with a self-attention mechanism, which can fuse
features from classification and regression branches. Because anchor-free methods directly
predict the bounding box of the target, the loss design in the regression task has certain
limitations. GWD [32], KLD [33], and ProbIoU [34] use the distance metric between two 2D
Gaussian distributions to represent loss, which provides a new regression loss scheme for
anchor-free methods. References [35,36] provide new viewpoints for Gaussian distributions.
PIoU [19] is designed with an intersection over union (IoU) loss function for an OBB based
on pixel statistics. Another approach is to consider a different OBB representation to solve
the problems of angle discontinuity and length–width swapping that existed on the earlier
OBB representation (x, y, w, h, angle).BBAVectors [17] capture the rotational bounding
boxes of objects by learning the box boundary-aware vectors, which are distributed in the
four quadrants of the Cartesian coordinate system. Due to the sharp change in rotation,
one angle expression causes many defects, such as precision decrease, missing angle
boundary, and angle loss trap [18]. Based on the polar coordinates, PolarDet [18] represents
the target using multiple angles and a shorter polar diameter ratio. CenterRot [37] uses
deformable convolution (DCN) [38] to fuse multi-scale features and employs a similar
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scheme to CSL [29] to solve the problem of angle discontinuity. AROA [39] leverages
attention mechanisms to refine the performance of remote sensing object detection in a
one-stage anchor-free network framework.

Overall, the anchor-free method lacks prior knowledge, so it is more difficult to train
compared to the methods with anchor boxes. Existing mainstream anchor-free methods
are mostly based on one-stage methods such as FCOS [11] or CenterNet [13], and there
is a large performance gap between these methods and two-stage methods such as ROI
transformer [15]. At the same accuracy level, the anchor-free model tends to be larger and
slower than the anchor-based model. Therefore, the anchor-free algorithm is more flexible
than the anchor-based algorithm, but it still needs to be improved continuously.

3. Method

As shown in Figure 1, our method uses the FCOS [11] architecture as a baseline.
The network directly predicts the center point (including x and y), width, height, and
rotated angle of the target (OpenCV format). We determine the convergence target of the
feature map through the LAM. Our algorithm introduces no additional components into
the architecture. It removes the center-ness branch [11], which makes the network simpler,
with less computation.

Ground Truth

H×W×256 H×W×C

×4

H×W×256 H×W×5

×4

Classification

Regression

Predictions

Shared Heads Between Feature Levels

Losscls

Lossreg

LOSS

plane
cx,cy,w,h,angle

……

LAM

H×W×5

H×W×1

Backbone

+FPN

Labels

FCOSR HEAD

Multi-level
 Feature maps

H×W /stride

Figure 1. FCOSR architecture. The output of the backbone with the feature pyramid network
(FPN) [40] is multi-level feature maps, including P3–P7. The head is shared with all multi-level feature
maps. The predictions on the left of the head are the inference part, while the other components
are only effective during the training stage. The label assignment module (LAM) allocates labels
to each feature maps. H and W are the height and width of the feature map, respectively. Stride is
the downsampling ratio for multi-level feature maps. C represents the number of categories, and
regression branch directly predicts the center point, width, height, and angle of the target.

3.1. Network Outputs

The network output contains a C-dimensional vector from the classification branch
and a five-dimensional (5D) vector from the regression branch. Unlike FCOS [11], our
method aims to give each component of the regression output a different range. The offset
can be negative, but the width and height must be positive, and the angle must be limited
to 0 to 90 degrees. These simple processes are defined by (1).

o f f setxy = Regxy · k · s (1a)

wh = (Elu(Regwh · k) + 1) · s (1b)

θ = Mod(Regθ , π/2) (1c)

Regxy, Regwh, and Regθ indicate the direct output from the last layer of the regression
branch. k is a learnable adjustment factor, and s is the downsampling ratio (stride) for
multi-level feature maps. Elu [41] is the improvement of ReLU. Through the calculation of
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the above equation, the output is converted into a new 5D vector (o f f setx, o f f sety, w, h,
angle). The sampling point coordinates plus offsets are used to obtain target OBBs.

3.2. Ellipse Center Sampling

Center sampling is a strategy used to concentrate sampling points close to the center of
the target, which helps reduce low-quality detection and improve model performance. This
strategy is used in FCOS [11], YOLOX [3], and other networks, and it consistently improves
accuracy. However, there are two problems when directly migrating the horizontal center
sampling strategy to oriented object detection. First, the horizontal center sampling area is
usually a 3 × 3 or 5 × 5 square [3,11], so the angle of the OBB affects the sampling range.
Second, the short edge further reduces the number of sampling points for large-aspect-ratio
targets. The most intuitive center sampling is a circular area within a certain range at the
center of the target, but the short edge limits the range of center sampling. To mitigate
these negative influences, we propose an elliptical center sampling method (ECS) based on
2D Gaussian distribution. Referring to section 3.2 from ProbIoU [34], we use OBB (cx, cy, w,
h, θ) parameters to define a 2D Gaussian distribution [34]:

Σ = Rθ · Σ0 · RT
θ (2a)

µ = (cx, cy) (2b)

Rθ =

[
cos θ − sin θ
sin θ cos θ

]
, Σ0 =

1
12

[
w2 0
0 h2

]
(2c)

Σ is covariance matrix, Σ0 is the covariance matrix when the angle is equal to 0, µ is the
mean value, and Rθ is the rotation transformation matrix. Number 12 in (Figure 2c) is a
constant obtained by computing the equation for the mean and variance of the Gaussian
OBB in ProbIoU (Section 3.2) [34]. The contour of the probability density function of the 2D
Gaussian distribution is an elliptical curve. Equation (3) represents the probability density
of the 2D Gaussian distribution in the general case.

f (X) =
1

2π|Σ|1/2 exp(−1
2
(X− µ)TΣ−1(X− µ)) (3)

X indicates the coordinates (2D vector). Σ and µ are same as the related variables in (2). We
remove the normalization term from f (X) and obtain g(X).

g(X) = exp(−1
2
(X− µ)TΣ−1(X− µ)) (4)

g(X) ∈ (0, 1], which is the elliptic contour of the 2D Gaussian distribution, can be expressed
as g(X) = C. When C = C0 = exp(−1.5), the elliptical contour line is just inscribed in the
OBB. The range of the elliptic curve expands with the decrease in C, which means that
the effective range of C is [C0,1]. Considering that there are many small objects in aerial
images, we set C as 0.23 to prevent insufficient sampling caused by a small sampling area.
The center sampling area of the target can be determined by g(X) ≥ C. If g(X) is greater
than C, the point X is in the sampling area. The elliptical area defined by the target with
a large aspect ratio has a slender shape, which puts the part in the long axis direction far
away from the center area. In order to solve this problem, we shrink the ellipse sampling
region by modifying the Gaussian distribution. We adjusted this (Figure 2c) to define the
original covariance matrix in shrinking mode (shrinking elliptical sampling, SES).

Σ0 =
min(w, h)

12

[
w 0
0 h

]
(5)
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The length of the ellipse major axis shrinks to
√

wh, and that of the minor axis remains
unchanged. Figure 2 shows the ellipse center area of OBB. Compared with the horizontal
center sampling, the ellipse center sampling is more suitable for OBB, and the sampling
area of a large-aspect-ratio target becomes more concentrated by shrinking the long axis.

(a) (b) (c) (d)

Figure 2. Ellipse center area of OBB. The oriented rectangle represents the OBB of the target, and
the shadow area represents the sampling region: (a) general sampling region, (b) horizontal center
sampling region, (c) original elliptical region, and (d) shrinking elliptical region.

3.3. Fuzzy Sample Label Assignment

The problem of ambiguous samples arises when the regions of multiple targets overlap.
The original FCOS [11] reduces the ambiguous samples by assigning the objects to the
specified level of feature maps according to the scale range. For ambiguous samples on the
same level of the feature map, FCOS simply represents them by the object with the smallest
area. Obviously, this fuzzy sample label assignment method based on the minimum area
principle has difficulty dealing with complex scenes, such as aerial scenes. As with the
concentric objects in Figure 3, even though the sampling point at the edge of the small object
is relatively closer to the center of the large object, FCOS still assigns it to the small object.
Intuitively, we decide the attribution of ambiguous samples based on the relative distance
between the sampling point and the object centroid. We design a fuzzy sample label
assignment method (FLA) to assign ambiguous sample labels based on the 2D Gaussian
distribution. The Gaussian distribution has a bell shape, and the response is the largest in
its center. The response becomes smaller as the sampling point moves away from the center
of the distribution. We approximately take the 2D Gaussian distribution as the distance
measure between the sampling point and the object centroid. The center distance is defined
by (6).

J(X) =
√

wh · f (X) (6)

where f (X) is the probability density of the 2D Gaussian distribution, which is defined
in (3). w and h represent the width and height of the object, respectively. For any object,
we calculate the J(X) value at each sampling point. A larger value of J(X) means that X
is closer to the object. When a sampling point is included by multiple objects at the same
time, we assign it to the object with the largest J(X). Figure 3 shows this fuzzy sample label
assignment method more intuitively.
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(a) (b)

Figure 3. A fuzzy sample label assignment demo: (a) is a 2D label assignment area diagram, and
(b) is a 3D visualization effect diagram of J(X) of two objects. The red OBB and area represent the
court object, and the blue represents the ground track field. After J(X) calculation, smaller areas in
the red ellipse are allocated to the court, and other blue areas are allocated to the ground track field.

3.4. Multi-Level Sampling

The sampling range of the large-aspect-ratio object is mainly affected by the short
edge. As shown in Figure 4, when the stride of the feature map is greater than the length of
the short edge, the object may be too narrow to be effectively sampled. The higher the level
of the feature map, the smaller its size, which means a larger interval between sampling
points, and vice versa. However, if the object has a large aspect ratio, there may be only a
few, or even zero, sampling points within the object. We thus apply additional sampling
to the insufficiently sampled objects. In order to obtain denser sampling points, we need
to perform additional sampling on a lower-level feature map. We assign labels to feature
maps that satisfy the following two conditions:

Ls/Fs < 2 (7a)

=max(W, H) > Rmax (7b)

where Ls represents the length of the short edge of the object; Fs represents the stride of the
feature map; and W and H represent the width and height of minimum bounding rectangle
of the OBB, respectively. Rmax represents the upper limit of the acceptance range of the
feature map. The size difference between each level of the feature map is two, so the value
of two in the first condition can limit the number of additional samples in our multi-level
sampling strategy (MLS). The MLS module extends the sampling region for insufficiently
sampled objects. The lower-level feature map represents denser sampling points, which
alleviates the insufficient sampling problem.

(a)

w

�h

stride

128

64

32

16

8

(b)

Figure 4. Multi-level sampling: (a) Insufficient sampling, where green points in the diagram are
sampling points. The ship is so narrow that there are no sampling points inside it. (b) A multi-level
sampling demo. The red line indicates that the target follows the FCOS guidelines assigned to H6,
but it is too narrow to sample effectively. The blue line indicates that the target is assigned to the
lower level of features according to the MLS guidelines. This represents the target sampling at three
different scales to handle the problem of insufficient sampling.
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3.5. Target Loss

The loss of FCOSR consists of classification loss and regression loss. Quality focal loss
(QFL) [42] is used for classification loss, which is mainly used to remove the center-ness
branch from the original FCOS [11] algorithm. The regression uses the ProbIoU loss [34].
QFL [42] is a part of general focal loss (GFL) [42]. It unifies the training and testing process
by replacing the one hot label with the IoU value between the prediction and ground truth.
QFL [42] suppresses low-quality detection results and also improves the performance of
the model. Equation (8) gives the definition of QFL [42] as

QFL(σ) = −|y− σ|β((1− y) log(1− σ) + y log(σ)) (8)

where y represents the replaced IoU, and parameter β (using the recommend value 2)
smoothly controls the down-weighting rate. ProbIoU loss [34] is a type of IoU loss specifi-
cally designed for an oriented object. It mainly represents the IoU between OBBs through
the distance between 2D Gaussian distributions, which is similar to GWD [32] and KLD [33].
The overall loss can be defined by (9).

Loss =
1

Npos
∑
z

QFL +
1

∑
z

1{c∗z>0} IoU
·∑

z
1{c∗z>0} IoU · LossProbIoU (9)

where Npos represents the number of positive samples. The summation is calculated over
all locations (z) on the multi-level feature maps. The indicator function is 1{c∗z>0}, being 1 if
c∗z > 0 and 0 otherwise.

4. Experiments
4.1. Datasets

We evaluated our method on the DOTA-v1.0, DOTA-v1.5, and HRSC2016 datasets.
DOTA [21] is a large-scale dataset for aerial object detection. The data are collected

from different sensors and platforms. DOTA-v1.0 contains 2806 large aerial images with size
ranges from 800 × 800 to 4000 × 4000 and 188,282 instances among 15 common categories:
Plane (PL), Baseball diamond (BD), Bridge (BR), Ground track field (GTF), Small vehicle
(SV), Large vehicle (LV), Ship (SH), Tennis court (TC), Basketball court (BC), Storage tank
(ST), Soccer-ball field (SBF), Roundabout (RA), Harbor (HA), Swimming pool (SP), and
Helicopter (HC). DOTA-v1.5 adds the Container Crane (CC) class and instances smaller
than 10 pixels on the basis of version 1.0. DOTA-v1.5, which contains 402,089 instances, is
more challenging than DOTA-v1.0, but is stable during training. We used both the train and
validation sets for training and used the test set for testing. All images were cropped into
1024 × 1024 patches with a gap of 512, and the multi-scale arguments of DOTA-v1.0 were
{0.5, 1.0}, while those of DOTA-v1.5 were {0.5, 1.0, 1.5}. We also applied random flipping
and the random rotation argument method during training.

HRSC2016 [22] is a challenging ship detection dataset with OBB annotations, which
contains 1061 aerial images with a size ranging from 300 × 300 to 1500 × 900. This includes
436, 181, and 444 images in the train, validation and test set, respectively. We used both the
train and validation set for training and the test set for testing. All images were resized to
800 × 800 without changing the aspect ratio. Random flipping and random rotation were
applied during training.

4.2. Implementation Details

We used ResNext50 [43] with FPN [40] as the backbone for FCOSR and called this
model FCOSR-M (medium). We trained the model in 36 epochs for DOTA and 40 k
iterations for HRSC2016. We used the SGD optimizer to train the model of DOTA with an
initial learning rate (LR) of 0.01, and the LR was divided by 10 at the {24, 33} epoch. The
initial LR of the HRSC2016 model was set to 0.001, and the step was {30 k, 36 k} iterations.
The momentum and weight decay were 0.9 and 0.0001, respectively. We used the Nvidia
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DGX Station (4 V100 GPUs@32G, Nvidia, Santa Clara, CA, USA ) with a total batch size of 16
for training, and used a single RTX 2080-Ti GPU, Nvidia, Santa Clara, CA, USA for testing.
We adopted Jetson Xavier NX with TensorRT as embedded deployment platforms. The
NMS threshold was set to 0.1 when merging image patches, and the confidence threshold
was set to 0.1 during testing. Inspired by rotation-equivariant CNNs [20,26], we adopted
a new rotation augmentation method, which uses two-step rotation to generate random
augmentation data. First, we rotated the image randomly by 0, 90, 180, and 270 degrees
with equal probability. Next, we rotated the image randomly by 30 and 60 degrees with
50% probability. Our implementation is based on mmdetection [44].

4.3. Lightweight and Embedded System

We adopted Mobilenet v2 [45] as the backbone, and named it FCOSR-S (small). To
deploy FCOSR on the embedded platform, we performed lightweight processing on the
model. We adjusted the output stage of the backbone based on FCOSR-S, and replaced the
extra convolutional layer of FPN with a pooling layer. We called it FCOSR-lite. On this
basis, we further adjusted the feature channel of the head from 256 to 128, and named it
FCOSR-tiny. These two models were then converted to the TensorRT 16-bit format and
tested on the Nvidia Jetson platform. Figure 5 illustrates a physical picture of the embedded
object detection system. As the mainstream oriented object detectors are still designed
to run on servers or PCs, we do not have a directly comparable method. Therefore, we
compared it with other state-of-the-art (SOTA) methods.

Figure 5. Physical picture of the embedded object detection system based on the Nvidia Jetson
platform.
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The test was conducted on the DOTA-v1.0 single-scale test set at a 1024 × 1024 image
scale. The results are shown in Table 1, and the model size is the TensorRT engine file size
(.trt). The FPS denotes the processing number of images by the detector within a one-second
interval on Jetson NX and Jetson AGX Xavier devices. The lightweight FCOSR achieved an
ideal balance between speed and accuracy on the Jetson device. The lightest tiny model
achieved an mAP of 73.93 at 10.68/17.76 FPS. On the Jetson AGX Xavier, it only takes
about 2.3 s to process a 5000 × 5000 image. Figure 6 shows the results of the tiny model
running on the Jetson AGX Xavier. Our lightweight model quickly and accurately detected
densely parked vehicles. This marked a successful attempt to deploy a high-performance
oriented object detector on edge computing devices.

Figure 6. The detection result of the entire aerial image on the Nvidia Jetson platform. We completed
the detection of P2043 image from the DOTA-v1.0 test set in 1.4 s on a Jetson AGX Xavier device and
visualized the results. The size of this large image was 4165 × 3438.

Table 1. Lightweight FCOSR test results on Jetson platform.

Methods Parameters Model Size Input Size GFLOPs FPS mAP

FCOSR-lite 6.9 M 51.63 MB 1024 × 1024 101.25 7.64/12.59 74.30
FCOSR-tiny 3.52 M 23.2 MB 1024 × 1024 35.89 10.68/17.76 73.93

4.4. Comparison with State-of-the-Art Methods

We used a variety of other backbones to replace ResNext50 [43] to reconstruct the
FCOSR model. We tested FCOSR on ResNext101 [43] with 64 groups and 4 widths, and
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named this model FCOSR-L (large). The parameters, input patch size, FLOPs, FPS, and
mAP on DOTA are shown in Table 2. FPS represents the result tested on a single RTX
2080-Ti device. mAP is the result on DOTA-v1.0 with single-scale evaluation.

Table 2. FCOSR series model size, FLOPs, FPS, and mAP comparison.

Method Backbone Parameters Input Size GFLOPs FPS mAP

FCOSR-S Mobilenet v2 7.32 M 1024 × 1024 101.42 23.7 74.05
FCOSR-M ResNext50 31.4 M 1024 × 1024 210.01 14.6 77.15
FCOSR-L ResNext101 89.64 M 1024 × 1024 445.75 7.9 77.39

Results on DOTA-v1.0: As shown in Table 3, we compared the FCOSR series with
other SOTA methods on the DOTA-v1.0 OBB task. ROI-Trans. and BBAVec. indicate
ROI-transformer and BBAVectors, respectively; R, RX, ReR, H, and Mobile indicate ResNet,
ResNext, ReResNet, Hourglass, and MoblieNet v2, respectively; ∗ indicates multi-scale
training and testing. The results in red and blue indicate the best and second-best results
in each column, respectively.

Our method enables a significant performance improvement over other anchor-
based methods at the same model scale, namely ROI-transformer [15], CenterMap [46],
SCRDet++ [47], R3Det [28], and CSL [29]. It is only outperformed by S2ANet [16] and
ReDet [20] in the multi-scale training and testing, while our medium and large models are
more accurate than other methods in the single-scale evaluation.

Compared with other anchor-free methods, FCOSR-M achieved an mAP of 79.25
under multi-scale training and testing, and achieved the best or second-best accuracy in
nine subcategories. Our small model showed competitive performance at multiple scales,
and its accuracy was at the same level as that of most models. However, it is much smaller
than other models and therefore faster. The results in Section 4.6 also support this view.

We also note that FCOSR-L performed worse than the medium model at multiple
scales, and the performance improvement at a single scale was small. From Table 3, we can
see that the performance improvement brought by ResNext101 was much smaller than that
of other methods, but when tuning from the ResNext50 to Mobilenet backbone, FCOSR-S
outperformed the other methods in both speed and accuracy. Therefore, we believe that the
FCOSR series rapidly reaches peak performance as the trunk size increases, and is more
suitable for small- and medium-sized models. From the overall results shown in Table 3,
although there is still a clear gap in speed and accuracy compared with the anchor-based
model, our algorithm achieved better performance than other anchor-free methods. We
visualized a part of the DOTA-v1.0 test set result in Figure 7. The detection domain of our
model covers various scales of targets, and it works well for dense vehicles in parking lots,
stadiums, and runways (area overlap).

Results on DOTA-v1.5: As shown in Table 4, we also conducted all experiments on the
FCOSR series. RN-O., FR-O., and MR. indicate Retinanet-oriented, Faster-RCNN-oriented,
and Mask RCNN, respectively; † and ‡ refer to one-stage and two-stage anchor-based
methods, respectively; and * indicates multi-scale training and testing. There are currently
only a few methods for evaluating the DOTA-v1.5 dataset, so we directly used some results
in ReDet [20] and the RotationDetection repository (https://github.com/yangxue0827/
RotationDetection (accessed on 1 August 2023)).

https://github.com/yangxue0827/RotationDetection
https://github.com/yangxue0827/RotationDetection
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Table 3. Comparison with state-of-the-art methods on the DOTA-v1.0 OBB task.

Method Backbone PL BD BR GTF SV LV SH TC BC ST SBF RA HA SP HC mAP

Anchor-based, two-stage
ROI-Trans. * [15] R101 88.64 78.52 43.44 75.92 68.81 73.68 83.59 90.74 77.27 81.46 58.39 53.54 62.83 58.93 47.67 69.56
CenterMap * [46] R101 89.83 84.41 54.60 70.25 77.66 78.32 87.19 90.66 84.89 85.27 56.46 69.23 74.13 71.56 66.06 76.03
SCRDet++ * [47] R101 90.05 84.39 55.44 73.99 77.54 71.11 86.05 90.67 87.32 87.08 69.62 68.90 73.74 71.29 65.08 76.81
ReDet [20] ReR50 88.79 82.64 53.97 74.00 78.13 84.06 88.04 90.89 87.78 85.75 61.76 60.39 75.96 68.07 63.59 76.25
ReDet * [20] ReR50 88.81 82.48 60.83 80.82 78.34 86.06 88.31 90.87 88.77 87.03 68.65 66.90 79.26 79.71 74.67 80.10

Anchor-based, one-stage
R3Det * [28] R152 89.80 83.77 48.11 66.77 78.76 83.27 87.84 90.82 85.38 85.51 65.67 62.68 67.53 78.56 72.62 76.47
CSL * [29] R152 90.13 84.43 54.57 68.13 77.32 72.98 85.94 90.74 85.95 86.36 63.42 65.82 74.06 73.67 70.08 76.24
S2ANet * [16] R50 89.11 82.84 48.37 71.11 78.11 78.39 87.25 90.83 84.90 85.64 60.36 62.60 65.26 69.13 57.94 74.12
S2ANet * [16] R50 88.89 83.60 57.74 81.95 79.94 83.19 89.11 90.78 84.87 87.81 70.30 68.25 78.30 77.01 69.58 79.42

Anchor-free, one-stage
BBAVec. * [17] R101 88.63 84.06 52.13 69.56 78.26 80.40 88.06 90.87 87.23 86.39 56.11 65.62 67.10 72.08 63.96 75.36
DRN * [48] H104 89.45 83.16 48.98 62.24 70.63 74.25 83.99 90.73 84.60 85.35 55.76 60.79 71.56 68.82 63.92 72.95
CFA [49] R101 89.26 81.72 51.81 67.17 79.99 78.25 84.46 90.77 83.40 85.54 54.86 67.75 73.04 70.24 64.96 75.05
PolarDet [18] R50 89.73 87.05 45.30 63.32 78.44 76.65 87.13 90.79 80.58 85.89 60.97 67.94 68.20 74.63 68.67 75.02
PolarDet * [18] R101 89.65 87.07 48.14 70.97 78.53 80.34 87.45 90.76 85.63 86.87 61.64 70.32 71.92 73.09 67.15 76.64
FCOSR-S Mobile 89.09 80.58 44.04 73.33 79.07 76.54 87.28 90.88 84.89 85.37 55.95 64.56 66.92 76.96 55.32 74.05
FCOSR-S * Mobile 88.60 84.13 46.85 78.22 79.51 77.00 87.74 90.85 86.84 86.71 64.51 68.17 67.87 72.08 62.52 76.11
FCOSR-M RX50 88.88 82.68 50.10 71.34 81.09 77.40 88.32 90.80 86.03 85.23 61.32 68.07 75.19 80.37 70.48 77.15
FCOSR-M * RX50 89.06 84.93 52.81 76.32 81.54 81.81 88.27 90.86 85.20 87.58 68.63 70.38 75.95 79.73 75.67 79.25
FCOSR-L RX101 89.50 84.42 52.58 71.81 80.49 77.72 88.23 90.84 84.23 86.48 61.21 67.77 76.34 74.39 74.86 77.39
FCOSR-L * RX101 88.78 85.38 54.29 76.81 81.52 82.76 88.38 90.80 86.61 87.25 67.58 67.03 76.86 73.22 74.68 78.80

Table 4. Comparison with state-of-the-art methods on the DOTA-v1.5 OBB task.

Method Backbone PL BD BR GTF SV LV SH TC BC ST SBF RA HA SP HC CC mAP

RN-O. † [10] R50 71.43 77.64 42.12 64.65 44.53 56.79 73.31 90.84 76.02 59.96 46.95 69.24 59.65 64.52 48.06 0.83 59.16
FR-O. ‡ [8] R50 71.89 74.47 44.45 59.87 51.28 68.98 79.37 90.78 77.38 67.50 47.75 69.72 61.22 65.28 60.47 1.54 62.00
MR. ‡ [9] R50 76.84 73.51 49.90 57.80 51.31 71.34 79.75 90.46 74.21 66.07 46.21 70.61 63.07 64.46 57.81 9.42 62.67
DAFNe * [50] R101 80.69 86.38 52.14 62.88 67.03 76.71 88.99 90.84 77.29 83.41 51.74 74.60 75.98 75.78 72.46 34.84 71.99
FCOS [11] R50 78.67 72.50 44.31 59.57 56.25 64.03 78.06 89.40 71.45 73.32 49.51 66.47 55.78 63.26 44.76 9.44 61.05
ReDet ‡ [20] ReR50 79.20 82.81 51.92 71.41 52.38 75.73 80.92 90.83 75.81 68.64 49.29 72.03 73.36 70.55 63.33 11.53 66.86
ReDet ‡∗ [20] ReR50 88.51 86.45 61.23 81.20 67.60 83.65 90.00 90.86 84.30 75.33 71.49 72.06 78.32 74.73 76.10 46.98 76.80
FCOSR-S Mobile 80.05 76.98 44.49 74.17 51.09 74.07 80.60 90.87 78.40 75.01 53.38 69.35 66.33 74.43 59.22 13.50 66.37
FCOSR-S * Mobile 87.84 84.60 53.35 75.67 65.79 80.71 89.30 90.89 84.18 84.23 63.53 73.07 73.29 76.15 72.64 14.72 73.12
FCOSR-M RX50 80.48 81.90 50.02 72.32 56.82 76.37 81.06 90.86 78.62 77.32 53.63 66.92 73.78 74.20 69.80 15.73 68.74
FCOSR-M * RX50 80.85 83.89 53.36 76.24 66.85 82.54 89.61 90.87 80.11 84.27 61.72 72.90 76.23 75.28 70.01 35.87 73.79
FCOSR-L RX101 80.58 85.25 51.05 70.83 57.77 76.72 81.09 90.87 78.07 77.60 51.91 68.72 75.87 72.61 69.30 31.06 69.96
FCOSR-L * RX101 87.12 83.90 53.41 70.99 66.79 82.84 89.66 90.85 81.84 84.52 67.78 74.52 77.25 74.97 75.31 44.81 75.41
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Figure 7. The FCOSR-M detection result on the DOTA-v1.0 test set. The confidence threshold is set to
0.3 when showing these results.

From a single-scale perspective, the medium-sized and large models achieved mAP
values of 68.74 and 69.96, respectively, which were much higher than the results for other
models. The small model achieved an mAP of 66.37, slightly lower than ReDet’s 66.86 mAP,
while the Mobilenet v2 backbone used by the small model made it much faster than the
other methods. As DOTA-v1.5 is only generated by adding a new category to version 1.0,
the actual inference speed of the model was close to that of version 1.0. Referring to the
results in Section 4.6, we can see that the inference speed of the small model is 23.7 FPS at
this time, while the speed of ReDet is only 8.8 FPS, and the medium-sized model of the
same scale maintains 14.6 FPS.

Classical object detection algorithms such as Faster-RCNN-O can maintain the same
speed as FCOSR, but with much less accuracy. Compared with the original FCOS model,
our method has a redesigned label assignment strategy for the characteristics of aerial
images, which is more suitable for oriented target detection. Our method maintains
competitive results at multiple scales. Although the performance is still lower than that
of two-stage anchor-based methods such as ReDet, our method shrinks the huge gap in
performance between anchor-free and anchor-based methods.

Results on HRSC2016: We compared our method with other one-stage methods. We
repeated the experiment 10 times and recorded the mean and standard deviation in Table 5.
FCOSR series models surpassed all anchor-free models and achieved an mAP of 95.70
under the VOC2012 metrics. FCOSR series models exceeded an mAP of 90 under the
VOC2007 metrics. The large one even surpassed S2ANet [16], which further proves that
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our proposed anchor-free method has a performance equivalent to that of the anchor-based
method. The detection results are shown in Figure 8. In complex background environments,
our model accurately detected various scales of ship targets. The model displayed good
detection of slender ships docked in ports, as well as ships in shipyards.

Table 5. Comparison with state-of-the-art methods on HRSC2016.

Method Backbone mAP (07) mAP (12)

PIoU [19] DLA-34 89.20 -
S2ANet [16] ResNet101 90.17 95.01
ProbIoU [34] ResNet50 87.09 -

DRN [48] Hourglass104 - 92.70
CenterMap [46] ResNet50 - 92.80
BBAVectors [17] ResNet101 88.60 -

PolarDet [18] ResNet50 90.13 -
FCOSR-S(ours) Mobilenet v2 90.05 (±0.042) 92.59 (±0.054)
FCOSR-M(ours) ResNext50 90.12 (±0.034) 94.81 (±0.030)
FCOSR-L(ours) ResNext101 90.13 (±0.028) 95.70 (±0.026)

Figure 8. The FCOSR-L detection result on HRSC2016. The confidence threshold is set to 0.3 when
visualizing these results.

4.5. Ablation Experiments

We performed a series of experiments on the DOTA-v1.0 test set to evaluate the
effectiveness of the proposed method. We used FCOSR-M (medium) as the baseline. We
trained and tested the model at a single scale.

As shown in Table 6, the mAP at the baseline for FCOS-M is 70.4, which increases by
4.03 with the addition of rotation augmentation. When QFL [42] was used instead of focal
loss, the detection result of the model gained an mAP of 0.91. Next, we tried to add ECS,
FLA, and MLS modules and when used individually, the results were improved by 1.03,
0.58, and 0.34, respectively. Applying ECS and FLA at the same time, the detection result
was improved to 76.80. Using all the modules brought the result up to 77.15. Through
the use of multiple modules, FCOSR-M achieved a significant performance improvement
over anchor-based methods. These modules do not have any additional calculations when
making inferences, which makes FCOSR a simple, fast, and easy-to-deploy OBB detector.

Table 6. Results of ablation experiments for FCOSR-M on single scale.

Method Rotate Aug. QFL ECS FLA MLS mAP

FCOSR-M

70.40
X 74.43
X X 75.34
X X X 76.37
X X X 75.92
X X X 75.77
X X X X 76.80
X X X X X 77.15
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Effectiveness of ellipse center sampling: We changed the sampling regions of the
FCOSR-M baseline to the shapes listed in Figure 2. Table 7 shows the results of the
comparison experiments. The general sampling region (GS), horizontal center sampling
region (HCS), and original elliptical sampling region (OES) achieved mAPs of 76.34, 75.48,
and 76.70, respectively. These results are all lower than those of the standard FCOSR-M
model. The HCS strategy is widely used in HBB detection. However, an OBB carries a
rotation angle, so the horizontal fixed-scale sampling area does not match it effectively,
further decreasing the number of positive samples. This makes the baseline performance
of FCOSR with the HCS strategy lower than that of other strategies. The edge region of
the OBB of many aerial targets is part of the background, such as aircraft, ships, and other
targets. Directly applying the GS strategy tends to lead to incorrectly sampling the actual
background area as a positive sample. The ellipse center sampling scheme removes part
of the edge regions of the OBB. This effect is further enhanced by shrinking the long axis
of the ellipse so that the SES-based FCOSR baseline has better overall performance. The
difference between SES and HCS is that SES is not a fixed-scale sampling strategy, but
calculates the range by using a 2D Gaussian function. Therefore, SES has the advantage
of converting the Euclidean distance to Gaussian distance so that we can easily obtain an
elliptical region matching the OBB.

The results for the elliptical shape sampling region are better than those of other
schemes. The FCOSR based on the shrinking ellipse center sampling achieved an mAP of
77.15, demonstrating performance that is equivalent to that of other mainstream state-of-
the-art models. The above experimental results validate the effectiveness of our proposed
method.

Table 7. Results of experiments comparing the different sampling ranges listed in Figure 2.

Method PL BD BR GTF SV LV SH TC BC ST SBF RA HA SP HC mAP

GS 89.40 83.73 50.97 71.42 80.87 77.81 88.49 90.76 85.36 85.45 60.12 62.98 76.22 75.64 65.93 76.34
HCS 88.09 79.57 55.31 63.63 81.13 77.67 88.11 90.80 84.85 84.11 58.75 62.29 74.29 80.51 63.11 75.48
OES 89.07 81.15 50.96 70.44 80.53 77.64 88.31 90.85 85.37 86.60 59.05 61.22 76.00 80.58 72.73 76.70
SES 88.88 82.68 50.10 71.34 81.09 77.40 88.32 90.80 86.03 85.23 61.32 68.07 75.19 80.37 70.48 77.15

Effectiveness of fuzzy sample label assignment: We used FCOSR-M as the baseline.
Training and testing was performed on DOTA-v1.0, and all parts were unchanged except
the label assignment method (LAM). We replaced our LAM with ATSS [51] and simOTA [3],
and Table 8 shows the results of the comparison experiments. ATSS [51] and simOTA [3]
achieve an mAP of 76.60 and 72.63, respectively, both of which are lower than our reported
mAP of 77.15. simOTA [3] achieves strong results in the HBB object detection task, but the
experimental results show that it may not be suitable for OBB object detection. Oriented
objects have more difficulty converging than horizontal objects. Therefore, a small number
of samples were actually used for the training, which directly affected the performance of
the model. ATSS [51] is designed based on the central sampling principle, which is similar
to our method. However, both ATSS and simOTA are designed based on natural scenes,
which do not match with the characteristics of remote sensing image objects. As a result,
the actual effect is not as good as that of our proposed method.

Table 8. Results of experiments comparing label assignment methods.

Method PL BD BR GTF SV LV SH TC BC ST SBF RA HA SP HC mAP

ATSS [51] 88.91 81.79 53.93 72.42 80.75 80.77 88.33 90.79 86.27 85.54 56.99 63.19 75.90 74.61 68.87 76.60
simOTA [3] 81.31 72.89 52.85 69.79 79.89 77.17 86.87 90.11 83.07 82.38 58.96 58.31 74.37 68.75 52.74 72.63
Ours 88.88 82.68 50.10 71.34 81.09 77.40 88.32 90.80 86.03 85.23 61.32 68.07 75.19 80.37 70.48 77.15
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Effectiveness of multi-level sampling: As shown in Table 6, the addition of the MLS
module brings a 0.35–0.43 improvement in mAP. Targets in aerial image scenes are oriented
arbitrarily, and there are many slender targets. This causes insufficient sampling of the
target, which affects the performance for that type of target. The MLS module solves this
problem by extending the sampling region for insufficiently sampled objects. Experimental
results validate the effectiveness of the MLS method.

4.6. Speed versus Accuracy

We tested the inference speed of FCOSR series models and other open-source main-
stream models, including R3Det [28], ReDet [20], S2ANet [16], Faster-RCNN-O (FR-O) [8],
Oriented RCNN (O-RCNN) [27], and RetinaNet-O (RN-O) [10]. For convenience, we
tested Faster-RCNN-O [8] and RetinaNet-O models in the Oriented-RCNN repository
(https://github.com/jbwang1997/OBBDetection (accessed on 1 August 2023)). All tests
were conducted on a single RTX 2080-Ti device at a 1024 × 1024 image scale.

The test results are shown in Figure 9. The accuracy of all models increased as
the number of model parameters increased. FCOSR’s medium-sized and small models
both outperformed other anchor-based methods with the same backbone size. FCOSR-M
exceeded almost the same speed S2ANet [16] and Oriented RCNN [27] 3.03 mAP and
1.28 mAP, respectively. This is because of the simple and lightweight head structure and
the well-designed label assignment strategy. FCOSR-S even achieved an mAP of 74.05 at
a speed of 23.7 FPS, making it the fastest high-performance model currently. The FCOSR
series models surpassed the existing mainstream models in speed and accuracy, which
also proves that, through reasonable label assignment, even a simple model can achieve
excellent performance.
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Figure 9. Speed versus accuracy on DOTA-v1.0 single-scale test set. X indicates the ResNext backbone.
R indicates the ResNet backbone. RR indicates the ReResNet(ReDet) backbone. Mobile indicates
the Mobilenet v2 backbone. We tested ReDet [20], S2ANet [16], and R3Det [28] on a single RTX
2080-Ti device based on their source code. Faster-RCNN-O (FR-O) [8], RetinaNet-O (RN-O) [10], and
Oriented RCNN (O-RCNN) [27] test results are from the OBBDetection repository2.

5. Conclusions

Anchor-based oriented detectors require manual preset boxes, which introduce ad-
ditional hyper-parameters and calculations. They often use more complex architectures
for better performance; this makes them difficult to deploy on embedded platforms. To
make deployment easier, we take FCOS as a baseline and propose a novel label assign-
ment strategy to allocate more reasonable labels to the samples. The proposed method is
improved for the features of aerial image objects. The label assignment strategy consists
of three parts: ellipse center sampling, fuzzy sample label assignment, and multi-level
sampling. Compared to the original FCOS label assignment strategy, our method produces

https://github.com/jbwang1997/OBBDetection
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more reasonable matches. Thus, the model achieves better performance. Due to its simple
architecture, FCOSR does not have any special computing units for inferencing. Therefore,
it is a fast and easy-to-deploy model on most platforms. Our experiments on a lightweight
backbone also demonstrate satisfactory results. The results of extensive experiments on the
DOTA and HRSC2016 datasets demonstrate the effectiveness of our method.
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