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Abstract: Recently, deep learning methods have been widely studied in the field of polarimetric
synthetic aperture radar (PolSAR) ship detection. However, extracting polarimetric and spatial
features on the whole PolSAR image will result in high computational complexity. In addition, in
the massive data ship detection task, the image to be detected contains a large number of invalid
areas, such as land and seawater without ships. Therefore, using ship coarse detection methods
to quickly locate the potential areas of ships, that is, ship potential area extraction, is an important
prerequisite for PolSAR ship detection. Since existing unsupervised PolSAR ship detection methods
based on pixel-level features often rely on fine sea–land segmentation pre-processing and have poor
applicability to images with complex backgrounds, in order to solve the abovementioned issue, this
paper proposes a PolSAR ship potential area extraction method based on the neighborhood semantic
differences of an LDA bag-of-words topic model. Specifically, a polarimetric feature suitable for
the scattering diversity condition is selected, and a polarimetric feature map is constructed; the
superpixel segmentation method is used to generate the bag of words on the feature map, and
latent high-level semantic features are extracted and classified with the improved LDA bag-of-words
topic model method to obtain the PolSAR ship potential area extraction result, i.e., the PolSAR ship
coarse detection result. The experimental results on the self-established PolSAR dataset validate the
effectiveness and demonstrate the superiority of our method.

Keywords: PolSAR ship detection; polarimetric features selection; superpixel; LDA topic model

1. Introduction

Synthetic aperture radar (SAR) is one of the main means in the field of remote sens-
ing because of its all-day and all-weather imaging characteristics [1]. Polarization is an
important attribute of electromagnetic waves. With the development of sensor technology,
the SAR imaging mode has been extended from single polarization to full polarization.
Applying all polarization information to the SAR system constitutes the polarimetric SAR
(PolSAR) system. Compared with SAR, PolSAR can provide complete target electromag-
netic scattering characteristics and polarization information [2]. Ship detection has been a
research hotspot in the fields of SAR and PolSAR applications, which helps to strengthen
maritime traffic management and has good application prospects in civilian and military
fields, such as safeguarding maritime rights and improving maritime warning capabilities.

Since ship targets are generally active in the vast ocean, they have position uncertainty
and target dispersion. In addition, the massive remote sensing data used for ship detection
include a large number of land areas and seawater areas without ships. Therefore, how to
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quickly and easily locate the area where ships exist in a complete remote sensing image
through a ship coarse detection method, that is, extracting the potential areas of ships, is an
important issue in ship detection tasks in massive remote sensing data. Another role of
ship potential area extraction is to reduce the complexity of computation for polarimetric
feature extraction in PolSAR ship detection tasks. In order to better extract the spatial
and polarimetric features of PolSAR images and improve the detection effect, the latest
PolSAR ship detection method based on deep learning [3] uses multiple polarimetric feature
extraction methods to construct multi-channel data as input for deep learning networks. If
polarimetric feature extraction is performed on the entire scene image, the computational
complexity will be significant. Therefore, it is a feasible method to reduce the computational
complexity by only calculating the polarimetric features of the potential areas through ship
potential area extraction.

Currently, three types of methods for PolSAR ship potential area extraction, also known
as ship coarse detection, are as follows: (1) Statistical distribution-based methods—since
ship detection is looking for a specific target from the ocean background and ship targets
have strong scattered echoes compared to sea clutter, ships can be detected by modeling sea
clutter and searching for outliers through a statistical analysis. The Constant False-Alarm Rate
(CFAR) method and its variants [4] belong to this category. The core of CFAR methods is to
model sea clutter more accurately, e.g., Liu et al. [5] applied an adaptive truncation method to
estimate the parameters of the statistical models in PolSAR images. (2) Polarimetric scattering-
feature-based methods, including various polarization decomposition methods [6–10]—in a
PolSAR target detection task, Bordbari et al. [11] categorized the scattering mechanism into
target and non-target and used subspace projection to improve the detection performance.
(3) Spatial-feature-based methods—spatial-feature-based methods use manually designed
or automatically learned features extracted in the spatial domain to distinguish ships from
the background. Grandi et al. [12] used wavelet features to detect targets in PolSAR images,
which explains the dependence of texture measurements on the polarization state. All of
the above ship potential area extraction methods have some limitations. On the one hand,
CFAR-type methods usually need to perform an accurate sea–land segmentation first to
ensure that the background is seawater. Although current methods based on GIS information
can quickly and efficiently exclude large land areas, the fine segmentation at the sea–land
boundaries still relies on specially designed sea–land segmentation methods. In addition,
the non-homogeneous sea clutter under a complex sea state makes it difficult to model the
clutter distribution uniformly on the whole PolSAR image. On the other hand, PolSAR ship
potential area extraction methods based on polarimetric features as well as spatial features rely
on the accurate description of the features. The backscattering from radar targets is sensitive
to the relative geometric relationship between the target attitude and the radar line of sight,
which leads to scattering diversity of the target [13,14], and the scattering diversity makes
the polarimetric and spatial features of the ship variable, which makes it difficult to detect
based on the pixel-level features. In addition, complex sea surface backgrounds, including
islands, waves, ship wakes, defocusing, azimuth ambiguity, cross sidelobes, stripe noise,
strong scattering artificial targets (e.g., lighthouses and buoys), etc., can interfere with the
detection of ship targets in the case of imperfect feature descriptions, resulting in false alarms
and missed alarms. The visualization of some false alarms is shown in Figure 1.

We designed a method for the PolSAR ship potential area extraction task, so that it can
be applied to both the nearshore areas containing part of the land and the distant sea areas,
and it can coarsely detect ships while excluding the interference of complex backgrounds
without relying on the fine land–sea segmentation algorithms other than GIS information.
Under the premise that extracting traditional pixel-level features is not effective, trying to
use the latent high-level semantic information in PolSAR images is a good idea to solve the
problem. The bag-of-words (BOW) models and the topic models were initially used for
text data mining and natural language processing (NLP), which can extract the semantic
information, especially latent topic information, in documents. They can also be applied in
the field of remote sensing image processing if the images or image blocks are regarded
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as the documents or bag of words [15]. Sivic et al. [16] introduced the bag-of-words
model for the first time in the field of computer vision. The visual bag-of-words model
treats an image as a set of local visual features within a bag and ignores the spatial layout
information of the features. It borrows the idea of the traditional bag-of-words model,
which treats the features extracted from an image as visual words and ignores the order
of occurrence and grammatical structure of the words. By statistically modeling visual
words, the features are reduced in dimensionality. For the case that multiple visual features
correspond to a visual word, Yuan et al. [17] proposed a meaningful spatially co-occurrent
pattern of visual words to eliminate the influence of polysemous visual words. For the topic
model, Deerwester et al. [18] proposed the latent semantic analysis (LSA) model. Later,
Hofmann [19] extended it to Probabilistic LSA (pLSA). Bosch et al. [20] regarded image
classes as latent topics, using the pLSA method to automatically obtain these latent topics
from bag-of-words features of images for classification. The Latent Dirichlet Allocation
(LDA) model [21] is also a classic generative topic model, which introduces parameters that
follow the Dirichlet distribution on the basis of pLSA to establish the probability distribution
of the latent topic variable. Li et al. [22] used the LDA model for scene classification for
the first time, while Zhong et al. [23] utilized an improved LDA topic model for natural
image classification. There are the following problems to be solved when using the LDA
topic model for PolSAR ship potential area extraction: Firstly, the bag-of-words generation
method should be optimized, so that each bag of words contains homogeneous features as
much as possible to facilitate the subsequent semantic information extraction. Secondly, the
original PolSAR image has a large height and width, and when there are too many pixels,
the LDA topic model has large computational complexity, so measures need to be taken to
reduce the computational complexity. Thirdly, some of the targets with similar semantic
features are not actually homogeneous targets, and further precise differentiation between
them is needed to improve the precision rate as much as possible on the basis of ensuring a
high recall rate for ship coarse detection.
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Figure 1. Complex backgrounds in the PolSAR ship potential area extraction (coarse detection) task: 
(a) overall view; (b) the green rectangle represents the false alarm of defocusing, and the red rectan-
gle represents the real ship; (c) false alarm of islands; (d) false alarm of azimuth ambiguity. 
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In this article, we propose a PolSAR ship potential area extraction (coarse detection)
method based on neighborhood semantic differences of the LDA bag-of-words topic model
(NSD-LDA). Firstly, in order to reduce the effect of scattering diversity, the unified polari-
metric rotation domain theory proposed by Chen et al. [24–26] is introduced. By selecting
several typical polarimetric rotation domain feature parameters, a feature map suitable
for extracting high-level semantic features is obtained, which not only maximizes the
differences between the target and the background but also maximizes prior homogeneous
regions to reduce the computational complexity of the subsequent semantic feature extrac-
tion. Secondly, we generate the bag of words via an improved superpixel segmentation
method. The traditional superpixel segmentation method is not applicable to the selected
feature maps, and a more suitable superpixel segmentation method can be obtained by
improving the seed point selection, iteration strategy, and termination conditions. Then, on
the bag of words obtained with the superpixel segmentation method, high-level semantic
information is extracted using our proposed NSD-LDA method. Specifically, in order to
enhance the correlation between polarimetric and spatial features, making the extracted
high-level semantic information more accurate, on the basis of generating the bag of words
using the superpixel method, the differences between the semantic vectors of the target
bag of words and its neighboring bags of words are used to replace the original target se-
mantic vectors as the extracted high-level semantic features. Finally, based on the extracted
high-level semantic features, the PolSAR ship potential area extraction (coarse detection) is
completed using an SVM classifier, prior knowledge, and morphological post-processing.
The main contributions of this article are summarized as follows:

1. We propose an unsupervised PolSAR ship potential area extraction (coarse detection)
method, which can effectively migrate images obtained from the same type of sensors
and facilitate deployment on large-scale production lines.

2. By extracting high-level semantic features of the generated bag of words, our method
has better applicability to complex backgrounds including parts of land.

3. Through polarimetric rotation domain feature selection, improved superpixel bag-of-
words generation, and high-level semantic features extraction, our method further
strengthens the correlation between polarimetric and spatial features, resulting in
more robust ship detection results.

The innovations of our method are summarized as follows:

1. By selecting polarimetric rotation domain feature parameters under dual-constraint
conditions, we improved the discrimination between the target and background
while expanding prior homogeneous semantic regions, and obtained polarimetric
feature maps suitable for subsequent bag-of-words generation and high-level semantic
feature extraction.

2. By improving the superpixel segmentation method and using prior information
guidance, the bag of words applicable to the selected polarimetric feature map is con-
structed, which combines polarimetric features with spatial features and significantly
reduces the computational complexity of the subsequent semantic feature extraction.

3. With the proposed NSD-LDA method, polarimetric and spatial features are more
correlated, and the extracted potential areas of ships are more accurate.

The remainder of this paper is organized as follows: The proposed method is de-tailed
in Section 2, followed by experimental results in Section 3. Some discussions are presented
in Section 4, and Section 5 concludes the paper.

2. Methods

In this paper, we propose a PolSAR ship potential area extraction method based on
neighborhood semantic differences of an LDA bag-of-words topic model. A flowchart
of this method is given in Figure 2. Firstly, several polarimetric rotation domain feature
parameters are extracted from the original PolSAR image and compared for selection, and
the feature parameters are selected to construct a polarimetric feature map containing
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polarimetric information based on the maximization of the difference between the ship
target and the background and the maximization of the number of pixels in the prior
homogeneous region (seawater). Details will be presented in Section 2.1. Secondly, the
selected polarimetric feature map is clustered to generate a bag of words by using an
improved superpixel method. All details are discussed at length in Section 2.2. Thirdly, the
high-level semantic information is extracted with the proposed NSD-LDA method for each
bag of words. This part will be discussed thoroughly in Section 2.3. Finally, the extracted
semantic information is classified using the SVM classifier and then post-processed using
expert knowledge to obtain the results of ship potential area extraction. This part will be
presented in Section 2.4.
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2.1. Polarimetric Rotation Domain Features Selection
2.1.1. Characterization of Polarimetric Rotation Domain Feature Parameters

The scattering diversity of radar targets makes SAR/PolSAR information processing
more difficult. In order to explore and utilize the information contained in this scatter-
ing diversity, Chen et al. extended the polarimetric information obtained under specific
imaging geometric relations to the direction rotating around the radar line of sight, and
they proposed a unified polarimetric rotation domain theory [24] and polarimetric correla-
tion/coherence feature rotation domain interpretation tools [25,26].

Specifically, for PolSAR images, the polarimetric scattering matrix S can be represented
as follows under horizontal (H) and vertical (V) polarization bases:

S =

[
SHH SHV
SVH SVV

]
, (1)

where SHV is the backscattered coefficient from vertical polarization transmission and
horizontal polarization reception. Other terms are similarly defined.
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By rotating the polarimetric scattering matrix S around the radar line of sight, the
polarimetric scattering matrix in the rotation domain S(θ) can be obtained:

S(θ) =
[

cos θ sin θ
− sin θ cos θ

][
SHH SHV
SVH SVV

][
cos θ − sin θ
sin θ cos θ

]
, (2)

where θ is the rotation angle, and θ ∈ [−π, π).
The correlation values and coherence values between different polarization channels

in PolSAR images contain rich polarimetric information. For two arbitrary polarization
channels sX and sY, the polarimetric correlation pattern can be written as

|γ̂X-Y| = |〈sXs∗Y〉|, (3)

and the polarimetric coherence pattern can be written as

|γX-Y| =
∣∣〈sXs∗Y

〉∣∣√〈
|sX |2

〉〈
|sY|2

〉 , (4)

where s∗Y is the conjugate of sY. By extending the above two parameters to the polarimetric
rotation domain, the polarimetric rotation domain correlation pattern can be written as

|γ̂X-Y(θ)| = |〈sX(θ)s∗Y(θ)〉|, (5)

and the polarimetric rotation domain coherence pattern can be written as

|γX-Y(θ)| =
∣∣〈sX(θ)s∗Y(θ)

〉∣∣√〈
|sX(θ)|2

〉〈
|sY(θ)|2

〉 , (6)

where the value of |γ̂X-Y(θ)| is within [0,+∞), and the value of |γX-Y(θ)| is within [0, 1).
Taking a polarimetric correlation pattern as an example, for four kinds of independent

polarimetric correlation patterns, including |γ̂HH-HV(θ)|, |γ̂HH-VV(θ)|,∣∣∣γ̂(HH+VV)-(HH−VV)(θ)
∣∣∣, and

∣∣∣γ̂(HH−VV)-HV(θ)
∣∣∣, the following seven amplitude class fea-

ture parameters are defined for feature characterization, including the original correlation
γ̂-org = |γ̂X-Y(0)|, the mean value of correlation γ̂-mean = mean{|γ̂X-Y(θ)|}, the maximum
correlation γ̂-max = max{|γ̂X-Y(θ)|}, the minimum correlation
γ̂-min = min{|γ̂X-Y(θ)|}, the standard deviation of correlation γ̂-std = std{|γ̂X-Y(θ)|}, the
correlation contrast γ̂-contrast = γ̂-max − γ̂-min, and the correlation anisotropy
γ̂-Ani = γ̂-max − γ̂-min/γ̂-max + γ̂-min.

Similarly, for four kinds of independent polarimetric coherence patterns, seven po-
larimetric coherence feature parameters, which are consistent with polarimetric correla-
tion feature parameters, are also defined for feature characterization, including γ-org =
|γX-Y(0)|, γ-mean = mean{|γX-Y(θ)|}, γ-max = max{|γX-Y(θ)|}, γ-min = min{|γX-Y(θ)|},
γ-std = std{|γX-Y(θ)|}, γ-contrast = γ-max − γ-min, and
γ-Ani = γ-max − γ-min/γ-max + γ-min.

In summary, a total of 56 polarimetric rotation domain feature parameters are obtained,
all of which contain rich polarimetric information and have clear physical meanings.

2.1.2. Polarimetric Rotation Domain Feature Parameter Selection and Feature Map Construction

In order to construct a feature map containing polarimetric information for subsequent
bag-of-words generation and high-level semantic feature extraction, the 56 polarimetric
rotation domain feature parameters are selected to find which meets the following two
conditions best. One is to maximize the difference between ship targets and various
backgrounds. Enhancing the differentiation between targets and backgrounds can make the
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ship potential area extraction results more accurate. The second is to maximize the number
of pixels belonging to the prior homogeneous regions (seawater). Seawater is the most
dominant background, and if it is excluded through prior information, the computational
complexity of the subsequent semantic feature extraction step can be significantly reduced.

The Relief method [27] is a well-known filtered feature selection method that estimates
the weight of each feature based on its ability to classify between different classes of
samples. A total of 1500 ship pixels and 1500 background pixels, including 500 calm sea
surface pixels, 500 land/island/reef pixels, and 100 pixels each of wave, defocus, azimuth
ambiguity, cross sidelobe, and stripe noise, are randomly selected from the GF-3 dataset for
the weight calculation. The results are shown in Tables 1 and 2. There are 56 polarimetric
rotation domain feature parameters, and the larger the weight value is, the stronger the
ability of this polarimetric rotation domain feature parameter to discriminate between the
ships and the backgrounds.

Table 1. Classification weights of polarimetric rotation domain correlation feature parameters.

Feature Parameters Polarimetric Correlation Patterns

|γ̂HH-HV(θ)| |γ̂HH-VV(θ)|
∣∣∣γ̂(HH+VV)-(HH−VV)(θ)

∣∣∣ ∣∣∣γ̂(HH−VV)-HV(θ)
∣∣∣

γ̂-org = |γ̂X-Y(0)| 0.85 0.19 0.26 0.91
γ̂-mean = mean{|γ̂X-Y(θ)|} 0.61 0.53 0.63 0.56
γ̂-max = max{|γ̂X-Y(θ)|} 0.51 0.29 0.46 0.52
γ̂-min = min{|γ̂X-Y(θ)|} 0.53 0.25 0.41 0.71
γ̂-std = std{|γ̂X-Y(θ)|} 0.51 0.53 0.37 0.35

γ̂-contrast = γ̂-max − γ̂-min 0.46 0.44 0.15 0.29
γ̂-Ani = γ̂-max − γ̂-min/γ̂-max + γ̂-min 0.41 0.38 0.39 0.31

Table 2. Classification weights of polarimetric rotation domain coherence feature parameters.

Feature Parameters Polarimetric Coherence Patterns

|γHH-HV(θ)| |γHH-VV(θ)|
∣∣∣γ(HH+VV)-(HH−VV)(θ)

∣∣∣ ∣∣∣γ(HH−VV)-HV(θ)
∣∣∣

γ-org = |γX-Y(0)| 0.31 0.36 0.39 0.33
γ-mean = mean{|γX-Y(θ)|} 0.32 0.34 0.27 0.67
γ-max = max{|γX-Y(θ)|} 0.23 0.78 0.32 0.75
γ-min = min{|γX-Y(θ)|} 0.26 0.22 0.31 0.29
γ-std = std{|γX-Y(θ)|} 0.32 0.39 0.43 0.56

γ-contrast = γ-max − γ-min 0.44 0.52 0.33 0.59
γ-Ani = γ-max − γ-min/γ-max + γ-min 0.33 0.37 0.35 0.48

After comparison, the classification weights of feature parameters
∣∣∣γ̂(HH−VV)-HV(0)

∣∣∣
and |γ̂HH-HV(0)| are the highest, with values of 0.91 and 0.85, respectively. We choose these
two feature parameters to construct polarimetric rotation domain feature maps separately
and calculate the proportion of prior homogeneous region (seawater) pixels.

Five GF-3 PolSAR images each of a nearshore and distant ocean are selected as the
dataset. For the polarimetric rotation domain correlation features, perform a truncation
operation, set the pixel values of the original polarimetric correlation features exceeding
255 to 255, and round down other values to construct an 8-bit feature map. According to
reference [28], if the target satisfies the reflection symmetry property, its cross-polarization
scattering coefficients and co-polarization scattering coefficients are uncorrelated, which
are represented as follows: {

〈SHHS∗HV〉= 0, 〈SHHS∗VH〉= 0
〈SVVS∗HV〉= 0, 〈SVVS∗VH〉= 0

. (7)
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In geophysical media, this symmetry can be observed on water surfaces in the upwind
or downwind direction and isotropic and anisotropic scattering media, such as snow or
sea ice. The feature parameters

∣∣∣γ̂(HH−VV)-HV(0)
∣∣∣ and |γ̂HH-HV(0)| characterize the corre-

lation between the cross-polarization scattering coefficient and co-polarization scattering
coefficient. In the feature maps constructed with the feature parameters, for a calm sea
surface, the pixel value is 0 due to the reflection symmetry. For sea clutter caused by waves,
the pixel value is below 10. For artificial targets, the pixel value is large. This is determined
by the physical properties of the targets and is general in PolSAR images. In order to
choose the feature map that maximizes the number of pixels with semantic seawater, the
proportion of pixels with a value of 0, a value not exceeding 10 and 20, is counted, and the
results are shown in Table 3.

Table 3. The proportion of prior pixels in polarimetric rotation domain feature maps.

Pixel Value of 0 Pixel Value Not Exceeding 10 Pixel Value Not Exceeding 20

Nearshore |γ̂HH-HV(0)| 65.2 78.3 82.6
Distant ocean |γ̂HH-HV(0)| 17.0 75.6 83.8

Nearshore
∣∣∣γ̂(HH−VV)-HV(0)

∣∣∣ 65.7 78.2 82.3

Distant ocean
∣∣∣γ̂(HH−VV)-HV(0)

∣∣∣ 17.3 76.0 83.4

The sea surface in nearshore PolSAR images is usually relatively calm, and based
on reflection symmetry, pixels with a value of 0 can be identified as seawater. Due to the
presence of a large amount of sea clutter caused by waves in the distant ocean PolSAR
images, pixels with a value not exceeding 10 can be recognized as oceans. We compare the
number of 0-value pixels in nearshore images and the number of pixels with a value not
exceeding 10 in distant ocean images; feature

∣∣∣γ̂(HH−VV)-HV(0)
∣∣∣ is selected to construct the

polarimetric rotation domain feature map, and subsequent processing is performed. The
constructed polarimetric feature maps are shown in Figures 3 and 4.

Large areas of land can be excluded using GIS information. In order to expand the
semantic prior areas and minimize the impact on subsequent semantic extraction of other
targets, pixel values less than 2 in the nearshore feature maps are set to 0, and pixel values
less than 10 in the distant ocean feature maps are set to 0.
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2.2. Bag-of-Words Generation Based on Improved Superpixel Segmentation

The concept of a bag of words was first introduced in the field of natural language
processing (NLP). The core of the concept is that if a text is treated as a bag, the word order
of the words in it will not be considered, and it will only be treated as a set composed of
words. This makes the bag of words also applicable in the field of computer vision (CV). If
an image or a pixel block is treated as a bag of words, the pixels inside can be considered as
words. A superpixel is a set of pixels with similar underlying features and similar spatial
distances. By generating superpixels, an image can be dimensionally reduced for easy
subsequent processing. In this article, we introduce the superpixel method to generate
a bag of words. The most widely used superpixel segmentation methods include the
following two types. One is based on changes in regional contours, which is represented
as the watershed [29] method. The other is the clustering-based method, represented by
Simple Linear Iterative Clustering (SLIC) [30].

After polarimetric rotation domain feature extraction, we obtain the feature map
containing polarimetric information, and generating the bag of words on the feature map
via the superpixel method will have the following problems: Firstly, like the original
PolSAR image, the polarimetric rotation domain feature map also has speckle noise, which
will have a negative effect on superpixel segmentation. Secondly, the seawater part of the
polarimetric rotation domain feature map approaches a zero value, resulting in a large
number of isolated points composed of one or several pixels scattered disorderly on the
sea surface in the nearshore feature map. On the other hand, in the distant ocean feature
map, there are some areas with irregular low-amplitude clutter pixel blocks. These can also
have a negative effect on superpixel segmentation. Finally, the boundary of heterogeneous
regions, such as ships, land, and sea clutter being blurred by speckle noise, degrades the
accuracy of edge extraction as well as making the clustering results inaccurate.

To address the above problems, we use the following approach to optimize the super-
pixel segmentation process.

2.2.1. Edge Extraction of Polarimetric Feature Map

By extracting the edge information of the polarimetric rotation domain feature map as
a constraint condition for generating superpixels, the generated superpixels can better fit
the edge of the ground object. Considering the speckle noise, Gaussian Gamma-Shaped
bi-windows (GGSBi) [31] are introduced to replace a conventional rectangular window.
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Specifically, assuming the bi-windows are horizontal, the GGSBi function of pixel (x, y) is
as follows:

WU(x, y) = |y|α−1
√

2πσxΓ(α)βα
exp

(
−
(

x2

2σ2
x
+ |y|

β

))
, y ≥ 0

WL(x, y) = |y|α−1
√

2πσxΓ(α)βα
exp

(
−
(

x2

2σ2
x
+ |y|

β

))
, y ≤ 0

, (8)

where WU(x, y) is the upper window and WL(x, y) is the lower window. Follow a Gaussian
distribution along the x direction, with a parameter of σx controlling the window length,
and the range of values is σx > 1. Follow a gamma distribution along the y direction, with
parameters α and β. α controls the spacing of the two windows, Γ(α) represents the gamma
function, β controls the window width, and the range of values is α > 1, β > 0. In this
article, the values are set to σx = 6.5/

√
π, α = 2, β = 1.6.

Rotate the bi-windows counterclockwise along the centerline to obtain the bi-windows’
function with orientation angle θ:

Wθ
U(x, y) = WU(x cos θ − y sin θ, x sin θ + y cos θ)

Wθ
L(x, y) = WL(x cos θ − y sin θ, x sin θ + y cos θ)

. (9)

At each orientation, two local mean functions are computed with the
following convolutions:

mU(x, y|θ ) = ∑
(x′ ,y′ )

Wθ
U(x′, y′)I(x− x′, y− y′)

mL(x, y|θ ) = ∑
(x′ ,y′ )

Wθ
L(x′, y′)I(x− x′, y− y′)

. (10)

When the orientation angle θ is discretized into θp = 0, π/P, . . . , π(P− 1)/P, the
ratio-based edge strength map ESM(x, y) is

ESM(x, y) = 1− ξR(x, y), (11)

where ξR(x, y) is calculated with

ξR(x, y) = min
p=0,1,...,P−1

{
min

{
mU
(
x, y
∣∣θp
)

mL
(
x, y
∣∣θp
) ,

mL
(
x, y
∣∣θp
)

mU
(
x, y
∣∣θp
)}}. (12)

The edge directional map EDM(x, y) is

EDM(x, y) =
π

P
argmin

p

{
min

{
mU
(
x, y
∣∣θp
)

mL
(
x, y
∣∣θp
) ,

mL
(

x, y
∣∣θp
)

mU
(
x, y
∣∣θp
)}}. (13)

The set of edge pixels can be obtained through the Non-Maximum Suppression
(NMS) method.

The parameter setting of the GGS bi-windows is determined with the edge extraction
effect. When the window is small and the distance between the two windows is large, it
has better adaptability to edges with large curvature.

Due to the numerous evaluation indicators for edge extraction effectiveness and the
difficulty in determining which one is most suitable, the accuracy of edge extraction is
mainly obtained through visual interpretation. In addition, we use the following methods
to assist in determining the accuracy of edge extraction: If the extracted edge pixel is within
a specified tolerance of the ground truth pixel, then it is counted as a true edge pixel.
Calculate the proportion of true edge pixels extracted from typical ground objects, such
as ships, lands, islands, and defocusing, as well as the proportion of missed edge pixels
caused by speckle noise to all edge pixels extracted. When the proportion of true edge
pixels is high enough and the proportion of missed edge pixels is low, the edge extraction
effect meets the requirements.
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If the PolSAR image resolution changes, the GGS bi-windows’ parameters need to be
reset using the above method, provided that the task of extracting the ship potential area
remains unchanged, i.e., the scene of edge extraction remains unchanged.

2.2.2. A Clustering Method Suitable for Speckle Noise and Low Amplitude, Low
Discrimination Areas

This section proposes a method for clustering on the polarimetric rotation domain
feature map to obtain initial superpixels. Since seawater contains a large number of
low-amplitude pixel blocks and isolated points with values of 0 or approaching 0, when
clustering, on the one hand, it is necessary to reduce the impact of speckle noise, and on the
other hand, it should be suitable for a large number of low-amplitude, low-discrimination
areas. Under edge constraint conditions, after cutting the polarimetric rotation domain
feature map to obtain the initial blocks, seed points selection and pixels clustering are
carried out for 0-value areas; low-amplitude, low-discrimination areas; and speckle noise
areas in nearshore and distant sea scenes, respectively. The specific clustering steps are
as follows:

1. Divide the original polarimetric rotation domain feature map into n blocks of size
S× S, where n = MN/S2; M and N are the length and width of the original fea-
ture map.

2. Clustering of low-amplitude, low- discrimination areas and 0-value areas in the
nearshore scene: For each initial block, if the original feature map is a nearshore
feature map and the mean value of the pixels in the block is less than 10, find the
point with the lowest pixel value and gradient from the center towards the edge as
the initial seed point. When the value of the initial seed point is 0, if the value of its
unlabeled neighbor pixel is also 0, it is merged into the superpixel to which the seed
point belongs. When the value of the initial seed point is not 0, if the value of the
unlabeled neighbor pixel has a difference with the seed point not greater than 3, or
the difference with the pixel value of the superpixel’s center point is not greater than
5, then it is merged into the superpixel to which the seed point belongs, and the seed
point is updated to these neighbor pixels, and then the center-point position of the
new superpixel is updated and the center-point amplitude is updated to the mean
value of the new superpixel. Repeat this step until there are only isolated points left
in the block.

3. Clustering of speckle noise areas in the nearshore scene: If the original feature map is
a nearshore feature map and the mean value of the pixels in the block is not less than
10, find the point with the lowest gradient in the central 3× 3 neighborhood as the
initial seed point. For the unlabeled neighborhood pixels of the seed point, calculate
its dissimilarity δ(i, j) with the seed point. Assuming the speckle noise follows a
gamma distribution, the dissimilarity is defined as the likelihood ratio statistic of the
5× 5 pixel block centered on two pixel points:

δ(i, j) = 2M ln

M
∑

k=1
Pi(k) +

M
∑

k=1
Pj(k)

2

√
M
∑

k=1
Pi(k) ·

M
∑

k=1
Pj(k)

, (14)

where M is the number of pixels in the pixel block around the pixel point, i.e., 5× 5 = 25;
Pi(k) and Pi(k) are the values of each pixel in the block. If the dissimilarity is less than
0.3, the neighboring pixel is merged into the superpixel to which the seed point belongs,
and then the center-point position of the new superpixel is updated and the center-point
amplitude is updated to the mean value of the new superpixel. Repeat this step until
there are only isolated points left in the block.

4. Clustering of low-amplitude, low-discrimination areas and 0-value areas in the distant
ocean scene: For each initial block, if the original feature map is a distant ocean feature
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map and the mean value of the pixels in the block is less than 20, and when the value
of the initial seed point is 0, the clustering method is consistent with the clustering
method for the 0-value areas in step 2. When the value of the initial seed point is not
0, the thresholds for the difference between the unlabeled point and seed point, as
well as between the unlabeled point and superpixel’s center point, are set to 6 and
10, respectively. The clustering method is consistent with the clustering method for
low-amplitude, low-discrimination areas in step 2.

5. Clustering of speckle noise areas in the distant ocean scene: If the original feature
map is a distant ocean feature map and the mean value of the pixels in the block is
not less than 20, the clustering method is consistent with the clustering method for
speckle noise areas in step 3.

6. The edge information obtained from edge extraction constrains the clustering results
mentioned above, so that the generated superpixel boundaries do not cross the edges.

2.2.3. Post-Processing of Homogeneous Region Merging

This section proposes a method for merging homogeneous superpixels. After cluster-
ing, the initial superpixels are obtained, but a large number of superpixels have boundaries
falling on the initial block boundaries. In addition, small-area superpixels and isolated
points make the generated superpixels discontinuous, requiring post-processing steps to
merge homogeneous regions. Under edge constraint conditions, merge the cross-edge
homogeneous regions of the initial superpixels obtained by clustering, and merge iso-
lated points and small-area superpixels into the neighboring superpixels with the smallest
dissimilarity. The specific steps are as follows:

1. For the superpixels on both sides of the initial block boundary, if they are homo-
geneous regions, merge them. Homogeneous regions include 0-value regions; low-
amplitude, low-discrimination regions; and regions with speckle noise. The merging
conditions are consistent with the clustering conditions of each region. Among them,
low-amplitude, low-discrimination regions are calculated as thresholds based on
the mean of superpixels, while regions with speckle noise have a threshold of the
dissimilarity of superpixels δ

(
SPi, SPj

)
less than 0.3. The dissimilarity is defined

as follows:

δ
(
SPi, SPj

)
= 2min

(
M(SPi), M

(
SPj
))

ln

M(SPi)

∑
k=1

PSPi (k) +
M(SPj)

∑
k=1

PSPj(k)

2

√
M(SPi)

∑
k=1

PSPi (k) ·
M(SPj)

∑
k=1

PSPj(k)

, (15)

where M(SPi) and M
(
SPj
)

are the number of pixels in the superpixel, and PSPi (k)
and PSPj(k) are the values of each pixel in the superpixel.

2. For small-area superpixels, calculate the dissimilarity δ
(
SPi, SPj

)
with their neigh-

boring superpixels to merge them into the superpixel with the smallest dissimilarity.
When the number of pixels in a superpixel is less than 0.3 S2, the superpixel is consid-
ered to be a small-area superpixel, and S is the initial block edge length.

3. For isolated points, calculate the dissimilarity δ
(
i, SPj

)
with their neighboring super-

pixels to merge them into the superpixel with the smallest dissimilarity.
4. The edge information obtained from edge extraction constrains the post-processing

results mentioned above, so that the generated superpixel boundaries do not cross
the edges.

After post-processing, semantic labels are directly assigned to some of the superpixels
based on prior knowledge. Among them, the 0-value superpixels and low-amplitude,
low-discrimination superpixels are seawater, and the merged superpixels have the same
semantics as the superpixels, which merge other superpixels, rather than the superpixels
that are merged. A bag of words is generated for the remaining unassigned semantic
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labeled superpixels for subsequent semantic feature extraction. By pre-assigning labels
with prior knowledge, a large number of seawater regions can be identified, reducing the
computational complexity of subsequent semantic feature extraction. The comparison
results of superpixel segmentation are shown in Figures 5 and 6. Compared with the classic
watershed and SLIC methods, our method has better applicability in low-amplitude, low-
discrimination areas on the basis of reducing the effect of speckle noise, and the generated
superpixel edges are more closely matched to the actual target.

Remote Sens. 2023, 15, x FOR PEER REVIEW 15 of 30 
 

 

   
(a) (b) (c) 

   
(d) (e) (f) 

   
(g) (h) (i) 

Figure 5. Comparison plot of superpixel segmentation results for nearshore feature map: (a–c) over-
all; (d–f) land area; (g–i) ship area; (a,d,g) watershed method; (b,e,h) SLIC method; (c,f,i) our 
method. 

Figure 5. Comparison plot of superpixel segmentation results for nearshore feature map: (a–c) overall;
(d–f) land area; (g–i) ship area; (a,d,g) watershed method; (b,e,h) SLIC method; (c,f,i) our method.



Remote Sens. 2023, 15, 5601 14 of 26Remote Sens. 2023, 15, x FOR PEER REVIEW 16 of 30 
 

 

   
(a) (b) (c) 

   
(d) (e) (f) 

Figure 6. Comparison plot of superpixel segmentation results for distant ocean feature map: (a–c) 
overall; (d–f) ship area; (a,d) watershed method; (b,e) SLIC method; (c,f) our method. 

2.3. Neighborhood Semantic Differences Extraction Based on LDA Bag-of-Words Topic Model 
The topic model was originally applied in the field of text mining to extract semantic 

information implicit in the text. Latent Dirichlet Allocation (LDA) [21] is a bag-of-words-
based topic model, so the order of words in a document can be disregarded. If an image 
is considered as a collection of pixels, then the image is a bag of words and the pixels are 
the words in it, so the LDA topic model can also be introduced into the field of computer 
vision (CV) [23]. LDA is based on a generative probabilistic model, with the core idea of 
learning a set of latent topics, and each document or image can be represented as a mixture 
of topics from that set. Therefore, after generating the bag of words via the superpixel 
method above, all superpixel blocks can be regarded as a set of documents, and pixels can 
be regarded as words in each document. By extracting the high-level semantic information 
implied by each superpixel block, i.e., the distribution of topics of that superpixel block, 
feature vectors are generated and classified to obtain superpixel blocks with the semantics 
of ships. This process is also a process of dimensionality reduction for features. 

A sketch map of the LDA topic model is shown in Figure 7, where K  is the number 
of topics; M  is the number of documents, which is the number of superpixels in a polar-
imetric feature map; mN  is the number of words contained in the m th document, which 

is the number of pixels in the m th superpixel of the feature map; mnw  represents the 

value of the n th pixel in the m th superpixel; mnz  represents the topic of the n th pixel 

in the m th superpixel; mθ  represents the topic distribution of the m th superpixel; and 

Figure 6. Comparison plot of superpixel segmentation results for distant ocean feature map:
(a–c) overall; (d–f) ship area; (a,d) watershed method; (b,e) SLIC method; (c,f) our method.

2.3. Neighborhood Semantic Differences Extraction Based on LDA Bag-of-Words Topic Model

The topic model was originally applied in the field of text mining to extract semantic
information implicit in the text. Latent Dirichlet Allocation (LDA) [21] is a bag-of-words-
based topic model, so the order of words in a document can be disregarded. If an image
is considered as a collection of pixels, then the image is a bag of words and the pixels are
the words in it, so the LDA topic model can also be introduced into the field of computer
vision (CV) [23]. LDA is based on a generative probabilistic model, with the core idea of
learning a set of latent topics, and each document or image can be represented as a mixture
of topics from that set. Therefore, after generating the bag of words via the superpixel
method above, all superpixel blocks can be regarded as a set of documents, and pixels can
be regarded as words in each document. By extracting the high-level semantic information
implied by each superpixel block, i.e., the distribution of topics of that superpixel block,
feature vectors are generated and classified to obtain superpixel blocks with the semantics
of ships. This process is also a process of dimensionality reduction for features.

A sketch map of the LDA topic model is shown in Figure 7, where K is the number of
topics; M is the number of documents, which is the number of superpixels in a polarimetric
feature map; Nm is the number of words contained in the m th document, which is the
number of pixels in the m th superpixel of the feature map; wmn represents the value of
the n th pixel in the m th superpixel; zmn represents the topic of the n th pixel in the m th
superpixel; θm represents the topic distribution of the m th superpixel; and βk represents
the pixel value distribution of the k th topic. Then, for this article, the pixel values in each
superpixel are generated with the following process:
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1. A certain topic is selected with a certain probability based on the topic distribution of
the superpixel.

2. A certain pixel value is selected with a certain probability based on the word distribu-
tion of this topic, which is also the pixel value distribution.
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The joint probability distribution function of this process is as follows:

p(θ, z, w, β) =

(
K

∏
k=1

p(βk|η )
)(

M

∏
m=1

p(θm|α )
Nm

∏
n=1

p(zmn|θm )
M

∏
m=1

p(wmn|zmn, βk )

)
, (16)

where βk follows the Dirichlet distribution with parameter η, θm follows the Dirichlet
distribution with parameter α, zmn follows the polynomial distribution with parameter
θm, and wmn follows the polynomial distribution with parameter βzmn . Repeat the above
process to generate all superpixels and the whole feature map.

We solve the LDA parameters via the Gibbs sampling method [32], which is a special
case of the Markov-Chain Monte Carlo algorithm. The core of this method is to randomly
select a variable from the probability vector each time, sample the value of the current
variable with the given value of other variables, and keep iterating until convergence, then
output the parameters to be estimated.

After obtaining the topic distribution of all superpixels, the topic distribution vector
of each superpixel is the semantic feature of that superpixel. Due to the spatial correlation
between the ship targets and their backgrounds, although the superpixel segmentation
strengthens the spatial correlation of the pixel-level features to a certain extent, at the
semantic level, its spatial correlation still needs to be further strengthened.

For each superpixel, the superpixels adjacent to its boundary are its neighboring
superpixels. Drawing on the LBP idea, the mean value of the difference between the topic
distribution vector of a superpixel and the topic distribution vectors of all its neighboring
superpixels is defined as the neighborhood topic distribution difference vector of the
superpixel, which we call neighborhood semantic differences, and this value can be used
as the neighborhood semantic feature of the superpixel. It is expressed as follows:

L(z1, . . . , za) =
1
n

n

∑
i=1
{θm(x1, . . . , xa)− θmi(y1, . . . , ya)}, (17)

where L(z1, . . . , za), θm(x1, . . . , xa), and θmi(y1, . . . , ya) are the topic distribution vectors,
and n is the number of neighborhood superpixels. For n = 6, a sketch map of the neighbor-
hood structure is shown in Figure 8.

Replace the original semantic features of a superpixel with its neighborhood semantic
features, making the extracted semantic features more spatially relevant. The superpixels
with semantics of seawater and sea clutter previously obtained from prior knowledge need
to be assigned corresponding feature vectors for easy calculation.
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2.4. Ship Coarse Detection Based on SVM Classifier and Expert Knowledge Post-Processing

Nonlinear multi-classification of neighborhood semantic features uses Gaussian kernel
function support vector machines (SVMs). Considering that in the polarimetric rotation
domain feature map, the ship target has the highest pixel value and the seawater has the
lowest pixel value, for a certain class of targets, the weighted values of the pixel values with
the highest probability of the topic belonging to the first (K′ − 1)/K′ of each component
of the positive and negative parts of the neighborhood semantic feature vector of any of
its superpixels are the positive and negative topic words of the class, respectively, where
K′ is the number of topics that have increased the number of prior semantic classes. After
sorting the positive and negative topic words, if the positive topic word of the class is
the highest value and not lower than 225, while the negative topic word of the class is
the lowest value and not higher than 30, the superpixel with a linkage domain of not less
than 20 pixels belonging to the class is a ship target; otherwise, the whole PolSAR image is
considered to have no ship target.

When using the original semantic features of superpixels for classification, for a certain
class of targets, the pixel value with the highest probability of the topic corresponding to
the highest component of the original semantic feature vector of any of its superpixels is
the topic word of the class. After sorting the topic words, if the topic word of the class is
the highest value and not less than 250, the superpixel with a linkage domain of not less
than 20 pixels belonging to the class is a ship target; otherwise, the whole PolSAR image is
considered to have no ship target. The comparison results of classification using original
semantic features and neighborhood semantic features are shown in Figures 9 and 10. The
color of the superpixel in the figure indicates its semantics; red indicates the target whose
semantic is the ship, and the color of the rest of the semantic targets is randomly assigned.
As shown in Figure 9c, the superpixels in the black box mistakenly label the original land
targets as ships when using the original semantic features for classification. As shown in
Figure 9d, this misclassification is avoided when using neighborhood semantic features
for classification.
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3. Results

In this section, comprehensive experiments are conducted to validate the effectiveness
and demonstrate the superiority of the proposed method. Specifically speaking, the ship
detection results of our proposed ship potential area extraction method are compared with
those of two novel and one classical unsupervised ship detection methods.

3.1. Data Description

We use 10 full PolSAR images from the Chinese GF-3 satellite in nearshore and
distant ocean scenes near Shanghai and Hong Kong for experiments, of which 5 are
nearshore images and 5 are distant ocean images, to construct a dataset for ship potential
area extraction. The GF-3 satellite is one of the civilian space-borne SAR systems, with
12 imaging modes, such as stripmap, spotlight, scanSAR, and so on, and the resolution
can reach up to 1 m [33]. The 10 full PolSAR images used are obtained via the imaging
mode of QPSI, and it has a spatial resolution of 8 m and observation swath of 30 km. The
product level is L1A, which provides the complex data of images with HH, HV, VH, and
VV polarizations.
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3.2. Experimental Setup and Evaluation Index

We implement the proposed algorithm through python 3.6 and execute it on a 64-bit
Ubuntu 20.04 workstation.

The evaluation indicator is the standard to measure the training effect of the model.
In the process of our model’s training and testing, Precision and Recall are mainly se-
lected as the evaluation indicators. The combination of the sample real class and model
prediction class is divided into four cases: true positive, false positive, true negative,
and false negative. We denote them as TP, FP, TN, and FN, respectively. Obviously,
TP + FP + TN + FN = total number of samples.

Precision means the ratio of actually positive examples in the examples divided into
positive examples. Precision is defined as

Precision =
TP

TP + FP
. (18)

Recall means the ratio of positive samples predicted as positive samples in the total
positive samples, reflecting the comprehensiveness of the model’s prediction of positive
samples, which is defined as

Recall =
TP

TP + FN
. (19)

For the ship potential area extraction task, we aim to improve the Precision as much
as possible while ensuring a high Recall, so other evaluation indicators for target detection
such as mAP are not used.

3.3. Comparison Experiments

We compare our method with two novel and one classical unsupervised PolSAR ship
detection methods, including the adaptive polarimetric whitening filter truncated statistical
CFAR (PWF-TS-CFAR) [5] method based on the background clutter distribution modeling,
the scattering mechanism subspace projection (SP) [11] method based on polarimetric
feature extraction, and the span polarimetric cross-entropy (SPCE) [34] method based on
combining the polarimetric and span features. The recall and precision for nearshore and
distant ocean images are shown in Table 4. Specifically, our method and the other three
methods all achieve a recall of 1 in both the nearshore and distant ocean images. However,
due to the influence of the complex background in the nearshore image, especially in the
land area, the precision of the other three methods except ours drops significantly. The
PWF-TS-CFAR method and the SP method still have a precision of only 0.086 and 0.131 after
the addition of morphological filtering, and the precision of the SPCE method is 0.071. In
the distant ocean image, the background is relatively simple, and the precision of the other
three methods except ours is improved compared to the nearshore image, with 0.744, 0.865,
and 0.865, respectively, but there is still a certain gap regarding the precision of our method.
Our method achieves a precision of 0.96 and 0.97 in the nearshore and distant ocean images,
respectively, demonstrating the applicability of our method to complex backgrounds.

Table 4. Ship detection results of different methods.

Nearshore Images Distant Ocean Images

Recall Precision Recall Precision

PWF-TS-CFAR 1 0.086 1 0.744
SP 1 0.131 1 0.865

SPCE 1 0.071 1 0.865
Ours 1 0.96 1 0.97

The visualization of the detection results is shown in Figures 11–13, where Figure 11
shows the ground truth. Under the complex background interference, all three methods
except ours experience a large number of false alarms. Specifically, in the nearshore image
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(Figure 12a), the PWF-TS-CFAR method is sensitive to background targets, such as islands,
defocusing, and azimuth ambiguity, and generates false alarms there. Due to the use
of truncation to eliminate interference in the background window and the absence of a
protective window, this method is suitable for dense ship detection, but it can also generate a
large number of false alarms at the sea–land boundary. In the nearshore image (Figure 12b),
the SP method detects the preset scattering mechanism through the subspace projection,
and it is sensitive to the targets containing the preset scattering mechanism, generating a
large number of false alarms in the land area, artificial targets on the land, and azimuth
ambiguity, but it is not sensitive to defocusing. In the nearshore image (Figure 12c), the
SPCE method increases the target and background differences by fusing the span feature,
which is sensitive to high-energy backscattering and azimuth ambiguity, and generates
false alarms, but it is not sensitive to defocusing. In the distant ocean images (Figure 13a–c),
all three methods except ours cause false alarms due to azimuth ambiguity. In addition,
our method uses numerical truncation to deal with the high-amplitude information in
the polarimetric rotation domain feature maps, which results in very few cases where
defocusing separated from ships is classified as ship targets during semantic extraction,
resulting in false alarms. In summary, the comparison experiment results validate the
effectiveness and demonstrate the superiority of our method in the PolSAR ship potential
area extraction task with complex backgrounds.
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Figure 11. The ground-truth data, and the yellow rectangle represents a ship, the blue rectangle
represents defocusing, the white rectangle represents azimuth ambiguity, and the purple rectangle
represents an island: (a,b) the nearshore images; (c,d) the distant ocean images; (a,c) the HV channel
of original PolSAR images; (b,d) the ground-truth maps.



Remote Sens. 2023, 15, 5601 21 of 26Remote Sens. 2023, 15, x FOR PEER REVIEW 24 of 30 
 

 

  
(a) (b) 

  
(c) (d) 

Figure 12. Comparison plot of ship detection results for nearshore image, and the green rectangle 
represents true positive, and the red rectangle represents false alarm: (a) PWF-TS-CFAR method; 
(b) SP method; (c) SPCE method; (d) our method. 

Figure 12. Comparison plot of ship detection results for nearshore image, and the green rectangle
represents true positive, and the red rectangle represents false alarm: (a) PWF-TS-CFAR method;
(b) SP method; (c) SPCE method; (d) our method.
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4. Discussion

Compared with the other three unsupervised PolSAR ship detection methods, our
proposed method improves the detection ability of ships in complex backgrounds, but
further work is still needed to improve detection performance. In addition, we analyze and
discuss the effectiveness of several steps of our method.

Firstly, we replace the polarimetric feature we selected in the polarimetric rotation
domain feature selection step with three other polarimetric features in order of decreasing
classification weights, and we construct polarimetric feature maps to test the impact of
polarimetric feature selection on the detection results, which are shown in Table 5. The
method for constructing the correlation feature map is described in Section 2.1.2. When con-
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structing coherence feature maps, the original coherence features are multiplied by 256 and
then rounded down and stretched to construct 8-bit feature maps for easy comparison.
It can be observed that feature |γ̂HH-HV(0)|, which has the second-highest classification
weights after the feature we selected, has exactly the same detection results as the feature we
selected, whereas features max{|γHH-VV(θ)|} and max

{∣∣∣γ(HH−VV)-HV(θ)
∣∣∣} have a lower

precision in their detection results compared to the precision of the feature we selected.
Therefore, both features

∣∣∣γ̂(HH−VV)-HV(0)
∣∣∣ and |γ̂HH-HV(0)| can be used for polarimetric

feature map construction.

Table 5. The effect of polarimetric rotation domain features selection on ship detection results.

Nearshore Images Distant Ocean Images

Recall Precision Recall Precision

max{|γHH-VV(θ)|} 1 0.848 1 0.914
max

{∣∣∣γ(HH−VV)-HV(θ)
∣∣∣} 1 0.805 1 0.897

|γ̂HH-HV(0)| 1 0.96 1 0.97∣∣∣γ̂(HH−VV)-HV(0)
∣∣∣(Ours) 1 0.96 1 0.97

Secondly, we replace the superpixel segmentation method in the bag-of-words generation
step based on superpixel segmentation with watershed and SLIC methods in order to test
the effect of bag-of-words generation methods on the detection results, which are shown in
Table 6. It can be observed that when the watershed and SLIC methods are used for superpixel
segmentation, the recall in the detection results is significantly reduced. The core of ship
potential area extraction is to improve the precision as much as possible while ensuring a high
recall; therefore, adopting our proposed superpixel segmentation method applicable to the
constructed polarimetric feature maps is a key step in ship potential area extraction.

Table 6. The effect of bag-of-words generation based on superpixel segmentation on ship detection results.

Nearshore Images Distant Ocean Images

Recall Precision Recall Precision

Watershed method 0.684 0.942 0.698 0.957
SLIC method 0.432 0.953 0.458 0.978
Our method 1 0.96 1 0.97

Thirdly, we replace our method with the original LDA method in the semantic features
extraction step to test the effect of semantic extraction on the detection results, which are
shown in Table 7. It can be observed that our method outperforms the original LDA method
in terms of precision in complex backgrounds, but in simple backgrounds, our method is
consistent with the detection results of the original LDA method, proving the effectiveness
of our method in complex backgrounds.

Table 7. The effect of semantic features extraction on ship detection results.

Nearshore Images Distant Ocean Images

Recall Precision Recall Precision

Original LDA 1 0.792 1 0.97
NSD-LDA (Ours) 1 0.96 1 0.97

In order to better demonstrate the effect of our proposed three steps on the overall
performance improvement, we demonstrate the superiority and effectiveness of our pro-
posed method by verifying the effect of different combinations of steps on the ship potential
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area extraction results in Table 8. In this case, Baseline consists of the polarimetric feature
max

{∣∣∣γ(HH−VV)-HV(θ)
∣∣∣}, SLIC superpixel segmentation, and original LDA topic model.

It can be observed that the detection effect improved by selecting polarimetric features that
maximize the difference between ships and backgrounds is related to the representation
ability of the selected feature. The improved superpixel segmentation method suitable
for low-amplitude and speckle noise areas is of great significance in ensuring high recall.
The NSD-LDA method improves the detection results of complex backgrounds more than
simple backgrounds.

Table 8. The effect of different step combinations on ship detection results.

Method
Features

Selection (FS)
Improved Superpixel
Segmentation (ISS) NSD-LDA (NL)

Nearshore Images Distant Ocean
Images

Recall Precision Recall Precision

Baseline 0.392 0.826 0.424 0.985
Baseline + FS

√
0.432 0.807 0.458 0.978

Baseline + ISS
√

1 0.653 1 0.897
Baseline + NL

√
0.392 0.958 0.424 0.985

Baseline + FS + ISS
√ √

1 0.792 1 0.97
Baseline + FS + NL

√ √
0.432 0.953 0.458 0.978

Baseline + ISS + NL
√ √

1 0.805 1 0.897
Our method

√ √ √
1 0.96 1 0.97

Finally, in the LDA bag-of-words topic model, the preset hyperparameter K has a
certain effect on the semantic extraction results, and after experiments, the value of K
in our method is set to 10. The LDA topic model obtains the latent topic distribution
information, and the detection effect is the best when the number of preset topics matches
the scene. Otherwise, fewer topics bring about the phenomenon of synonymy, and more
topics bring about the phenomenon of polysemy, which both reduce the accuracy of the
semantic extraction. The hyperparameters need to be adjusted manually and cannot
be given automatically, which is a limitation of our method. In addition, our proposed
superpixel method differs from SLIC and watershed methods in that it does not pre-set
the number of superpixels, and the generated superpixel scale is determined with the
constructed polarimetric rotation domain feature map. When the number of pixels of
an initial superpixel is less than a threshold, it will be merged with the neighborhood
superpixels with the smallest dissimilarity, making it difficult to avoid small ships with
scales smaller than the threshold being submerged. This is another limitation of our
method. The core idea of this work is to extract the ship potential areas without relying
on the labeled samples and using unsupervised methods under the scattering diversity
and complex background conditions, so as to reduce the computational complexity of
polarimetric and spatial feature extraction of the subsequent deep learning-based PolSAR
ship fine detection.

5. Conclusions

In this article, a PolSAR ship potential area extraction (coarse detection) method based
on neighborhood semantic differences of an LDA bag-of-words topic model is proposed.
Based on polarimetric rotation domain feature selection and feature map construction,
superpixel segmentation-based bag-of-words generation applicable to polarimetric rotation
domain feature maps and high-level semantic feature extraction based on neighborhood
semantic differences of the LDA bag-of-words topic model are applied to achieve ship
potential area extraction capability under complex background conditions. Comparison
experiments were conducted on the GF-3 dataset. The experimental results show the supe-
riority of our proposed method over other unsupervised PolSAR ship detection methods
under complex background conditions. The effectiveness of our proposed method was ver-
ified by discussing the effects of each step of our proposed method on the detection results.
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We will continue to study how to better perform PolSAR ship potential area extraction in
our future work.
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