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Abstract: Accurate building extraction holds paramount importance in various applications such as
urbanization rate calculations, urban planning, and resource allocation. In response to the escalating
demand for precise low-altitude unmanned aerial vehicle (UAV) building segmentation in intricate
scenarios, this study introduces a semi-supervised methodology to alleviate the labor-intensive pro-
cess of procuring pixel-level annotations. Within the framework of adversarial networks, we employ
a dual-channel parallel generator strategy that amalgamates the morphology-driven optical flow
estimation channel with an enhanced multilayer sensing Deeplabv3+ module. This approach aims
to comprehensively capture both the morphological attributes and textural intricacies of buildings
while mitigating the dependency on annotated data. To further enhance the network’s capability to
discern building features, we introduce an adaptive attention mechanism via a feature fusion module.
Additionally, we implement a composite loss function to augment the model’s sensitivity to building
structures. Across two distinct low-altitude UAV datasets within the domain of UAV-based building
segmentation, our proposed method achieves average mean pixel intersection-over-union (mIoU)
ratios of 82.69% and 79.37%, respectively, with unlabeled data constituting 70% of the overall dataset.
These outcomes signify noteworthy advancements compared with contemporaneous networks, un-
derscoring the robustness of our approach in tackling intricate building segmentation challenges in
the domain of UAV-based architectural analysis.

Keywords: adversarial network; building segmentation; dual channel; optical flow estimation;
semi-supervision; UAV

1. Introduction

Architecture is the main carrier of human life and development. Building density
contains the key information of urban development. Accurate building inspection data
play a vital role in environmentally friendly urban planning, commercial planning, land
use change detection, national defense construction, and disaster monitoring and early
warnings [1,2]. Due to the diversity of building types and sizes and the influence of complex
background environments, it is still a key research direction to accurately and efficiently
extract buildings from high-resolution UAV images [3]. The emergence of deep convolu-
tional neural networks has ushered in a revolutionary stride in semantic segmentation
endeavors [4,5]. Nevertheless, these approaches frequently hinge on intricate pixel-level
annotations and comprehensive building outlines, which are not readily obtainable for
drone-sourced images [6,7]. Furthermore, the inherent feature similarity between buildings
and their backgrounds might result in internal inconsistencies within the segmentation out-
comes [8], potentially leading to the misclassification of buildings as background entities.
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The attention mechanism in network models helps them to focus on areas of interest
in images [9]. SENet [10] incorporates an attention mechanism into the channel dimension,
enhancing the importance of each feature channel. Woo et al.’s [11] lightweight attention
module combines channel and spatial attention modules to refine feature maps. Vaswani
et al.’s [12] multi-head attention module uses parallel attention mechanisms to extract
vital features across different feature spaces. However, attention mechanisms alone do not
perform well in complex, multiangle scenes.

Dual-channel network strategies are widely used in this field because of their ability
to capture features from multiple angles and achieve high precision in segmenting complex
backgrounds. For example, the EtoE-Fusion dual-channel network proposed by Wei
et al. [13] preserves both global and local information. Different from previous studies, Wen
et al. [14] designed PDSNet, in which each image in the obtained dataset is a dual-channel
image, which is connected via a 2D pavement image and a corresponding 3D pavement
image. Although this design is able to extract information from higher dimensions, it
may increase model complexity and computational resource consumption. Therefore, You
et al. [15] proposed an end-to-end dual-channel integrated cross-layer residual algorithm
(TIC-Net) based on deep learning, which can learn from the feature fusion and residual
calculation of different semantic information, and then realize the joint mining of features.

However, it is important to note that as network structures become more complex, the
need for large amounts of labeled data to ensure model accuracy increases. In response to
these practical obstacles, a range of semi-supervised methodologies has emerged, including
AffinityNet [16], AdvSemiSeg [17], SemiCycleGAN [18], and CCVC [19]. AffinityNet can
obtain better segmentation results from a small amount of labeled data by adopting self-
supervised pretraining and introducing an affinity clustering mechanism. While these
methods have shown promise, they still face limitations in effectively dealing with complex
morphological and textural features that are prevalent in drone-captured architectural
images [16]. In this case, balancing building form and texture properties remains a challenge
that requires further research [20].

Optical flow estimation plays an important role in image segmentation due to its
sensitivity to changes in light and shade in image textures and object shapes [21]. Optical
flow estimation tracks pixel movements and changes within an image, thereby proving
invaluable for tackling a multitude of segmentation challenges, including foreground–
background separation, object tracking, and boundary detection [22]. By analyzing pixel
displacements within an image, optical flow estimation enhances the understanding of
both the structural layout and motion dynamics within the image [23]. The challenges
in building segmentation include sensitivity to illumination and weather conditions, and
without constraints on optical flow estimation, it is difficult to capture complex textures
and precise shapes [24].

This paper presents a dual-channel semi-supervised segmentation network within an
adversarial network framework for UAV-based building segmentation. The network uses
optical flow estimation channels and integrated features from the building-aware ASPP
module within the Deeplabv3+ architecture. This method aims to comprehensively segment
building structures and textures in drone-captured images. To address complexities from
variations in lighting and textures, a supplementary method is proposed, which includes
symmetry calculation, connection domain feature mapping, and consistency calculation
of the convex hull area. Furthermore, we introduce the compound loss function and Zhu
et al.’s [25] adaptive attention mechanism to solve the feature redundancy problem caused
by the two-channel network strategy. We designed a composite loss function specifically
tailored for building segmentation, aiming to extract crucial texture information while
simultaneously directing the network’s attention towards building shape and structure.
Moreover, we introduced the adaptive attention mechanism within the feature fusion
module to address the redundancy issue arising from the dual-channel strategy. The main
contributions of this study can be summarized as follows:



Remote Sens. 2023, 15, 5608 3 of 24

(1) This paper presents a unique dual-channel semi-supervised segmentation network
within an adversarial network framework, aimed at improving the accuracy of com-
plex building image segmentation. The network efficiently combines optical flow
estimation channels with building-aware ASPP (BA-ASPP) features. It incorporates
advanced modules, including hierarchical channel attention modules (HCAM) and
multilevel feature fusion modules (MFFMs), to achieve a comprehensive understand-
ing of building structures and textures.

(2) To address challenges related to lighting and texture, this paper presents a method that
complements optical flow results with building-related information, encompassing
symmetry and connected domain features. This innovative approach substantially di-
minishes the dependency on labeled data, rendering it well suited for semi-supervised
tasks with just a 30% labeled sample set.

(3) Our network contains complementary components such as an adaptive attention
mechanism feature fusion module and a composite loss function.

(4) Our network was evaluated on the drone building dataset and the publicly available
UDD6 [26] dataset.

2. Materials and Methods
2.1. Data Acquisition and Dataset Construction

In this study, Tangshan City, located in the northeast coastal area, was selected as
the data collection area. Tangshan City is located at 39◦37′46′′ 118◦10′26′′ north latitude
and has a population of 771.8 million. It is a warm temperate semi-humid continental
monsoon climate with 2600–2900 h of sunshine throughout the year and a high degree
of urbanization. Because the construction of a drone building dataset requires samples
with diverse architectural forms and large illumination changes, the Caofeidian area was
selected as the main data collection area. The drone building data were acquired using
a DJI Mavic 3 Pro drone equipped with a Seer mapping tilt camera, PSDK 102S V3. The
camera used a 23.1 × 15.4 mm sensor, 3.76 µm pixel size, and 35 mm tilt lens to capture
images with a resolution of 6144 × 4096 pixels. The UAV followed a precise tic-tac-toe
flight path to ensure comprehensive coverage of the area. The images were mainly in RGB
format and preprocessed to correct internal distortion. Data augmentation techniques were
applied to increase the dataset from 700 to 1400 images. Due to computational constraints,
the images were resized to 1536 × 1024 pixels for model training and evaluation.

This paper also uses the public UAV dataset UDD6 to verify the effectiveness of the
network. The UDD6 dataset consists of images of cities captured by drones at low altitudes.
These images are characterized by varying dimensions, including 4096 × 2160 pixels,
3840 × 2160 pixels, and 4000 × 3000 pixels, and the distribution of image counts per size is
32, 16, and 93, respectively. The images in the UDD6 dataset are in the RGB format, and each
image is subdivided into five distinct categories. The dataset, consisting of 1050 images,
was processed and segmented into 1024 × 720 pixels for training and validation. Buildings
were assigned a 1 label, while other categories received a 0.

2.2. Methodology
2.2.1. Architecture Overview

The network simulates building motion dynamics to generate synthetic labels for
segmentation. It uses a dual-channel approach for semi-supervised image semantic seg-
mentation, including a generator, discriminator, feature fusion module, and composite loss
function, as depicted in Figure 1.

In each training batch, dual key channels are generated: a morphology-driven optical
flow prediction channel for estimating motion information in captured images and gener-
ating pseudo-labeled images for semi-supervised learning, and an enhanced multilayer
sensing channel for extracting semantic information and building features.
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Figure 1. Total flow chart of the algorithm. The dotted lines represent the different modules in
the network, and the arrows represent the order in which the network operates. The images and
corresponding true labels are processed by the optical flow estimation channel and the improved
Deeplabv3+ module. The features from both channels are fused, evaluated by the discriminator, and
fine-tuned using the composite loss function for network convergence.

The discriminator evaluates the quality of a fused feature representation to determine
its similarity to real data [27,28]. It is built on a fully convolutional neural network with
a 4 × 4 convolutional kernel, data batch normalization method, and nonlinear activation
function. The sigmoid function outputs the probability value. The network’s accuracy
is improved by optimizing the composite loss function. The error signal is passed back
through multilayer sensing channels, and adjustments are made to produce a more accurate
building estimate [29]. The process is repeated in multiple training batches until a fit state
is reached.

2.2.2. Semi-Supervised Optical Flow Estimation Channel in Dual-Channel Generator

The generator [5,30,31] receives a multifaceted input comprising various components:
an initial frame image, an intermediary frame image, a concluding frame image, and their
corresponding labeled image. In this study, due to the relative displacement of the UAV
when photographing the buildings, the external shape of the buildings does not change
with its movement; therefore, we classify this ‘building movement’ as rigid motion, leading
us to adopt an optical flow model with a uniform smoothing strategy.

The process involves defining a building’s spatial extent using a binary mask, deter-
mining its shape attributes using metrics like symmetry scores, fractional characteristic
maps, and consistency calculations, and computing morphological attributes, forming a
morphological vector [32–34].

This integration enables a more comprehensive understanding of the motion charac-
teristics of buildings, as visually illustrated in Figure 2.
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Figure 2. Schematic diagram of shape-driven optical flow estimation channel. The RGB images and
keyframe label maps go through building form constraint algorithms before entering the optical flow
estimation channel. This channel handles feature extraction and pseudo-label generation, including
constrained feature matching, displacement calculation to establish the objective function, and the
generation of optical flow characteristic values.

The overarching objective of optical flow estimation is to compute pixel displacements
while striving to minimize the discrepancies inherent in the optical flow field. In the context
of this study, we adopt the Horn–Schunck optical flow method, which is firmly rooted in
the analysis of brightness gradients [35]. The core mathematical expression characterizing
this method is as follows:

E(u, v) =
x (
∇I × (u, v) +

1
2

α
( ∣∣∣∇u|2 +

∣∣∣∇v|2
))

dxdy (1)

where (u, v) is the displacement field, I is the brightness of the image, α is the smoothness
weight, and ∇ is the gradient operator. The first term of the integrand measures the dot
product of the luminance gradient within the displacement field, which expresses the rate
of change in luminance in the displacement direction. The second term is the smoothness
term, which facilitates the smoothness of the displacement field to reduce noise.

The main goal is to optimize the energy function E(u, v) for the optimal displacement
field, minimizing errors and maintaining consistent image brightness. The energy function
formulation incorporates morphological building information to constrain and mitigate
extraneous noise beyond the building structure.

The calculation formula is as follows:

E(V) = Edata(V) + λEsmooth(V) (2)

where V is the motion energy field,Edata (V) measures the difference in optical flow before
the observation data, and Esmooth(V) measures the smoothness of the motion field. To
combine morphological information, the capability function is modified to

E(V) = Edata (V) + λEsmooth (V) + µEmorph (V, Fmid) (3)
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In this formula, Emorph (V, Fmid ) is a morphological information term, which is used
to represent the influence of morphological information on the motion field. The specific
definition of this item can be designed according to the different morphological information
of different buildings:

Emorph (V, Fmid) = s× Esymmetry (V) + c× Econnectivity (V) + a× Econvexity (V) (4)

Within this context, three distinct energy components come into play:Esymmetry (V)
gauges the impact of symmetry scores,Econnectivity (V) delves into the distribution of con-
nectivity across buildings, and Econvexity (V) quantifies the congruence of the motion field
in relation to the convex hull area.

The symmetry scores measure symmetry in a building’s boundaries, which can become
asymmetrical due to lighting or weather changes. They help segmentation algorithms
assess if building sections exhibit symmetry or near-symmetry, improving their ability to
discern the building’s shape and structure.

The calculation process is outlined as follows:

d =

√
(x− xc)

2 + (y− yc)
2 (5)

For each pixel position (x, y) on the feature plot F, we calculate the Euclidean distance
d of the geometric center position of the building (xc, yc), which is obtained by cutting the
pixel from the labeled image and the RGB image. And we calculate the symmetry fraction
S of the pixel, where the feature map size is M × N, as shown in Equation (6):

S =
1

M× N

M

∑
x=1

N

∑
y=1

1
1 + d(x, y)

(6)

The connectivity feature maps are vital for segmentation algorithms, enhancing accu-
racy in complex structures and interactions. They capture relationships between building
components and surroundings, preventing optical flow discontinuities and ensuring ro-
bust performance even in adverse conditions. The generalized calculation formula for
connectivity feature maps is expressed as follows:

F(C) = g( f 1(C), f 2(C), f 3(C)) (7)

where F(C) represents the connected domain feature map, C represents the set of connected
regions, and C of each region contains a set of pixels. f 1(C), f 2(C), and f 3(C) are the
connected regions’ area characteristics, the connected regions’ circumference characteristics,
and the connected regions’ eccentricity characteristics, respectively.

The consistency calculation for convex hull area measures the overlap between two
buildings’ convex hulls, assessing their consistency. Changes in light and shadows can blur
or obscure building edges. This measure constrains building characteristics, improving
boundary accuracy and aligning segmentation results with actual building shapes. The
calculation formula is as follows:

Consistency =
|Area(Ach)− Area(Bch)|
(Area(Ach) + Area(Bch))

(8)

In this formula, Ac represents the convex hull of building A, and Bc represents the
convex hull of building B. Area(Ach) and Area(Bch) are the areas of the convex hulls of
building A and building B, respectively.

Through the meticulous optimization of the composite energy function E(V), the
resultant motion vector field V after the incorporation of morphological insights can be
attained. This integration culminates in the generation of a pseudo-labeled image for the
intermediate frame.
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Precisely, for every pixel encompassed within the intermediate frame image, its coor-
dinates (x, y) and the associated motion vector (u, v) from the amalgamated motion vector
field V are used to compute the position (x + u, y + v) within the source image. To determine
the pixel value at this new position (x′, y′) in the initial frame, bilinear interpolation is
applied. The formula governing this interpolation is articulated as follows:

Ipseudo (x, y) = (1− δ)(1− γ)Istart (xstart , ystart )+
δ(1− γ)Istart (xstart + 1, ystart)+
(1− δ)γIstart (xstart , ystart + 1)+

δγIstart (xstart + 1, ystart + 1),

(9)

Here, δγ is the offset of (xstart, ystart) with respect to the integer coordinates.
Following a series of iterative cycles, each pixel within the intermediate frame image

undergoes interpolation, culminating in the acquisition of a comprehensive pseudo-labeled
image, Ipseudo . This synthesized image effectively encapsulates the building’s movement
progression, wherein every pixel encompasses motion details spanning from the initial
frame to the middle frame. In the final stages, the utilization of dilated convolution
facilitates the transformation of Ipseudo into a coherent pseudo-label, thus establishing a
logical connection across the building’s components.

2.2.3. Improved Deeplabv3+ Module in Dual-Channel Generator

Indeed, the shape-driven optical flow channel is designed to capture building mor-
phology and motion details, generating essential pseudo-labels for semi-supervised studies.
However, it has limitations in understanding texture intricacies, fine details, and contextual
cues, and is sensitive to illumination fluctuations and occlusion [36–38].

Figure 3 shows the architectural design of the Deeplabv3+ model, a building seg-
mentation approach, with ResNet50 as the primary backbone, based on prior research for
feature extraction [39–41].

The BA-ASPP module is the core of our model, enhancing feature extraction by
capturing contextual information from different receptive field sizes. It uses parallel dilated
convolutions and introduces a cascading structure, inspired by cascading networks, to
incorporate critical details across scales [12]. This structure combines image features
and morphological characteristics of buildings, initiating average and maximum pooling
operations along the channel dimension of the feature map.

1. Building-Aware Atrous Spatial Pyramid Pooling network construction

The ASPP feature enhancement network balances void rate and multiscale informa-
tion extraction while maintaining a large receptive field. Pooling enhances the ASPP
module’s ability to sense remote contextual information. The hierarchy channel attention
module (HCAM) is integrated to extract multiscale information and features from various
receptive fields.

The structural design, as shown in Figure 4, aims to heighten the model’s sensitivity to
multiscale information while maintaining a balanced utilization of atrous convolutions. The
input feature layer in the HCAM network is first extracted through the average pooling and
maximum pooling layers, which reduces the calculation amount and retains the significant
features of the building to the greatest extent. The calculation formula is as follows:

Fc
avg = Avg(Fc)

Fv
max = Avg(Fc)

(10)

In this formula, Fc represents the feature map after applying the feature extraction
network, Fc

avg represents the feature map after average pooling, and Fv
max represents the

feature map after maximum pooling.
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Figure 3. Improved Deeplabv3+ module structure chart. The images are initially passed through
BA-ASPP, MFFM, and 1 × 1 conv using the features extracted by ResNet. The features input to
BA-ASPP undergo processing by different conv layers and HCAM. They are then fused with features
constrained by MFFM and subjected to 1 × 1 conv for sampling fusion. Lastly, the output feature
map is upsampled.

In this enhanced structure, the process begins with obtaining first-order features.
These features are subsequently fused and concatenated with the morphological character-
istics of buildings, which encompass symmetry fraction [42], connectivity distribution of
buildings [43], and consistency calculation of the convex hull area [44].

After the feature fusion process, the combined features undergo a series of additional
operations to further refine and enhance their representation. To begin, we apply a 1 × 1
convolution operation to the original image. This operation helps generate second-order
features by capturing the relationships and dependencies within the image. These second-
order features are then intricately integrated with the previously fused features, resulting
in the formation of third-level features. This integration enables the model to capture
complex hierarchical information, enhance feature representations, and prepare them for
subsequent processing. In the following stages, these third-level features are subjected to
a 5×5 convolution layer for advanced convolutional operations to enhance fine-grained
perception. This step allows the model to extract fine-grained details, intricate patterns,
and higher-level contextual information from the features. Ultimately, this multistage
refinement process contributes to the generation of the final feature map through the
sigmoid activation function.
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Figure 4. Hierarchy channel attention module (HCAM) structure flow chart. Input features are
extracted again via max pooling, average pooling, MCOB, and 1 × 1 conv. The max pooling and
average pooling features are merged with MCOB-constrained features using 1× 1 conv. The resulting
features are further combined with those obtained from initial convolution. Finally, these integrated
features are passed to the fine-grained perception hierarchy for amplification.

2. Multilevel Feature Fusion Module (MFFM)

Figure 5 provides a schematic of the structure of our multilevel feature fusion
module (MFFM).

The MFFM segmentation task uses three inputs: F1, F2, and F3. F1 is high-resolution
and undergoes operations like convolutional operation, batch normalization, and coor-
dinate attention. F2 captures intermediate-level features and undergoes upsampling. F3
provides a broader view and undergoes dilated convolutions to capture more contextual
information. After processing, their features are fused together, combining high-level
semantic information from F1 and contextual information from F2 and F3. The resulting
feature representation is passed through the rectified linear unit activation function for
complex feature interactions.

2.2.4. Feature Fusion Module

This study proposes an approach using an attentional mechanism to integrate adaptive
weights between morphology-driven optical flow estimation channels and an improved
Deeplabv3+ module. This allows the network to autonomously discern the significance
of each channel at different spatial locations, resulting in more precise weight allocation
during the fusion phase. This technique improves context-aware fusion processes and
reduces feature redundancy problems in dual-channel networks.
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Figure 5. Multilevel feature fusion module (MFFM) structure flow chart. Input features are sampled in
three dimensions: low-dimensional features through 1 × 1 conv, batch normalization, and coordinate
attention; medium-dimensional features via upsampling, 3 × 3 conv (expansion rate of 2), batch
normalization, and coordinate attention; high-dimensional features with 3 × 3 conv (expansion rate
of 4), batch normalization, and coordinate attention. The final output is obtained by applying the
ReLu activation to these features after multilayer feature fusion.

The self-attention mechanism is the linchpin for determining these adaptive weights.
The process begins with a 3 × 3 convolution, employed to map the features from each
channel into a shared, low-dimensional space. Subsequently, the self-attention weight is
computed by assessing the similarity between feature points. This calculation unfolds
as follows:

Sflow = Uflow × (Uflow)
T

Sdeeplab = Udeeplab ×
(

Udeeplab

)T (11)

Within this context, Sflow and Sdeeplab denote the feature similarities inherent in
the optical flow estimation channel and the improved Deeplabv3+ module, respectively.
In parallel, Uflow and Udeeplab signify the features subsequent to mapping for both the
aforementioned channels.

To establish a standardized distribution of attention weights, the incorporation of
normalized convolution becomes imperative. This step yields the attention weight matrices
Aflow and Adeeplab by means of normalization procedures.

Ultimately, the calculated attention weights are harnessed to assign weights to the
features originating from both channels. This process culminates in the formulation of the
fused feature, denoted as Ffused, as succinctly demonstrated below:

Ffused = Aflow ×Uflow + Adeeplab ×Udeeplab (12)
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2.2.5. Loss Function

To elevate the efficacy of the semi-supervised building segmentation network while
upholding image-specific detail features [45,46], a dual-pronged strategy incorporating
both cross-entropy loss and building perception loss, rooted in the tenets of measurable
generative adversarial network performance, is introduced. This innovative amalgamation
of loss functions amalgamates diverse types of losses, resulting in the construction of a
composite loss function.

1. Cross-Entropy Loss Function

Cross-entropy is an important concept in information theory, and it is also a commonly
used loss function in neural networks [47]. Its calculation formula is

CE = ∑
k

p(k)× log
[

1
q(k)

]
, (13)

where k is the sample of class k; p is the true category distribution; and q is the predicted
marker distribution.

Given the prevalent imbalance between false and true labels within this study, adopt-
ing the conventional loss function, as represented in Equation (13), can inadvertently incline
the model towards categorizing samples as the larger class [48].

To mitigate this issue, an innovative remedy emerges in the form of weighted improved
cross-entropy. By apportioning distinct weights to each category, this mechanism effectively
addresses the label imbalance predicament.

Lweighted_cross_entropy = − 1
N

N

∑
i=1

wi × yi × log(pi) (14)

where N is the number of samples, wi is the weight of the i class, yi is the true label of the i
class, and pi is the prediction probability of the model. Furthermore, wi can be set to the
reciprocal of class occurrence frequency to balance different classes.

2. Building Perceived Loss Function

The cross-entropy loss function is a method used to distinguish between buildings and
non-buildings by comparing predicted outcomes with actual pixel labels [49]. However, it
can lead to overfitting and may not capture intricate building shape and detail information,
resulting in less precise segmentations [50,51].

Building perception loss is a strategy that enhances geometric shape and structural
intelligence in model training. It harmonizes motion attributes and shape components,
allowing models to better understand the geometric nuances of buildings through optical
flow techniques. In a more granular context, building perception loss comprises two
distinct components: shape similarity loss and structural similarity loss.

The quantification of shape similarity loss Lshape entails a process of gauging the
dissimilarity in shape characteristics between features:

Lshape =
N

∑
i=1

M

∑
j=1
‖ Fflow (i, j)− Fdeeplab (i, j) ‖2

2, (15)

Here, Fflow is the feature of optical flow channel fusion and Fdeeplab is the feature of
the improved Deeplabv3+ module.

The structural similarity loss Lstructure can be calculated using the structural similarity
index (SSIM) [51,52].

Lstructure =
N

∑
i=1

M

∑
j=1

(1− SSIM(Fflow (i, j), GT(i, j))), (16)
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Here, GT denotes the image representing the ground truth label in the context of
this process.

Lstructure and Lshape exist as a condition of the loss function for morphological con-
straints. The ultimate building perception loss Lbuilding is an amalgamation achieved
through weighted combination of both the shape similarity loss and the structural
similarity loss.

Lbuilding = αLshape + βLstructure (17)

3. Composite Perceptual Loss Function

The integration of building perception loss in semi-supervised building segmentation
tasks optimizes the model by utilizing diverse information. The cross-entropy loss function
and building perception loss contribute distinct strengths, compensating for each other’s
limitations, resulting in superior segmentation outcomes.

In summation, the composite loss function is defined as follows:

Ltotal = αLshape + βLstructure + λLweighted_cross_entropy (18)

Here, α, β, and λ represent the weights of each loss, which can be set up with actual
drone building samples.

2.2.6. Benchmark Methods

To evaluate the validity of our proposed approach, we conducted a comprehensive
comparison with four well-known benchmark methods for semi-supervised language
segmentation. These methods include the following:

1. AffinityNet [16] leverages class activation mapping (CAM) to accentuate localized
discriminative areas of the target, thereby enhancing segmentation.

2. AdvSemiSeg [17] is grounded in adversarial training principles and leverages a
generator–discriminator tandem to fuse semi-supervised signals, ultimately enhanc-
ing segmentation performance.

3. SemiCycleGan [18] is based on cyclic generative adversarial networks and employs
cyclic consistency and adversarial loss in its generator to achieve improved segmenta-
tion results.

4. CCVC [19] uses a two-branch co-training framework to encourage learning distinct
features from irrelevant viewpoints. The CVC strategy promotes consistent prediction
scores for input.

2.3. Implementation Setting and Evaluation Indicators
2.3.1. Evaluation Metrics

In order to quantitatively analyze the comparison between our method and other
methods, we used precision, mean pixel intersection over union (mIoU), and the F1 score
(F1) as evaluation indicators. The formulae for calculating these metrics are shown in
Equations (19)–(21).

mIoU =
1

k + 1

k

∑
i=0

TP
TP + FP + FN

(19)

The F1 score is defined as

F1 =

(
2 + FP

TP + FN
TP

2

)−1

(20)

Precision is defined as
Precision =

TP
TP + FP

(21)

where TP, FP, FN, and k represent true positive, false positive, true negative, false negative,
and the number of categories, respectively.
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2.3.2. Preparation for the Experiments

The experiments involved using the PyTorch deep learning framework on a Windows
operating system, with an 11th Gen Intel Core i7-11800H CPU and a GTX3060 GPU. The
training parameters were standardized and aligned. The optimization algorithm was
Adam, and the batch size was 4. The weights of the composite loss function were chosen
based on the image data’s specific requirements, with α and β set to 0.25 and λ to 0.5,
respectively, to accommodate standard tasks due to the diversity of building shapes.

The weight values for building perception loss (λ) are influenced by the size of building
samples and their complexity. For extensive datasets with intricate shapes, a higher weight
may be assigned to λ to prioritize fine-grained details and structural accuracy. These weight
adjustments aim to optimize the model’s performance for the specific segmentation task.
In this study, unlabeled images accounted for approximately 70% of the overall dataset.

3. Results
3.1. Qualitative Analysis of Comparative Experimental Results

The segmentation capabilities of diverse semi-supervised segmentation methods for
segmenting buildings were examined in a comprehensive manner. The segmentation
performance was analyzed individually for the two datasets, and a visual juxtaposition of
the segmentation images obtained using the network described in this paper is presented,
aiming to underscore its effectiveness.

Figure 6 shows the visualization results of network segmentation of the drone building
dataset. The AffinityNet, AdvSemiSeg, SemiCycleGan, and CCVC networks extract most
buildings, but there are still problems of extraction errors and omissions. An analysis of
Figure 6c, focusing on the second and third rows, reveals that AffinityNet primarily relies
on localized context data for segmentation. However, this emphasis on local context may
fall short of capturing the broader global shape and motion attributes of buildings. Con-
sequently, inaccuracies in boundary delineation and shape representation might manifest
in complex scenes. Despite AffinityNet’s utilization of feature affinity graphs for fusion,
its fusion mechanism may not optimally exploit multichannel information. Moreover,
this method exhibits sensitivity to input image noise due to its reliance on local feature
interdependence. This sensitivity can lead to unstable segmentation results, particularly in
lower-quality images. The inherent variability in UAV-captured buildings, which differs
substantially from that in structures captured in remote sensing images, poses an added
challenge. The absence of explicit integration of building morphology in AffinityNet makes
it ill equipped to handle building boundaries and shapes effectively.

Figures 6d and 6e respectively show the experimental results of AdvSemiSeg and
SemiCycleGan on the drone building dataset. The extraction of buildings is a formidable
task due to the abundant presence of shadows and irregular lighting conditions, particularly
within the buildings outlined in the first and fourth rows, marked by the green boxes. While
both AdvSemiSeg and SemiCycleGan manage to enhance the shape information related to
the buildings in the region, the extraction results still exhibit some noise, leading to a degree
of blurriness in the boundary details. AdvSemiSeg and SemiCycleGan show comparable
performance in the segmentation of the second- and third-row images because the lighting
and shadow conditions vary little. This issue can be attributed to the primary focus of the
generator components in both networks on image generation. When a drone captures a
relatively constrained area featuring large buildings, it can be challenging to capture the
full extent of these structures within a single image, thus making it difficult to maintain
precise building shape information. The absence of mechanisms guiding these networks to
prioritize building characteristics contributes to the reduction in the accuracy of segmenting
built areas.

Figure 6f presents the visualization results of the advanced semi-supervised CCVC
network. Notably, certain building details exhibit similarities to those shown in Figure 6g.
However, its performance appears less robust in areas where noticeable shading changes
occur due to building shadows and lighting variations; this can be clearly seen in the green
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box in the third row. This discrepancy can be attributed to the two-branch cooperative
training framework in CCVC, which encourages both subnetworks to acquire multilayer
information features. While the conflict-based pseudo-labeling (CPL) method effectively
reduces network crashes caused by a limited number of labels, it demonstrates reduced
sensitivity to the light and dark variations often encountered in building segmentation
tasks, without corresponding supplementary measures.
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From the green boxes shown on lines 2 and 4, it can be seen that for large buildings,
the extraction results of the comparison methods have relatively serious holes and building
edge errors. The HCAM module proposed in this paper extracts multiscale context infor-
mation about buildings via multiple cascaded and parallel technologies, while the MCOB
can effectively suppress features other than buildings, which helps the network to better
pay attention to the boundaries, shapes, and details of buildings.

These observations highlight the advantages of the networks outlined in this paper,
particularly in the ability to capture global shape and motion properties, which yield more
precise and stable segmentation results in complex scenes.

In Figure 7, the segmentation outcomes of each network using the UDD6 dataset are
showcased. This dataset exhibits a wide array of building shapes, ranging from irregular
forms to structures with sharp boundaries.

The AdvSemiSeg segmentation approach relies on the fusion of real and pseudo-labels
through adversarial training, as mediated by adversarial networks. This phenomenon
can be observed in the green box of the first row. However, in scenarios with intricate
backgrounds, adversarial training may face interruptions, leading to the generation of
inaccurate images. This is evident when comparing the results in the first row, where the
complexity of building shapes and backgrounds in the UDD6 dataset posed a challenge for
AdvSemiSeg. AffinityNet primarily centers on leveraging connectivity information within
an image. Regrettably, this focus prevents it from adeptly capturing disjointed regions and
subtle features that manifest in complex building structures. This limitation may hinder
the accurate division of this complex building, which can be clearly seen in the green boxes
in the first and second rows. SemiCycleGan operates on the principle of image translation
via cyclic consistency loss. However, this mechanism often leads to notable discrepancies
between generated images and real building representations. From the green boxes in the
third and fourth rows, it is evident that complex backgrounds, along with imbalances and
variations in shadows, can hinder the convergence of network consistency loss, thereby
affecting the segmentation quality.



Remote Sens. 2023, 15, 5608 15 of 24Remote Sens. 2023, 15, x FOR PEER REVIEW 16 of 25 
 

 

 
Figure 7. Comparison of the results of each network in the UDD6 dataset. 

3.2. Quantitative Analysis of Comparative Experimental Results 
Table 1 presents the results of a comprehensive assessment of the performance of 

each network across the two datasets. 
In the drone building dataset, the network proposed in this paper achieved an F1 

score of 79.36%, an mIoU of 82.69%, and a precision of 80.56%, reaching an excellent level 
in the comprehensive index. Lines 1–3 show the evaluation standards of AffinityNet, 
AdvSemiSeg, and SemiCycleGan. Compared with other semi-supervised networks, the 
F1 score of the network proposed in this paper increased by 9.05%, 1.54%, and 9.61%, 
respectively. The mIoU improved by 8.13%, 5.76%, and 9.10%, while precision improved 
by 7.22%, 2.09%, and 7.74%, respectively. The quantitative analysis of CCVC demon-
strated an F1 score of 80.18%, an mIoU of 80.26%, and a precision of 79.82%. These results 
reveal that despite CCVC enhancing the feature perception of individual subnetworks 
through feature transfer during the inference stage, its ability to process multilevel image 
details is not as precise as that of our proposed cascade structure, the HCAM. The mor-
phology-driven dual-channel network proposed in this paper outperformed all other net-
works across every evaluation metric in the drone building dataset. Its mIoU and preci-
sion surpass those of CCVC by 2.43% and 0.74%, respectively. 

When examining the UDD6 dataset, which presents greater complexities in terms of 
building types, shapes, and backgrounds, all networks experienced a general performance 
decline. Nevertheless, AdvSemiSeg maintained a relatively stable level of accuracy, deliv-
ering an F1 score of 75.63%, an mIoU of 77.65%, and an accuracy of 76.82%, all of which 
still reach commendable levels. Conversely, both SemiCycleGan and AffinityNet encoun-
tered limitations when dealing with the dataset’s intricacies, resulting in compromised 
model performance and an inability to effectively capture intricate building shapes. Spe-
cifically, the results of the network proposed in this paper were compared with the results 
of the networks from the first row to the third row. The F1 score showed improvements 
of 7.97%, 2.05%, and 9.12%, while the mIoU increased by 9.19%, 1.72%, and 7.48%, and 
accuracy improved by 7.79%, 2.61%, and 9.41%, respectively. 

Despite the complexity of the UDD6 dataset, the performance indicators of the pro-
posed network are still the best. Compared with the advanced CCVC, the F1 score, mIoU, 
and accuracy of the network were improved to varying degrees. These findings highlight 
the superiority of the proposed network in accurately capturing complex architectural de-
tails. This enhancement improves the visual salience of buildings in the captured images. 
Importantly, our approach also preserves the necessary details. 

  

Figure 7. Comparison of the results of each network in the UDD6 dataset.

CCVC demonstrates both strengths and weaknesses in its performance. Its two-branch
cooperative training framework facilitates the extraction of multilayer information features,
which can be beneficial in scenarios requiring comprehensive feature learning. However,
as can be seen from the images in the second and fourth rows, CCVC has limitations in
dealing with complex lighting changes, especially in areas where building shadows and
lighting change.

As depicted in Figure 7, the proposed network excels in extracting building infor-
mation, owing to the MFFM and building perceived loss. An examination of the green
boxes in the first and fourth rows reveals that the network introduced in this paper adeptly
captures complete building outlines, regardless of whether the buildings are large or small.
From the green box in the third row, it is evident that despite significant variations in light
and shadow, the network can effectively compensate by utilizing other building features,
resulting in an improved segmentation outcome. Its comprehensive approach to capturing
global shape, motion properties, and intricate morphologies enhances its ability to yield
accurate segmentation results.

3.2. Quantitative Analysis of Comparative Experimental Results

Table 1 presents the results of a comprehensive assessment of the performance of each
network across the two datasets.

Table 1. Comparison of segmentation results of each network.

Method
Drone Building Dataset UDD6 Dataset

F1 Score (%) mIoU (%) Precision (%) F1 Score (%) mIoU (%) Precision (%)

AffinityNet 70.31 74.56 73.34 69.71 70.18 71.64
AdvSemiSeg 77.82 76.93 78.47 75.63 77.65 76.82

SemiCycleGan 69.75 73.59 72.63 68.56 71.89 70.02
CCVC 80.18 80.26 79.82 77.25 78.59 77.49
Ours 79.36 82.69 80.56 77.68 79.37 79.43

Note: Black bold represents the highest level of the same evaluation criteria.

In the drone building dataset, the network proposed in this paper achieved an F1
score of 79.36%, an mIoU of 82.69%, and a precision of 80.56%, reaching an excellent level
in the comprehensive index. Lines 1–3 show the evaluation standards of AffinityNet,
AdvSemiSeg, and SemiCycleGan. Compared with other semi-supervised networks, the
F1 score of the network proposed in this paper increased by 9.05%, 1.54%, and 9.61%,
respectively. The mIoU improved by 8.13%, 5.76%, and 9.10%, while precision improved by
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7.22%, 2.09%, and 7.74%, respectively. The quantitative analysis of CCVC demonstrated an
F1 score of 80.18%, an mIoU of 80.26%, and a precision of 79.82%. These results reveal that
despite CCVC enhancing the feature perception of individual subnetworks through feature
transfer during the inference stage, its ability to process multilevel image details is not
as precise as that of our proposed cascade structure, the HCAM. The morphology-driven
dual-channel network proposed in this paper outperformed all other networks across every
evaluation metric in the drone building dataset. Its mIoU and precision surpass those of
CCVC by 2.43% and 0.74%, respectively.

When examining the UDD6 dataset, which presents greater complexities in terms of
building types, shapes, and backgrounds, all networks experienced a general performance
decline. Nevertheless, AdvSemiSeg maintained a relatively stable level of accuracy, deliver-
ing an F1 score of 75.63%, an mIoU of 77.65%, and an accuracy of 76.82%, all of which still
reach commendable levels. Conversely, both SemiCycleGan and AffinityNet encountered
limitations when dealing with the dataset’s intricacies, resulting in compromised model
performance and an inability to effectively capture intricate building shapes. Specifically,
the results of the network proposed in this paper were compared with the results of the
networks from the first row to the third row. The F1 score showed improvements of 7.97%,
2.05%, and 9.12%, while the mIoU increased by 9.19%, 1.72%, and 7.48%, and accuracy
improved by 7.79%, 2.61%, and 9.41%, respectively.

Despite the complexity of the UDD6 dataset, the performance indicators of the pro-
posed network are still the best. Compared with the advanced CCVC, the F1 score, mIoU,
and accuracy of the network were improved to varying degrees. These findings highlight
the superiority of the proposed network in accurately capturing complex architectural
details. This enhancement improves the visual salience of buildings in the captured images.
Importantly, our approach also preserves the necessary details.

3.3. Ablation Experiment Using the Drone Building Dataset and UDD6 Dataset

To assess the impact of different modules within the network, a series of ablation
experiments were conducted. This involved dissecting the network and evaluating the roles
played by the morphology-driven channel, the dual-channel generator, and the composite
loss function. The outcomes of these experiments are summarized in Table 2, which
provides the F1 score, mIoU, and precision values obtained from the ablation experiment
conducted using the drone building dataset.

Table 2. Ablation experiment on drone building dataset.

Improved
Deeplabv3+

Morphology-Driven
Channel

Composite
Loss Function

F1 Score
(%)

mIoU
(%)

Precision
(%)

√
× × 75.94 74.51 73.68√ √

× 78.69 80.36 78.47√
×

√
73.19 75.47 74.05√ √ √
79.36 82.69 80.56

Note:
√

means that the module is used for training, and×means that the module is not involved in computation.

The findings indicate that the employment of a dual-channel combined module re-
sults in substantial improvements. When we combine the improved Deeplabv3+ with a
morphology-driven channel, HCAM plays a crucial role in capturing basic architectural
features. These features include symmetry calculations, building connection analysis, and
consistency measurement of convex shell areas. Therefore, the F1 score, mIoU, and pre-
cision of the combination reached the suboptimal standards of the ablation experiment,
which were 78.69%, 80.36%, and 78.47%, respectively. However, when solely utilizing
the improved single-channel Deeplabv3+ architecture and the composite loss function,
the improvement is not as substantial, with an F1 score of 73.19%, mIoU of 75.47%, and
precision of 74.05%. The presence of this phenomenon can be attributed to the continued
effectiveness of the HCAM in the improved Deeplabv3+ architecture.
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Importantly, with the introduction of the dual-channel strategy, the network achieves
its optimal performance across all metrics. This approach yields remarkable enhancements
of 3.42% in the F1 score, 8.18% in the mIoU, and 6.88% in precision when compared
with using only the improved single-channel Deeplabv3+. These findings robustly affirm
the indispensability of the proposed network structure for drone building segmentation
tasks. The successful integration of these modules validates their synergistic effect, which
collectively contributes to the network’s enhanced performance.

To establish the broad applicability and persuasive potential of the new network
modules, further investigation of the network was undertaken to scrutinize the individual
roles of each module using the UDD6 public dataset. The findings from this ablation
experiment are illustrated in Table 3.

Table 3. Ablation experiment on UDD6 dataset.

Improved
Deeplabv3+

Morphology-Driven
Channel

Composite
Loss Function

F1 Score
(%)

mIoU
(%)

Precision
(%)

√
× × 69.34 71.73 70.48√ √

× 75.59 75.44 73.87√
×

√
74.39 76.17 75.39√ √ √
77.68 79.37 79.43

Note:
√

means that the module is used for training, and×means that the module is not involved in computation.

It is important to note that using only the improved Deeplabv3+ module yielded the
lowest results in the experiment, with the F1 score, mIoU, and precision reaching 69.34%,
71.73%, and 70.48%, respectively. However, the network’s accuracy significantly improved
when combined with the morphology-driven channel, reaching suboptimal standards of
75.59%, 75.44%, and 73.87%, respectively. This improvement can be attributed to the fact
that building information constraints in the form drive can be better adapted to the variety
of building shapes present in the UDD6 dataset, including irregular and well-defined
boundaries. The highest evaluation level was achieved by the network that combined
the dual channel and the composite loss function, with the F1 score, mIoU, and precision
reaching 77.68%, 79.37%, and 79.43%, respectively. These values were 2.09%, 3.93%, and
5.56% higher than those of the second-best combination.

Figure 8 showcases the visual outcomes of the ablation experiment conducted using
the UDD6 dataset, with conclusions that are consistent with those drawn based on the
results presented in Table 3. As depicted in Figure 8d in the second and third rows, the
segmentation task accompanied by the integration of the morphology-driven channel excels
in capturing edges and finer intricacies. In contrast, Figure 8e in the first row reveals that
the inclusion of the composite loss function yields a solid portrayal of simpler buildings;
however, when confronted with multiscale structures, its effectiveness falters. In the case
of building shadows in row 4, it can be seen that both the improved Deeplabv3+ and the
introduction of the form-driven optical flow estimation channel have a good inhibition
effect on building shadows.
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Interestingly, the segmentation representation depicted in Figure 8f, stemming from
the synergistic utilization of the morphology-driven channel and composite loss function,
ensures the holistic depiction of buildings while simultaneously addressing the limitations
inherent to the improved single-channel Deeplabv3+.

4. Discussion

Accurate extraction of buildings from drone images is critical for urban planning,
disaster response, infrastructure monitoring, and a variety of other applications, greatly
improving our ability to understand and manage urban environments [53,54]. Nonethe-
less, several pivotal factors influence building extraction, demanding further attention
and resolution.

4.1. Influence of UAV Imaging on Model
4.1.1. Imaging Conditions of Uneven Illumination

One of the main challenges in the utilization of UAV and remote sensing images for
building extraction lies in the inconsistency of lighting conditions and the presence of
shadows, which can significantly impact segmentation accuracy [8–15]. The study is shown
in Figure 5. The literature [55] shows that although TPT-GAN is effective in extracting
foreground from backgrounds with uneven shading changes of no more than 50%, its
applicability weakens when extended to complex architectural scenes. This limitation is
evident as extended branches, as employed in the literature [56,57], are utilized to handle
scenes with pronounced color changes, imposing high demands on the diversity and
universality of labeled data. To address this challenge, our study introduces the innovative
concept of an optical flow estimation channel. Table 2 shows the effectiveness of the channel.
Using the characteristics of optical flow estimation, the problem of low accuracy of building
extraction caused by some light and shade changes is made up for.

4.1.2. Multiresolution Imaging Properties of UAV

In the field of UAV images, as highlighted in the literature [58], the distance between
the building and the camera may lead to reduced image clarity, and the size of the building
will also show significant changes. As shown in Figure 2 of reference [59], relying only on
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an interpolation algorithm to compensate sharpness leads to instability in texture details
and spatial information, seriously affecting the accuracy of extraction. To overcome this
limitation, our approach includes an HCAM module within the BA-ASPP framework. This
module employs a multiclass feature extraction mechanism that integrates max pooling,
average pooling, building shape features, and original features to enhance the network’s
sensitivity to remote contextual information.

The advantage of drone-based imagery lies in its ability to capture images at various
resolutions, each revealing unique characteristics of the buildings [60]. High-dimensional
images offer clearer textures, low-dimensional images prioritize contour feature extraction,
and medium-dimensional images consider both aspects. As can be seen from Table 3, the
MFFM integrated into our network extracts basic information from these three dimen-
sions to ensure that image details affected by different resolutions are effectively utilized.
Furthermore, it is vital for the loss function to provide meaningful feedback during each it-
eration. The literature [61] lacks sensitivity to building structures in the face of training that
usually deals with unbalanced samples. To address these challenges, our study introduced
a compound loss function with the mIoU in Table 1 at 82.69% and 79.37%, respectively,
effectively forcing the network to make better decisions based on building shape.

4.2. Influence of Label Ratio on Model Accuracy

In the realm of semantic segmentation, the distribution of labeled and unlabeled data
in the training set significantly impacts the model’s accuracy. Therefore, the subsequent dis-
cussion on label ratios remains crucial in understanding the model’s influence—specifically,
that of AffinityNet, AdvSemiSeg, SemiCycleGan, and CCVC—on extracting buildings from
UAV images. References [16,17] highlight the challenge of model generalization to new,
unseen scenes when the training dataset lacks diversity due to an insufficient number of
labeled samples, and its evaluation indicators are much lower than those in Table 1. The
CCVC network used in Table 3 of reference [19] has an mIoU value of 77.3% under 25%
labeled data. Since the sample set it trains is a multitype sample set, the applicability of
its model is reduced when it is applied to complex buildings. As shown in Table 1 of
reference [18], the accuracy tested on both Cityscapes and VOC datasets was less than
50% when using a 30% labeling rate. In contrast, when the proportion of labeled data is
between 50 and 70 percent, balancing the labeling scales has been shown to help improve
the accuracy of the model. As shown in Table 4, our experiment displayed a significant
correlation between the unbalanced labeling rate and reduced model generalization, with
the mIoU reduced by only 11.08% and 8.78% when the labeled data were reduced by 70%.

Table 4. The effect of label ratio on segmentation results.

Label Ratio
(%)

Drone Building Dataset UDD6 Dataset

F1 Score (%) mIoU (%) Precision (%) F1 Score (%) mIoU (%) Precision (%)

30 79.36 82.69 80.56 77.68 79.37 79.43
50 81.39 83.53 83.16 81.92 83.33 82.67
70 87.25 86.41 87.36 85.42 86.18 87.52
100 94.68 93.77 93.36 89.21 91.47 92.77

An intriguing aspect of our investigation was the trade-off between label ratios and
the associated labor labeling costs. As mentioned in references [62,63], an increase in the
number of labeled samples exhibits a positive correlation with improved model accuracy.
However, this improvement comes at the cost of additional expenses and labor-intensive
efforts. Without exception, as the proportion of manually labeled data increases from 30% to
70%, the networks mentioned in the literature [16–19] all show commendable segmentation
accuracy. However, these networks are generalized extraction models that lack the accuracy
required for specific application domains, and none of them achieve the accuracy shown
in Table 1. It is not difficult to see from Tables 3 and 4 that we not only reduced the
need for labeled data but also designed a semi-supervised learning mechanism that takes
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into account the construction of features in a specific segmentation domain. When the
proportion of labeled data is 30%, the mIoU still reaches 82.69%.

4.3. Optical Flow Estimation and Motion Image Segmentation

Optical flow estimation is commonly employed in the analysis of moving objects [21].
Figure 6 and Table 2 in reference [22] use fusion segmentation and redistribution strategies
to segment images and effectively generate motion components to calculate scene flow.
Although achieving PRSM: 2.04% in the five-pixel category, visual inspection reveals that
the model does not incorporate specific constraints to mitigate errors induced by variations
in light and shade. In another approach, Sotirios et al. focused on enhancing motion
trajectory capture, ensuring the goal error within the camera field of view remained below
60 pixels. Despite the effectiveness of the polarization-based UAV attitude estimation and
segmentation method proposed in the literature [24] across the entire scene, it falls short of
achieving an mIoU value of 82.69% in Table 1 when confronted with low-label data and
complex building structures.

The significance of improved optical flow estimation in building segmentation is
further elucidated in Figure 9. In particular, Figure 9c represents the initial optical flow
estimation image, while Figure 9d showcases the optical flow estimation image after the
application of morphological information constraints. Notably, the constrained optical flow
estimation image visibly alleviates segmentation challenges arising from uneven shadows
and illumination.

4.4. Limitations and Perspective

In conclusion, while our method exhibits robust segmentation accuracy across various
datasets and experimental conditions, it is essential to recognize that there is no universal
solution applicable to all scenarios. The effectiveness of our network may vary depending
on factors such as data acquisition methods, drone shooting angles, and adverse weather
conditions. For instance, the network excels at handling shadow and lighting changes
within a dataset. However, its performance in occlusion situations is likely to be similar to
that of mainstream networks. While our network does not feature a dedicated module to
address occlusion, it extends the extraction of contextual information through the HCAM
and MFFM in the BA-ASPP to enhance building feature sensitivity [64]. Therefore, a more
comprehensive assessment is needed to thoroughly understand its capabilities in different
scenarios. Additionally, during network training, it is crucial to input data in accordance
with the sequence of images captured by the UAV to meet the format requirements of the
optical flow estimation channel. To address this limitation, future research efforts may
prioritize the development of intelligent image processing [65] and sorting algorithms [66].
These advancements would enable automatic processing of out-of-order image inputs
and harness the multi-view capabilities of drones to enhance occlusion modeling. This,
in turn, would improve the model’s adaptability and practicality. After training, the
model can be integrated into programmable DJI or Pegasus experimental machines for
real-time monitoring and accurate building segmentation at low and medium altitudes,
with important potential applications in urban planning, building surveillance, military
and intelligence operations, and navigation and mapping.
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5. Conclusions

A comprehensive method is adopted to address the challenges posed by diverse
architectural forms and complex extraction requirements in the Caofeidian District of
Tangshan. An optical flow estimation channel was introduced to improve performance
under varying lighting conditions. Multilevel feature fusion modules and hierarchical
channel attention modules were integrated to address texture information in different
building resolutions. Weighted cross-entropy loss was applied to ensure model stability.
Building perception loss provided feedback on structure information. Based on experiments
conducted on two datasets, the following conclusions can be drawn:

(1) The optical flow estimation channel proves effective in compensating for complex
background defects when the ratio of light and shade change in the building image is
no more than 50% of the total image.

(2) In the case of UAV images exhibiting multiscale and multiresolution characteristics,
the hierarchical channel attention module (HCAM) with a cascade structure captures
potential building information across high, middle, and low dimensions and different
spatial contexts.

(3) Even with only 30% of the labeled datasets, the mIoU of the two-channel parallel
structure still reached 82.69% and 79.37% on the two UAV datasets, respectively. And
when the labeled data increased from 30% to 70%, the accuracy improved the fastest.

(4) The experiment demonstrated that when irregular buildings dominated the study
area, the building perception loss forced the network to prioritize the building’s
structural information, and the actual result was a significant improvement in key
metrics, including F1 scores, mIoU, and accuracy.
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