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Abstract: The use of a transformer backbone in LiDAR point-cloud-based models for 3D object
detection has recently gained significant interest. The larger receptive field of the transformer
backbone improves its representation capability but also results in excessive attention being given
to background regions. To solve this problem, we propose a novel approach called deformable
voxel set attention, which we utilized to create a deformable voxel set transformer (DVST) backbone
for 3D object detection from point clouds. The DVST aims to efficaciously integrate the flexible
receptive field of the deformable mechanism and the powerful context modeling capability of the
transformer. Specifically, we introduce the deformable mechanism into voxel-based set attention
to selectively transfer candidate keys and values of foreground queries to important regions. An
offset generation module was designed to learn the offsets of the foreground queries. Furthermore, a
globally responsive convolutional feed-forward network with residual connection is presented to
capture global feature interactions in hidden space. We verified the validity of the DVST on the KITTI
and Waymo open datasets by constructing single-stage and two-stage models. The findings indicated
that the DVST enhanced the average precision of the baseline model while preserving computational
efficiency, achieving a performance comparable to state-of-the-art methods.

Keywords: 3D object detection; deformable mechanism; transformer; point clouds

1. Introduction

Three-dimensional object detection based on LiDAR point clouds has attracted con-
siderable attention, primarily for its applications in autonomous driving, virtual reality,
and robotics [1,2]. There is immense potential in improving the performance of 3D object
detection, both in industry and academia. Various methods for detecting 3D objects based
on point clouds can be classified into point-based and voxel-based methods.

Point-based methods [3–6], such as PointNet and its variant models, take raw point
clouds as inputs and extract key point feature representations by iterative sampling and
group aggregation operations in point set abstraction modules, which are then used to
predict object bounding boxes. Alternatively, voxel-based methods [7–9] divide the input
raw point cloud into a regular grid to obtain a discrete voxel representation, which is
processed using a deep convolutional neural network. Point-based methods can achieve
precise spatial information from point clouds through larger receptive fields, enabling
accurate positioning. However, these methods incur higher computational costs due to
using point set abstraction [10]. Conversely, voxel-based methods prioritize computational
efficiency but inevitably sacrifice information and reduce the precision of fine-grained
localization [11]. This study focuses on voxel-based methods that aim to facilitate the
development of 3D object detection from point clouds.
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Voxel-based 3D object detection models frequently rely on 3D sparse convolutional
networks [12] to extract voxel features. Although this method is computationally efficient,
its limited receptive field prevents it from capturing rich contextual information, which can
impede the detection of objects with only a small number of voxels. Additionally, efforts
to mitigate this issue by increasing the maximum theoretical receptive field of each voxel,
such as by modifying the voxel size, kernel size, downsampling stride, or number of layers,
can result in numerous computational consumptions. To address these issues, Mao et al.
proposed a voxel transformer (VoTr) [13], a voxel-based transformer backbone explicitly
designed for 3D object detection. The VoTr utilized sparse voxel and submanifold voxel
modules and employed self-attention mechanisms to model long-distance relationships
between voxels. Moreover, it used local attention and dilated attention to expand the
receptive field of attention without sacrificing computational efficiency. He et al. developed
a voxel set transformer (VoxSeT) [14] to efficiently extract point cloud features for 3D object
detection using set-to-set translation. The voxel-based set attention module, serving as
the central component of VoxSeT, effectively overcomes the limitations of group-based
and convolution-based attention modules and establishes long-distance dependencies
more efficiently.

Despite their ability to utilize the transformer architecture for improved attention
range, reduced information loss, and enriched contextual information, both the VoTr and
VoxSeT models suffer from a limitation of not effectively focusing on foreground objects. As
a result, the detection of naturally sparse and incomplete 3D objects is hindered. Given the
potential increase in memory and computational costs associated with simply expanding
the receptive field, as well as the possibility of feature interference from irrelevant parts
beyond the region of interest, it is imperative to design a new architecture that can flexibly
concentrate on foreground object areas and extract more informative features.

Recently, deformable mechanisms have been employed in 2D vision tasks due to
their capability of selectively concentrating on areas with more information [15]. It has
been demonstrated in references [16,17] that learning the deformable receptive field of
a convolutional filter can efficiently selectively focus on more informative regions on a
data-dependent basis. Xia et al. introduced a deformable attention transformer [18], which
serves as a backbone model for tasks such as image classification and dense prediction.
While the model chooses the positions of key-value pairs in self-attention based on data
dependency to emphasize relevant regions, using a uniform reference point for all analyzed
scenes hinders the detection of targets that may only have partial pixels or are positioned
in the corners of the scene.

When applying the deformable mechanism to the detection of objects in 3D point
clouds, previous studies have either built deformable self-attention modules for contextual
feature extraction [19,20] or guided cross-domain feature aggregation [21]. However, it
has not been recognized as a critical component in building a robust backbone, such as
the deformable attention transformer. Two problems restrict the direct application of
2D deformable attention in detecting 3D point cloud objects. One problem arises from
the sparsity of 3D point clouds, as the method used to determine reference points in
the 2D deformable attention can lead to a substantial loss of information. Furthermore,
numerous 3D point clouds in a scene exacerbate the quadratic computational complexity
of self-attention, resulting in excessive memory usage and computational expenses.

To solve the problems above, we present a novel and efficient module called the
deformable voxel set attention (DVSA) module for detecting objects in 3D point clouds. In
general, the transformer-based 3D point cloud detection backbone has a larger receptive
field, which enhances its representation capabilities. However, in object detection tasks,
excessive attention to background areas is unnecessary and resource-consuming. Therefore,
considering that the deformable mechanism can selectively focus on the target area, we
tried to build a transformer backbone that selectively focuses on the foreground target area
for 3D point cloud object detection. The target-region-sensitive deformable attention is
constructed considering two factors when introducing the deformable mechanism. One



Remote Sens. 2023, 15, 5612 3 of 23

factor is that performing operations involving the offset of all pixels in the deformable
convolutional network feature map leads to a significant computational burden, and it also
introduces confusion in the target area due to the offset of background points. Another
factor is that, compared to only learning a few sets of query-independent offsets in 2D
deformable attention, it is better to learn offsets for foreground queries to move the keys
and values of the targets to important areas. Therefore, after the DVSA module divides the
point clouds in the scene into foreground points and background points, it uses the newly
constructed offset generation network to learn the offsets of the foreground queries. Then,
the offset features carrying offset information are projected into keys and values, and the
calculation of deformable attention is completed together with the input projected queries.

Specifically, after the DVSA divides all the points in the voxel grid into foreground
and background points, the model learns the offsets of foreground points via an offset
generation network. The offset features then serve as keys and values input to the multi-
head attention, where the model derives the output features. Motivated by induced set
attention [22], we reduce computational complexity by decomposing full self-attention into
two consecutive cross-attention modules. This is based on the assumption that self-attention
is low-rank [23] and can be approximated through low-rank projection [14]. The DVSA
initially learns the offsets of foreground queries within the 3D voxel to acquire deformable
features. Then, a set of inducing points is introduced to transform the features into hidden
space by encoding cross-attention. Subsequently, a globally responsive convolutional
feed-forward network (GRCFFN) enhances the hidden features. Lastly, output features are
derived through decoding cross-attention.

With DVSA, we propose a novel approach called the deformable voxel set transformer
(DVST) for 3D object detection from point clouds. The DVST employs deformable mech-
anisms to focus on and capture target-related features flexibly. It consists of multi-layer
interconnected DVSA modules and a multi-layer perceptron (MLP). Through experiments
conducted on the 3D detection benchmark KITTI and the Waymo open dataset, we demon-
strate the effectiveness of the proposed model. The main contributions of our work are
summarized as follows:

(1) The DVST deformable backbone was developed to detect objects in 3D point clouds. It
combines the flexibility of deformable mechanisms, the powerful long-range modeling
capability of transformers, and the linear computational complexity of set attention in
a cohesive manner. By solely focusing on learning the offsets of foreground queries, the
target semantic information is strengthened, the background features are weakened,
and the detection performance is improved.

(2) DVSA, a deformable attention module for 3D point cloud learning, was designed for the
first time. It utilizes deformable mechanisms to transfer the candidate keys and values
of foreground queries to important regions. This enhancement provides the original
self-attention with increased flexibility to capture target-related feature information.

(3) A novel offset generation module (OGM) was constructed for learning the offsets of
foreground queries in the DVSA module. This data-dependent method of generating
offsets enhances the model’s robustness in detecting diverse scenarios. Moreover, a
GRCFFN with a residual connection is proposed to facilitate global interaction and
feature learning within the hidden space.

(4) One-stage and two-stage detection models were developed based on the DVST, and
experiments were performed on the KITTI and Waymo open datasets, widely used
benchmarks for 3D object detection. The findings indicate that the proposed backbone
enhances the performance of 3D detection while ensuring computational efficiency.

2. Related Work
2.1. Three-Dimensional Object Detection from Point Clouds

Point-Based methods. Point-based detectors typically abstract geometric information
from unstructured point clouds using PointNet [3] and its variants [4,24], which process
the point cloud directly to generate 3D boxes that preserve precise position information.
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Shi et al. introduced PointRCNN [25], a two-stage 3D object detection model that utilizes
separate subnetworks for the first and second stages to generate and refine 3D proposals.
To strike a balance between accuracy and efficiency, Yang et al. developed a point-based 3D
single-stage object detector named 3DSSD [5]. This detector eliminates the feature prop-
agation layer and refinement module and incorporates a novel fusion sampling strategy.
Point-GNN [26] is a graph neural network comprising an auto-registration mechanism. Shi
et al. constructed it for performing 3D point cloud object detection using graph representa-
tion. Given the significance of foreground points compared to background points in the
detection of point clouds, two down-sampling strategies were proposed by Zhang et al. for
the stratified selection of foreground points to the desired objects, resulting in the develop-
ment of an efficient 3D detector named IA-SSD [6]. Ren et al. developed DGT-Det3D [10], a
3D object detection network that uses dynamic graph conversion to extract point-by-point
semantic features that are beneficial in identifying distant and obstructed objects. Despite
their ability to avoid the quantization errors caused by voxelization through direct feature
learning, point-based methods have limited learning capabilities and efficiency.

Voxel-Based methods. Voxel-based detectors typically convert unordered point
clouds into regular spatial units, usually of equal size. Yan et al. introduced sparse
convolution into voxel-based 3D detectors and proposed a sparse embedded convolutional
(SECOND) framework [14], improving detection accuracy and runtime speed. Lang et al.
proposed PointPillars [7], which partitions point clouds into pillars, enabling faster en-
coding of point cloud features. To improve the detection accuracy with a coarse voxel
granularity, Deng et al. developed the two-stage framework Voxel-RCNN [8], achieving
comparable detection accuracy to point-based models with lower computational costs.
Yin et al. presented an anchor-free detection framework called CenterPoint [27], which
regresses other attributes based on detecting object centers. Yang et al. constructed an
end-to-end multi-feature fusion network [28] composed of a voxel convolutional module, a
local point feature module, and a detection head, obtaining a higher detection accuracy
by extracting richer voxel features. Voxel-based methods can effectively balance accuracy
and computational efficiency through the regular representation of point clouds. However,
the introduction of inevitable quantization errors limits the learning ability of voxel-based
methods on point cloud features, thereby restricting their detection performance.

Point–Voxel methods. Some approaches address the challenges posed by voxel-based
and point-based methods by combining point and voxel representation. Shi et al. developed
the PV-RCNN [11], which leverages 3D sparse convolution to extract voxel features and
uses farthest-point sampling to sample key points. The voxel set abstraction module is then
used to fuse point and voxel features, improving the detection accuracy. To fully utilize
the structural information of point clouds, SA-SSD [29] incorporates an auxiliary network
that transforms the convolutional features of the backbone into point-level representation.
Noh et al. used hybrid voxel-point representation (HVPR) [30] for 3D object detection.
Specifically, HVPR generates mixed 3D features by integrating point and voxel streams
in the dual-stream encoder. Shuang et al. introduced AFE-RCNN [31], a point–voxel
integrated network consisting of critical components such as the residual of dual attention
proposal generation module, the multi-scale feature extraction module based on feature
adaptive adjustment, and the refinement loss function module with vertex correlation.
Nevertheless, achieving a balance between detection accuracy and efficiency poses a more
significant challenge for these methods. Furthermore, the extensive reliance on handcrafted
feature design in hybrid approaches hampers the potential for model improvement.

2.2. Transformers in 3D Object Detection

Transformer-based models are highly suitable for learning 3D point clouds with un-
ordered and unstructured characteristics due to their capability of encoding positional
information, long-range contextual information, and permutation invariance. Several 3D
object detection models that incorporate transformers have recently been proposed. For
instance, Mao et al. developed the VoTr model [13] to overcome the limitation of convo-
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lutional backbone networks in effectively capturing contextual information. Sheng et al.
proposed CT3D [32], a two-stage 3D object detection framework that utilizes a channel-wise
transformer to enhance the candidate boxes generated by the region proposal network. He
et al. introduced the VoxSeT model [14], which leverages voxel-based set attention (VSA) for
point cloud learning from sets. Guan et al. proposed M3DETR [33], a multi-representation
and multi-scale integrated method that employs an M3 transformer to model point cloud
features from multiple perspectives. Inspired by a window-based transformer, Sun et al.
proposed a sparse window transformer [34] that fully exploits the sparsity of point clouds.
In the weakly supervised point cloud transformer framework [35], Tang et al. adopted a
self-attention mechanism to extract global features.

Moreover, Zhou et al. improved the performance of the anchor-free object detection
network using the CenterFormer model [36], which utilizes the features of center candidates
as query embeddings and incorporates cross-attention to fuse multi-frame features. Build-
ing upon the concept of anchor points, Liu et al. introduced the AnchorPoint model [37].
This detector encodes foreground points, which act as anchor points, as object queries. This
encoding strategy allows each object query to possess a distinct and meaningful physi-
cal interpretation. Ning et al. proposed PV-SSD [38], a point–voxel and bird’s eye view
(BEV) representation aggregation network for single-stage 3D detection, which adaptively
integrates multi-level semantic features using a windows transformer spatial-semantic
aggregation module. Ren et al. designed DGT-Det3D [10], a dynamic graph transformer
3D object detection network that captures long-range dependencies and refines candidate
boxes through dynamic graph transformer and proposal-aware fusion modules.

Unlike the methods mentioned above, the proposed DVST combines the advantages of
a deformable mechanism, voxel-based model, and set transformer, enabling a flexible focus
on foreground target regions while efficiently modeling long-range contextual information
and maintaining computational efficiency.

2.3. Deformable Mechanisms in 3D Object Detection

Deformable mechanisms are commonly incorporated into 3D object detection mod-
els using point clouds to enhance the extraction capability of salient and discriminative
features. Bhattacharyya et al. introduced the Deformable PV-RCNN [19] model by in-
tegrating deformable mechanisms into the PV-RCNN. This model adaptively extracts
informative and discriminative features through deformable convolution operations. Sub-
sequently, Bhattacharyya et al. developed the deformable self-attention (DSA) module in
SA-Det3D [20]. This module calculates offsets for sample points obtained through farthest-
point sampling, extracting context information containing representative and informative
feature subsets. Recognizing that relevant object information is mainly located in adjacent
positions, Chen et al. proposed a deformable cross-attention feature alignment module [21].
This module guides the aggregation positions in the feature map using deformable con-
volutions. To learn more effective contextual features, Tang et al. designed a deformable
offset self-attention (DOSA) structure [39]. This structure first samples a voxel subset using
the farthest point sampling method and then learns offsets for this voxel subset. Offset
self-attention is performed on the voxel subset, which is upsampled to cover each original
voxel position.

It is evident that combining the deformable mechanism with the self-attention mech-
anism is a more appropriate approach for learning useful features of 3D point clouds, as
opposed to solely utilizing deformable convolutions to process 2D feature maps. Nonethe-
less, it should be noted that the DSA and DOSA modules mentioned above do not effectively
employ the deformable mechanism to modify the key-value pairs of each query during
the computation of the attention mechanism. In other words, the adaptive capability of
the deformable mechanism for extracting target-related features has not been fully utilized.
Additionally, DSA and DOSA sample the same number of points or voxels using the
farthest-point sampling method for all scenes, result in a somewhat diminished model
performance. To fully integrate the ability of the deformable mechanism to attend to target
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regions and the power of the self-attention mechanism to extract contextual information,
we propose the DVSA module for 3D point cloud object detection, taking inspiration from
2D deformable attention.

3. Deformable Voxel Set Transformer
3.1. Overall Architecture

This paper presents a novel deformable voxel set transformer (DVST) for point-cloud-
based 3D object detection. The DVST serves as a transformer-based 3D backbone, as
depicted in Figure 1. By combining the deformable mechanism and transformer, the DVST
can adaptively focus on the target region while possessing robust long-range modeling
capabilities. We introduce induced set attention to reduce computational complexity,
which breaks down full self-attention into two consecutive cross-attentions. Built upon the
conventional voxel-based 3D detection pipeline [13], the DVST can seamlessly integrate
into most voxel-based 3D detection frameworks. Specifically, the proposed 3D detector
takes a voxelized point cloud as the input to extract features in the DVST backbone network,
encodes them into BEV representation, applies a 2D convolutional neural network (CNN)
to enhance the feature density further, and finally utilizes anchor-based detection heads
to generate detection results. Following the traditional transformer paradigm, the DVST
backbone consists of interconnected DVSA modules and MLPs. Moreover, we package the
DVSA modules into residual blocks to ensure optimal gradient flow.
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Figure 1. The overall architecture of DVST. The DVST is a transformer-based 3D backbone that
can be utilized in various voxel-based 3D detection frameworks. It comprises a sequence of DVSA
modules and MLPs. The DVSA is a deformable attention module explicitly designed for learning
from 3D point clouds. It consists of the OGM, encoding cross-attention, GRCFFN, and decoding
cross-attention. The OGM is employed to generate deformable offsets.

The DVSA module is a vital component of the DVST and is purpose-built for process-
ing 3D point cloud data. The query features are acquired by encoding the position of the
voxelized point cloud and processing it using an MLP. Subsequently, these query features
are utilized as inputs for the DVSA module. Inspired by the 2D deformable attention
module [18], we propose a novel OGM to generate offsets for the queries. The OGM utilizes
point-wise features to determine confidence scores for each query, indicating whether it
is a foreground query. Using a threshold, we set the scores of non-foreground queries
to zero. Meanwhile, the OGM employs an offset MLP to generate initial offsets for all
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queries multiplied by the confidence scores to obtain the final offset values. Through this
approach, DVSA can adaptively learn the offsets of foreground queries for different scenes,
overcoming the limitation of 2D deformable attention in learning the same position offsets
for all scenes.

Motivated by induced set attention [22], which posits that a low-rank projection can
approximate self-attention, we use two cross-attentions guided by a set of inducing points
to approximate the complete self-attention within the set. The first cross-attention maps
the inducing points to the hidden space by attending to the input set, while the second
cross-attention directs its focus towards the hidden features and generates the output set.
The output features are then encoded as BEV features and fed into a 2D backbone network.
Finally, we employ a detection head for 3D object detection.

3.2. Deformable Voxel Set Attention

Unlike images, point clouds are extensively distributed and possess weak semantic
correlations at the scene level, although they exhibit strong structural details in localized
regions. Thus, we suggest using deformation attention to model the relationships between
markers, guided by the significant regions in the voxel grid. These focused regions are
determined by multiple sets of deformable foreground points, which are learned from
queries using the OGM. Deformable features are extracted from these points and then
projected to obtain deformed keys and values. Simultaneously, a set of inducing points
is assigned for each voxel in the grid, and the deformable features are encoded into the
hidden space using encoding cross-attention. Next, a GRCFFN with a residual connection
enhances the global interaction of hidden space features. Finally, decoding cross-attention is
applied to focus on the original queries and aggregate features from deformed values. This
DVSA module specifically focuses on learning the point cloud features of important areas
to detect 3D objects during the set-to-set transformation process. The overall architecture of
the DVSA module can be observed in Figure 2, and the design of each module component
will be elaborated below.
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Figure 2. An illustration of DVSA. The figure presents the information flow of the DVSA. A group
of foreground points is identified, and their offsets are learned from the queries through the OGM.
Then, the deformed keys and values are projected from the deformable features. Subsequently, the
deformable features are compressed into a latent space using a set of inducing points, and the features
are refined using the GRCFFN. Finally, the output features are obtained through multi-head attention.
For clarity of presentation, only two voxel grids and five foreground points are shown, although
there are more points in practical implementation.

3.2.1. Positional Embedding

Given the significance of preserving the local structure of point clouds to enhance
detection performance [40], we introduce a positional embedding (PE) module. This
module encodes the local coordinates of point clouds within voxels into high-dimensional
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features, which are subsequently fed into the DVSA. Specifically, the PE module applies
Fourier parameterization to obtain values [sin( fkπx), cos( fkπx)], where x represents the
normalized local coordinates and fk is the k-th frequency with a bandwidth of L. The
resulting Fourier embedding has a dimension of 3L, which is then mapped to the input
dimension of the first MLP using a trainable linear layer. The positional encoding feature
not only maintains the local structure of the point cloud but also aids in generating more
precise deformable offsets.

3.2.2. Offset Generation Module

The 2D deformable attention [18] determines the focal area by deforming a fixed
position reference point. However, this method is unsuitable for the deformable attention
of three-dimensional point clouds, as they are sparse and unstructured. To resolve this
problem, we introduce an intuitive and practical approach: dividing the point cloud
into foreground and background points and determining the focal area by deforming the
foreground points. We developed an OGM module, as illustrated in Figure 1.

The provided point cloud P = {p1, . . . , pn} consists of n points. It undergoes pro-
cessing to extract dp-dimensional point-wise features fp ∈ Rn×dp , which are then encoded
with the PE module to generate d-dimensional DVSA input features X ∈ Rn×d. The
OGM initially takes fp as the input to determine the confidence of the foreground S ∈ Rn

as follows:
S = Gp

(
fp
)
, (1)

where Gp(·) represents a three-layer MLP with a sigmoid activation function designed for
predicting the foreground confidence within the range of [0, 1]. Then, S′ ∈ Rn is obtained
by resetting the confidence of non-foreground points to zero using a foreground confidence
threshold Tf , as shown in Equation (2):

Si
′ =

{
Si Si > Tf
0 Si ≤ Tf

. (2)

The variable i represents the foreground confidence of the i-th point among n points.
The default threshold for the foreground confidence is set at 0.5. Afterward, the feature X
is fed into a shared subnetwork to generate the offset4p, as depicted in Equation (3):

4p = θo f f set(X), (3)

where θo f f set(·) is a three-layer MLP network. The final offset value for each point in the
foreground is determined by assigning the confidence of each point to the generated offset,
referred to as4p′ in Equation (4):

4p′ = 4p · S′. (4)

After generating the offset of foreground points, it is added to the input vector X to
obtain the deformable feature fD ∈ Rn×d, as described in Equation (5):

fD = X +4p′. (5)

The OGM employs focal loss [41] with default hyperparameters in the training process.
This technique addresses the imbalance between foreground and background points in the
training set. By multiplying the confidence of foreground points with the corresponding
offset, the module generates offset sizes that vary based on the confidence levels of the
foreground points. This somewhat helps to mitigate the adverse effects caused by fore-
ground threshold edge points. Moreover, the proposed OGM uses two learnable networks
to identify foreground points and determine their offsets. This approach overcomes the
drawbacks of manual offset generation design and enhances the DVST’s adaptive focusing
capability on foreground regions.
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3.2.3. Encoding Cross-Attention

As shown in Figure 2, the complete query of the deformable attention is acquired by
projecting the input feature X, while the keys and values are obtained by projecting the
deformable feature fD. Following acquiring the deformable feature, we use an alternative
approach to self-attention to model the global contextual relationship. To bypass the
quadratic computational complexity of self-attention, we utilize VSA to learn the global
features of the point clouds through set-to-set transformation. Given an input set with a
size of n and a dimension of d, and by defining a k-dimensional vector I ∈ Rk×d, known as
inducing points, the output set Z ∈ Rn×d from the VSA [14] can be represented as:

H f = CrossAttention(I, X) ∈ Rk×d, (6)

Ĥ = ConvFFN
(

H f

)
∈ Rk×d, (7)

Z = CrossAttention
(
X, Ĥ

)
∈ Rn×d. (8)

The inducing points I are trainable parameters that are learned along with other
parameters in the network. The first cross-attention transforms I into hidden features
H f by attending to the input set. The hidden features are then input to a convolutional
feed-forward network (ConvFFN) for updating the information. The second cross-attention
attends the input set X to the resulting hidden features. For clarity, we refer to the first
and second cross-attentions as encoding cross-attention and decoding cross-attention,
respectively. Both cross-attentions utilize standard multi-head attention. Furthermore, we
propose a novel GRCFFN with residual connection to enhance the comprehensiveness and
flexibility of information updating.

In the encoding cross-attention, we begin by performing a linear projection to project
the deformable features fD into the key K̃ ∈ Rn×d and the value Ṽ ∈ Rn×d:

K̃ = fDWK̃, Ṽ = fDWṼ . (9)

where WK̃ and WṼ are projection matrices. Then, cross-attention is performed between the
key K̃ and query I to generate an attention matrix A ∈ Rn×k×d, as shown in Equation (10):

A = ITK̃. (10)

The query I ∈ Rk×d is the given induced vector. Next, the attention matrix A is
voxel-normalized using the scatter kernel function:

Ã = Softmaxscatter(A, v), (11)

where v ∈ Rn×3 denotes the voxel coordinates of n points. Let {pi = (xi, yi, zi) : i = 1, . . . , n}
represent the point cloud coordinates and

[
dx, dy, dz

]
be the size of the three-dimensional

voxel. The voxel coordinates can be calculated using Equation (12):

v =

{
vi =

(⌊
xi
dx

⌋
,
⌊

yi
dy

⌋
,
⌊

zi
dz

⌋)
: i = 1, . . . , n

}
, (12)

where b·c is the floor function. The CUDA kernel library scatter function allows for
symmetric reductions on various matrix sections, including maximum, average, and sum.
In DVSA, the input set is treated as a single matrix where each row represents a point-
wise feature, and each voxel associated with a point-wise feature can be indexed by voxel
coordinates. Given point-wise features, their reduced voxel form after the symmetric scatter
function can be represented as:

Y = Fscatter(X, v) = {Fscatter({Xi : vi = j}) : j = 1, . . . , m}, (13)
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where m is the number of non-empty voxels. After obtaining the voxel-normalized attention
matrix Ã, it is multiplied by the values to produce the hidden feature H f :

H f = ÃTṼ. (14)

After that, voxel reduction of the hidden features according to the voxel index is used
for feature refinement in the hidden space, as shown in Equation (15):

Hr = Sumscatter(H, v). (15)

3.2.4. Globally Responsive Convolutional Feed-Forward Network

After encoding deformable features into the hidden space using inducing points,
the hidden features are input into a feed-forward network to achieve more flexible and
complex feature refinement. In a previous study [14], the hidden features were scattered
into a 3D sparse tensor, and a ConvFFN was constructed to learn the information in the
corresponding tensor. While this approach successfully captures inter-voxel information
interaction, it may impede the model’s performance when dealing with deformable features
due to limited feature diversity. To address this limitation, ConvNeXt V2 [42] proposed
global response normalization (GRN), which normalizes the feature maps channel-wise,
thereby enhancing feature competition and promoting feature diversity. Notably, GRN
serves as a convolutional neural network layer that requires no additional parameters and
has no learnable parameters. In light of this, we introduce the GRN into the ConvFFN to
develop an improved version, GRCFFN, specifically designed to amplify feature diversity.
The architecture of GRCFFN is illustrated in Figure 3.
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rĤ R × ×∈  with the same length as the input set. Then, the decoding 

Figure 3. The network structure of GRCFFN.

Specifically, we disperse the reduced hidden features into a 3D sparse tensor based
on voxel coordinates to adaptively integrate voxel features and global dependencies. Sub-
sequently, two depth-wise convolutions (DWConv) are applied to these 3D tensors to
facilitate feature interactions in the spatial domain, and a GRN layer is used to enhance
feature diversity. By incorporating a residual connection, we can retain the spatial informa-
tion in the input hidden features and integrate this information after feature interaction.
Given the reduced hidden features Hr ∈ Rm×k×d, the features H′ ∈ RH×W×C obtained
from performing two DWConvs can be written as:

H′ = σ1(DWConv(σ2(DWConv(τ(Hr, Cr); W1)); W2)). (16)

where W1 and W2 are convolutional weights, σ1 and σ2 represent non-linear activation
functions, Cr denotes voxel coordinates, and τ refers to the formulation of sparse tensor.

When performing GRN, the first step is to use the global function G(·) to aggregate
the feature H′ into the vector gh:

G
(

H′
)

:= H′ ∈ RH×W×C → gh ∈ RC. (17)
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Next, we apply the response normalization function to the aggregate value as follows:

N
(
‖H′i‖

)
:= ‖H′i‖ ∈ R→

‖H′i‖
∑j=1,...,C ‖H′j‖

∈ R, (18)

where i is the i-th channel and ‖H′i‖ is the L2-norm of the i-th channel. The response
normalization function computes the relative importance of each channel with the other
channels. Finally, the normalized scores are used to correct the original input response:

H′i = H′i ∗ N
(
G
(

H′
)

i

)
∈ RH×W . (19)

After completing GRN, given the convolution weights W3, the rich hidden features
Ĥr ∈ Rm×k×d from GRCFFN can be written as:

Ĥr = Hr + Conv
(

H′; W3
)
. (20)

3.2.5. Decoding Cross-Attention

The output set is reconstructed by the decoding cross-attention, as demonstrated in
Figure 2, using the rich hidden features Ĥr. Initially, the hidden features are broadcasted to
generate features Ĥr ∈ Rn×k×d with the same length as the input set. Then, the decoding
cross-attention projects the input set onto the query Q ∈ Rn×d and projects the rich hidden
features containing offset information onto the key K ∈ Rn×k×d and the value V ∈ Rn×k×d:

Q = XWQ, K = ĤrWK, V = ĤrWV , (21)

where WQ, WK, and WV are projection matrixes. Lastly, multi-head attention is performed
on the query Q, key K, and value V. The output of the DVSA can be calculated as:

A = [A1, . . . , An] =
[
K1QT

1 , . . . , KnQT
n

]
, (22)

Ã =
[
Softmax

(
Ã1

)
, . . . , Softmax

(
Ãn

)]
, (23)

Z = [Z1, . . . , Zn] =
[

ÃT
1 V1, . . . , ÃT

n Vn

]
. (24)

In summary, the DVSA module initially learns the offset of foreground queries through
the proposed OGM module. Subsequently, it transforms the deformed features with offset
information to the hidden space utilizing encoding cross-attention. The hidden features
are then refined by the proposed GRCFFN. Finally, decoding cross-attention is employed
to derive the output features. By dynamically prioritizing significant regions during the
set-to-set transformation process, the DVSA can effectively detect 3D objects.

3.3. BEV Feature Encoding and Detection Head

As illustrated in Figure 1, the DVST backbone is employed to extract features from
the input point cloud. Subsequently, these extracted features are encoded into BEV rep-
resentation, and a shallow 2D CNN backbone is applied to enhance the feature density.
The reason for performing BEV encoding is that, in the context of 3D point cloud detection,
models utilizing dense BEV features [8,12] generally exhibit higher recall rates than models
utilizing sparse point-wise features [25,43].

The 2D CNN network utilized in this study comprises two strides, with each stride
encompassing three convolutions. The point-wise features generated by the DVST are
aggregated into pillars measuring 0.36 m × 0.36 m, which is followed by soft-pooling



Remote Sens. 2023, 15, 5612 12 of 23

to generate BEV features. Given the point-wise output feature Oj ∈ Rk×d, the pooled
pillar-wise feature Pj can be represented as Equation (25):

Pj =
k

∑
m=1

Oj
m ∗ wj

m, wj
m =

eOj
m

∑k
m=1 eOj

m
. (25)

The pillar features are then fed into a shallow 2D CNN. The convolution features of
two strides are connected and passed into the detection head to predict bounding boxes.
The detection head follows a traditional anchor-based design [7,12].

Our DVST can be extended to accommodate two-stage detectors. The CT3D [32] is a
prime example of a two-stage detector that boasts exceptional performance and minimally
relies on manual design. In the two-stage detector, we utilize the RoI head of CT3D as our
second-stage module. This module performs proposal-aware embedding of point features
and aggregates contextual information through a channel-wise transformer. We validate
the DVST by constructing single-stage and two-stage detectors in the experimental section.

3.4. Training Losses

We employ an end-to-end strategy in training the DVST. The overall training loss is
calculated by the OGM foreground segmentation loss Lseg, the bounding box classification
loss Lcls, the bounding box regression loss Lreg, and the bounding box orientation loss Ldir:

LS = Lseg +
1

Np

(
Lcls + Lreg + Ldir

)
. (26)

where Np denotes the number of positive samples, both Lseg and Lcls adopt focal loss, Lreg
adopts Smooth-L1 loss, and Ldir adopts binary entropy loss.

When the DVST is expanded to a two-stage model, in addition to the losses mentioned
above, the loss from the second stage of the bounding box regression and confidence
prediction must also be included.

4. Experiments and Results

In this section, we assess our proposed DVST using two publicly available 3D point
cloud detection datasets, the KITTI and Waymo open datasets. We begin by presenting
the implementation details and evaluation settings of DVST, followed by a comparison
with state-of-the-art 3D point cloud detection models. Lastly, we perform a comprehensive
analysis of the components of DVST through ablation experiments.

4.1. Dataset and Implementation Details

KITTI dataset. In 3D point cloud object detection, the KITTI dataset [44] is widely
used for evaluating model performance. The dataset classifies the 3D detection task into
three difficulty levels, i.e., easy, moderate, and hard, based on object size, occlusion status,
and truncation level. It comprises a total of 7481 training samples and 7518 testing samples.
According to the usual protocol, the training samples are subdivided into a training set
containing 3712 annotated samples and a validation set containing 3769 annotated samples.
To assess the effectiveness of the DVST, we conducted experiments on an online testing
server. When evaluating the test set, the model was trained using 80% of the training set
data, while the remaining 20% was employed for validation purposes.

According to the KITTI official evaluation criteria, the intersection over union (IoU)
threshold for the car category was set to 0.7. For the pedestrian and cyclist categories,
the IoU thresholds were set to 0.5. The mean average precision (mAP) and the average
orientation similarity (AOS) results on the test set were computed using 40 recall positions
on the online testing server. The mAP results on the validation set were computed using
11 recall positions to ensure a fair comparison with other methods. We present two DVST-
based detection architectures, including a DVST single-stage detector (DVST-SSD) for
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single-stage detection and a DVST two-stage detector (DVST-TSD) for two-stage detection.
The single-stage model adopts the anchor settings from SECOND [12], while the two-stage
model utilizes the RoI head from CT3D [32].

Waymo open dataset. The Waymo open dataset [45], serving as a large-scale 3D
detection dataset, comprises 1000 sequences, consisting of 798 training sequences and
202 validation sequences. The training set contains approximately 158 k point cloud
samples, while the validation set contains around 40k samples. The validation process for
the Waymo open dataset employs two main approaches. The first approach categorizes
objects based on difficulty levels: LEVEL_1 pertains to objects with at least five lidar points,
whereas LEVEL_2 encompasses objects directly labeled as second level or objects with at
least one lidar point. The second approach organizes objects according to their distance
from the sensor, with three distinct ranges: 0–30 m, 30–50 m, and >50 m.

The mAP and the mean average precision with heading accuracy weighting (mAPH)
are official evaluation metrics. These metrics are calculated based on an IoU threshold
of 0.7 for vehicles and 0.5 for other categories. The models were trained using 20% of
the training data and validated using the complete validation data set. To evaluate the
effectiveness of the DVST on the Waymo open dataset, we replaced the 3D backbone
networks in the PointPillars [7] and CenterPoint [27] models with the DVST while keeping
the other modules unchanged. Consequently, we used two detection architectures: DVST-
SSD, an anchor-based single-stage detection architecture, and DVST-TSD, an anchor-free
two-stage detection architecture.

Implementation details. On the KITTI dataset, the point cloud ranges for the X, Y,
and Z axes were set to [0 m, 70.4 m], [−40 m, 40 m], and [−3 m, 1 m], respectively. The
voxel size was set to [0.32 m, 0.32 m, 4 m]. The feature dimensions of the four DVSAs
were 16, 32, 64, and 128. The number of inducing points for each DVSA was eight in the
one-stage model and four in the two-stage model. The bandwidth of the PE module was
set to 64. In the two-stage models, 512 RoIs were sampled during training, and 128 RoIs
were sampled during inference. During the post-processing stage, both the one-stage and
two-stage models utilized NMS with an IoU threshold of 0.01 to predict bounding boxes.
For the final prediction, the one-stage and two-stage models selected bounding boxes with
confidence scores surpassing 0.1 and 0.5, respectively. The models were trained end-to-end
for 100 epochs using the Adam optimizer on four NVIDIA 3080Ti GPUs. The batch size
and weight decay were set to 2 and 0.01, respectively. The one-stage model used a learning
rate of 0.001, while the two-stage model utilized a learning rate 0.0005. Additionally, the
learning rate decayed with the one-cycle strategy, where the momentum damping range
was set to [85%, 95%]. For other default settings, please refer to the OpenPCDet [46] toolbox
employed in this study.

On the Waymo open dataset, the point cloud ranges for the X, Y, and Z axes were set
as [−75.2 m, 75.2 m], [−75.2 m, 75.2 m], and [−2 m, 4 m], respectively. The voxel size was
set as [0.32 m, 0.32 m, 6 m]. The feature dimensions of the four DVSAs with four inducing
points were 16, 32, 64, and 128. The bandwidth of the PE module was set to 64. During the
post-processing stage, the DVST-SSD and DVST-TSD predicted the bounding boxes using
an IoU threshold of 0.7. The final predictions were determined by selecting the bounding
boxes with confidence scores above 0.1. The learning rates for the two models were set to
0.00075 and 0.001, respectively. Furthermore, both models were trained end-to-end using
the Adam optimizer on four NVIDIA GeForce RTX 3080Ti GPUs. The training process
involved 30 epochs with a batch size of 1 and a weight decay of 0.01.

4.2. Three-Dimensional Detection Results on KITTI Dataset
4.2.1. KITTI Test Set

The test set was evaluated by submitting the detection results of the DVST-TSD to
the official KITTI test server, and the performance of the DVST was compared with state-
of-the-art methods. The DVST-TSD adopted the anchor setting in SECOND and used the
RoI head in CT3D. Tables 1 and 2 present the results of the test set, including 3D detection
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mAP, BEV detection mAP, and 3D detection AOS metrics. Since some methods do not focus
on the orientation evaluation of 3D objects, the results of the AOS metric are not listed in
their respective literature. For these methods, the AOS metric was obtained either from the
official KITTI leaderboard or was not compared in Table 2.

A total of nine specific quantitative indicators are involved in Tables 1 and 2. As
shown in Tables 1 and 2, our DVST had five top-three indicators. It can be seen that among
the voxel-based detection methods, our DVST had apparent advantages in the number of
the top-three indicators. In addition to the point–voxel combined PV-RCNN, which had
the same number of top-three-ranked indicators, the DVST had more indicators ranked in
the top three than the other methods in the table. Thus, the comprehensive performance
of the DVST was validated. In other words, the DVST demonstrated exceptional overall
performance in 3D car detection, BEV detection, and orientation estimations due to its
incorporation of deformable mechanisms, which offer flexibility, and transformers, which
facilitate powerful long-range modeling. Consequently, the DVST effectively concentrated
on the target area and extracted rich intrinsic contextual features, enabling it to adapt better
to various detection tasks and difficulty levels.

Table 1. Performance evaluation of 3D object and BEV detection for the DVST on the KITTI test set.
The results regarding mAP at an IoU threshold of 0.7, along with 40 recall positions, are reported.
The results obtained using our DVST are in bold, while the top-three-ranked results are underlined.

Method Type
Car-3D Detection (%) Car-BEV Detection (%)

Easy Moderate Hard Easy Moderate Hard

PointRCNN [25] (CVPR 2019)

Point-based

86.96 75.64 70.70 92.13 87.39 82.72
EPNet [47] (ECCV 2020) 89.81 79.28 74.59 94.22 88.47 83.69
3DSSD [5] (CVPR 2020) 88.36 79.57 74.55 92.66 89.02 85.86

Point-GNN [26] (CVPR 2020) 88.33 79.47 72.29 93.11 89.17 83.90
IA-SSD [6] (CVPR 2022) 88.34 80.13 75.04 92.79 89.33 84.35

AnchorPoint [37] (IEEE T-ITS 2023) - 80.16 - - 87.39 -
DGT-Det3D [10] (KBS 2023) 87.89 80.68 76.02 - - -

SA-SSD [29] (CVPR 2020)

Point–voxel

88.75 79.79 74.16 95.03 91.03 85.96
PV-RCNN [11] (CVPR 2020) 90.25 81.43 76.82 94.98 90.65 86.14

DVFENet [48] (Neurocomputing 2021) 86.20 79.18 74.58 90.93 87.68 84.60
HVPR [30] (CVPR 2021) 86.38 77.92 73.04 - - -

DSA-PV-RCNN [20] (ICCV 2021) 88.25 81.46 76.96 92.42 90.13 85.93
AFE-RCNN [31] (Remote Sensing 2022) 88.41 81.53 77.03
FusionPillars [49] (Remote Sensing 2023) 86.96 75.74 73.03 92.15 88.00 85.53

SECOND [12] (Sensors 2018)

Voxel-based

83.13 73.66 66.20 88.07 79.37 77.95
PointPillars [7] (CVPR 2019) 82.58 74.31 68.99 90.07 86.56 82.81

Part-A2 [50] (IEEE TPAMI 2020) 87.81 78.49 73.51 91.70 87.79 84.61
TANeT [51] (AAAI 2020) 84.39 75.94 68.82 91.58 86.54 81.19

CIA-SSD [52] (AAAI 2021) 89.59 80.28 72.87 93.74 89.84 82.39
DFAF3D [39] (IMAVIS 2023) 88.59 79.37 72.21 93.14 89.45 84.22

CT3D [32] (ICCV 2021) 87.83 81.77 77.16 92.36 88.83 84.07
VoxSeT [14] (CVPR 2022) 88.53 82.06 77.46 92.70 89.07 86.29

DVST-TSD (Ours) 88.70 81.66 77.18 92.72 88.71 85.97
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Table 2. Comparison of AOS performance of different methods on the KITTI test set. Our DVST
results are shown in bold, and the top-three-ranking results are underlined.

Method Type
Car-Orientation (%)

Easy Moderate Hard

PointRCNN [25] (CVPR 2019)

Point-based

95.90 91.77 86.92
EPNet [47] (ECCV 2020) 96.13 94.22 89.68

Point-GNN [26] (CVPR 2020) 38.66 37.20 36.29
IA-SSD [6] (CVPR 2022) 96.07 93.47 90.51

SA-SSD [29] (CVPR 2020)

Point–voxel

39.40 38.30 37.07
DVFENet [48] (Neurocomputing 2021) 95.33 94.44 91.55

PV-RCNN [11] (CVPR 2020) 98.15 94.57 91.85
DSA-PV-RCNN [20] (ICCV 2021) 95.84 94.52 91.93

AFE-RCNN [31] (Remote Sensing 2022) 95.84 94.63 92.07

PointPillars [7] (CVPR 2019)

Voxel-based

93.84 90.70 87.47
Part-A2 [50] (IEEE TPAMI 2020) 95.00 91.73 88.86

TANeT [51] (AAAI 2020) 93.52 90.11 84.61
CIA-SSD [52] (AAAI2021) 96.65 93.34 85.76

DFAF3D [39] (IMAVIS 2023) 96.54 93.20 90.03
CT3D [32] (ICCV 2021) 96.26 93.20 90.44

VoxSeT [14] (CVPR 2022) 96.15 95.13 90.38
DVST-TSD(Ours) 96.02 94.67 92.03

Specifically, for 3D car detection, the DVST outperformed most of the methods in
Table 1 at the easy level with an mAP of 88.70%. Additionally, the DVST exhibited a higher
mAP in 3D detection for the moderate and hard difficulty levels than all the point-based
and point–voxel fusion methods in Table 1. Specifically, regarding the moderate-difficulty
3D detection, the DVST increased the mAP by at least 0.98% compared to the point-based
methods and by at least 0.13% compared to the point–voxel fusion methods. For the
hard-difficulty 3D detection, the proposed DVST showed mAP improvements of at least
1.16% and 0.15% compared to the point-based methods and point–voxel fusion methods,
respectively. Similarly, when considering voxel-based methods, the DVST performed
comparably to CT3D and VoxSeT for the medium- and hard-difficulty 3D detection mAP
but outperformed them for the easy level.

Concerning car BEV detection, the point–voxel fusion method exhibited an advantage
over the point-based and voxel-based methods. Notably, the DVST secured second place
in the BEV detection mAP for the hard difficulty among the voxel-based methods, sur-
passing the third-ranked Part-A2 model by 1.36%. Regarding the car category orientation
estimation, our DVST enhanced the AOS by at least 0.45% for the moderate difficulty
compared to the point-based methods and by at least 0.04% compared to the point–voxel
fusion methods. Among the voxel-based methods, our DVST achieved the highest AOS
for the hard difficulty level, surpassing the second-ranked VoxSeT model by 1.65%. Based
on the detailed analysis, it is evident that the DVST demonstrated a commendable overall
performance on the KITTI test set.

4.2.2. KITTI Validation Set

We evaluated the performance of the DVST on the KITTI validation set, as presented in
Table 3. For the VoxSeT, we reproduced the results based on the reference [14] utilizing the
OpenPCDet toolbox [46]. Our findings are as follows: (1) For 3D car detection, the proposed
DVST demonstrated competitive performance, achieving an mAP of 85.05% at moderate
difficulty. The mAP was 0.23% higher than the point-based detector DGT-Det3D and at
least 1.06% higher than the point–voxel detector. (2) Among the voxel-based detectors, the
DVST-TSD outperformed VoTr-TSD and VoxSeT in the 3D detection of cars at the moderate
difficulty level, surpassing them by 1.01% and 0.47% in terms of the mAP, respectively,
despite all of them utilizing transformer-based backbone networks. (3) It is noteworthy
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that the DVST achieved the highest mAP of 78.99% among the voxel-based methods for
the car type at the hard difficulty level.

Table 3. Evaluation of the KITTI validation set. The results are reported using the mAP with a 0.7
IoU threshold and 11 recall positions. The results of our DVST are highlighted in bold, and the
top-three-ranked results are underlined.

Method Type
Car-3D Detection (%)

Easy Moderate Hard

PointRCNN [25] (CVPR 2019)

Point-based

88.88 78.63 77.38
3DSSD [5] (CVPR 2020) 89.71 79.45 78.67

Point-GNN [26] (CVPR 2020) 87.89 78.34 77.38
AnchorPoint [37] (IEEE T-ITS 2023) 89.70 83.21 78.79

DGT-Det3D [10] (KBS 2023) 89.65 84.82 78.76

SA-SSD [29] (CVPR 2020)

Point–voxel

90.15 79.91 78.78
PV-RCNN [11] (CVPR 2020) 89.35 83.69 78.70

Deformable PV-RCNN [19] (ECCV 2020) - 83.30 -
DVFENet [48] (Neurocomputing 2021) 89.81 79.52 78.35

HVPR [30] (CVPR 2021) 90.24 82.05 79.49
AFE-RCNN [31] (Remote Sensing 2022) 89.61 83.99 79.18

SECOND [12] (Sensors 2018)

Voxel-based

88.61 78.62 77.22
PointPillars [7] (CVPR 2019) 86.46 77.28 74.65

Part-A2 [50] (IEEE TPAMI 2020) 89.55 79.40 77.84
TANeT [51] (AAAI 2020) 87.52 76.64 73.86
CIA-SSD [52] (AAAI2021) 90.04 79.81 78.80
VoTr-TSD [13] (ICCV 2021) 89.04 84.04 78.68

CT3D [32] (ICCV 2021) 89.54 86.06 78.99
VoxSeT [14] (CVPR 2022) 89.24 84.58 78.87

DVST-TSD(Ours) 89.30 85.05 78.99

The mAP of the DVST for 3D car detection at moderate difficulty was lower than that
of CT3D. After analysis, one primary reason for this discrepancy was the difference in the
voxel size settings. In CT3D, the voxel size was set as [0.05 m, 0.05 m, 0.1 m], whereas in
the DVST, it was set to [0.32 m, 0.32 m, 4 m]. Although a more minor voxel size resulted in
higher precision in CT3D, it also led to increased computational complexity. We conducted
experiments with a batch size of two on four NVIDIA RTX 3080Ti GPUs. The average
floating-point operation of CT3D was 200.11 G with an inference time of 118.03 ms, while
with the DVST, the values were only 89.61 G and 79.34 ms. Another relevant factor is the
difference in the IoU threshold settings, with CT3D using 0.81 and the DVST using 0.7.
Consequently, the following conclusions can be drawn: the DVST effectively utilized both
deformable and attention mechanisms to extract rich object features from large voxels, and
the DVST achieved a good balance between accuracy and speed in 3D object detection.

4.2.3. Performance on Pedestrian and Cyclist Classes

To assess the performance of the multi-class object detection model, we conducted
experiments on the KITTI validation set using the single-stage DVST model. The DVST-
SSD uses the proposed DVST as the backbone and adopts the same anchor settings as
SECOND. The results of these experiments are presented in Table 4. We also compared
the DVST-SSD with several baseline models, such as SECOND, PointPillars, and VoxSeT.
The results in Table 4 illustrate the varying degrees of improvement in the mAP for the car,
pedestrian, and cyclist categories across nine different situations of three difficulty levels.
The corresponding improvements are shown in the last row of the table.
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Table 4. Performance of DVST-SSD on the KITTI validation set. All results are reported in terms
of mAP with 40 recall positions, using an IoU threshold of 0.7 for the car category and 0.5 for the
pedestrian and cyclist categories. Results from DVST-SSD are shown in bold, and the best result in
each column is underscored. The improvements are displayed in italics.

Method
Car (%) Pedestrian (%) Cyclist (%)

Easy Moderate Hard Easy Moderate Hard Easy Moderate Hard

SECOND [12] 88.61 78.62 77.22 56.55 52.98 47.73 80.58 67.15 63.10
PointPillars [7] 86.46 77.28 74.65 57.75 52.29 47.90 80.04 62.61 59.52

VoxSeT [14] 88.45 78.48 77.07 60.62 54.74 50.39 84.07 68.11 65.14
DVST-SSD (Ours) 88.98 78.95 77.76 60.79 57.34 52.44 84.63 70.65 65.53

Improvements +0.37 +0.33 +0.54 +0.17 +2.60 +2.05 +0.56 +2.54 +0.39

The improvements demonstrate that the DVST exhibited strong detection capabilities
for the car category and performed well in detecting pedestrians and cyclists, whose spatial
sizes are smaller. The DVST-SSD achieved significant improvements of 2.60% and 2.05% in
the mAP for the pedestrian category at the moderate and hard difficulty levels, respectively.
Moreover, a substantial 2.54% increase in the mAP was observed for the cyclist category
under moderate difficulty. These noteworthy enhancements suggest that the deformable
attention utilized in the DVST-SSD effectively learned the target features under occlusion
and truncation conditions. The overall improvement in the model performance further
confirms the effectiveness of the DVST.

4.2.4. Qualitative Analysis

In this section, we present a comparison of the visualization results between VoxSeT
and the DVST, as illustrated in Figure 4, where the circled parts are false-positive targets.
Lidar-only detectors often suffer from a common failure mode: false-positive detections
caused by more distant targets with similar shape characteristics. As shown in Figure 4a,
VoxSeT and the DVST showed four and one false-positive detections, respectively. Figure 4b
shows four false-positive detections for VoxSeT and two for the DVST. Figure 4c shows one
false-positive detection for VoxSeT, while the DVST had none. From this comparison, we
observed that the DVST used a deformable mechanism to transfer the candidate keys and
values of the foreground query to essential areas to obtain more discriminative features,
which can significantly reduce the number of false positives in the scene to be detected and
improve the detection performance.
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False detection targets are circled for clarity.

4.3. Three-Dimensional Detection Results on Waymo Open Dataset

We performed experiments on the large-scale Waymo open dataset to validate the
effectiveness of the proposed DVST. The experimental results for the mAP and mAPH
are presented in Table 5, encompassing the three categories of vehicles, pedestrians, and
cyclists, evaluated at two difficulty levels: LEVEL_1 and LEVEL_2. We replaced the
backbone networks of two 3D object detection models, PointPillars and VoxSeT, with the
DVST to construct the DVST-SSD and DVST-TSD, respectively, for the experiments and
comparisons.

From the results in Table 5, it can be observed that compared to PointPillars, the
DVST-SSD achieved improvements in the mAP and mAPH across all twelve metrics for
the vehicle, pedestrian, and cyclist classes at both the LEVEL_1 and LEVEL_2 difficulty
levels. Mainly, the DVST-SSD showed significant improvements in the pedestrian and
cyclist scores, increasing them by 5.44%, 11.44%, 5.37%, 10.42%, 6.52%, 7.85%, 6.28%, and
7.57% across the eight metrics. Similarly, the DVST-TSD exhibited improvements compared
to VoxSeT, with increases of 1.20%, 1.20%, 1.16%, 1.16%, 1.39%, 1.48%, 1.55%, 1.59%, 1.93%,
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1.92%, 1.85%, and 1.83% across the twelve metrics. These improvements across the metrics
for the DVST-SSD and DVST-TSD provide strong evidence of the performance of the DVST
in large-scale datasets. Compared to state-of-the-art models such as PV-RCNN, AFE-RCNN,
IA-SSD, and AnchorPoint, although the DVST-TSD did not achieve the best performance
in the vehicle class, it achieved the best accuracy in all eight metrics for the pedestrian
and cyclist classes. The results were consistent with the results of the pedestrian and
cyclist classes in the KITTI validation set, further validating the efficacy of the DVST for 3D
object detection.

Table 5. Comparison of 3D detection results on 202 validation sequences from the Waymo open
dataset. All models were trained using 20% of the training samples. ‘L1’ and ‘L2’ represent LEVEL_1
and LEVEL_2, respectively. The best results are underlined below. Results from DVST-SSD and
DVST-TSD are shown in bold, and the improvements are displayed in italics.

Method
Vehicle-L1 Vehicle-L2 Pedestrian-L1 Pedestrian-L2 Cyclist-L1 Cyclist-L2

mAP mAPH mAP mAPH mAP mAPH mAP mAPH mAP mAPH mAP mAPH

SECOND [12] 68.03 67.44 59.57 59.04 61.14 50.33 53.00 43.56 54.66 53.31 52.67 51.37
CenterPoint [27] 70.50 69.96 62.18 61.69 73.11 61.97 65.06 55.00 65.44 63.85 62.98 61.46

Part-A2 [50] 74.66 74.12 65.82 65.32 71.71 62.24 62.46 54.06 66.53 65.18 64.05 62.75
AnchorPoint [37] 73.91 73.40 65.10 64.64 70.37 61.76 61.77 54.08 70.18 68.65 67.76 66.28

IA-SSD [6] 70.53 69.67 61.55 60.80 69.38 58.47 60.30 50.73 67.67 65.30 64.98 62.71
AFE-RCNN [31] 71.23 70.53 62.62 61.99 - - - - 59.69 43.14 57.44 41.51
PV-RCNN [11] 75.41 74.74 67.44 66.80 71.98 61.24 63.70 53.95 65.88 64.25 63.39 61.82

PointPillars [7] 69.37 68.73 61.22 60.65 64.29 44.64 56.03 38.84 54.14 51.19 52.11 49.26
DVST-SSD 69.93 69.39 61.62 61.14 69.73 56.08 61.40 49.26 60.66 59.04 58.39 56.83

Improvements +0.56 +0.66 +0.40 +0.49 +5.44 +11.44 +5.37 +10.42 +6.52 +7.85 +6.28 +7.57

VoxSeT [14] 70.09 69.59 61.63 61.18 74.04 65.56 65.78 58.13 68.72 67.42 66.18 64.93
DVST-TSD 71.29 70.79 62.79 62.34 75.43 67.04 67.33 59.72 70.65 69.34 68.03 66.76

Improvements +1.20 +1.20 +1.16 +1.16 +1.39 +1.48 +1.55 +1.59 +1.93 +1.92 +1.85 +1.83

4.4. Ablation Studies
4.4.1. Effect of the DVST Components

We performed ablation experiments on the KITTI validation set to evaluate the various
components of our method, and the results are presented in Table 6. As the DVST is built
upon VoxSeT, we used VoxSeT as the baseline for comparison. The results in the first and
second rows indicate that incorporating OGM improved the model’s mAP scores in the car
category from 84.58% to 84.71%, which suggests that including the deformable mechanism
enhances the model’s performance. Comparing the second and third rows, we observed
a 0.09% increase in the moderate difficulty, demonstrating that our proposed GRCFFN
can enrich global features in the hidden space. Furthermore, comparing the second and
fourth rows reveals that adding residual connections played a critical role in boosting the
model’s performance. Comparing the performance of the fourth and fifth rows indicates
that GRCFFN outperformed the ConvFFN used in VoxSeT.

Table 6. Ablation experiments on the KITTI validation set regarding the effects of the proposed OGM,
GRCFFN, and residual connection (RC). The results are reported by the mAP with a 0.7 IoU threshold
and 11 recall points. The best results are shown in bold.

Methods OGM GRCFFN RC Easy (%) Moderate (%) Hard (%)

VoxSeT - - - 89.24 84.58 78.87

DVST-TSD

√
- - 89.10 84.71 78.88√ √

- 89.19 84.80 78.84√
-

√
89.34 84.89 78.90√ √ √
89.30 85.05 78.99
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4.4.2. Effect of the Number of Inducing Points

To analyze the impact of the number of inducing points used in the DVSA, we con-
ducted experiments on the KITTI validation set using the DVST-SSD. As indicated in
Table 7, we varied the number of inducing points between two, four, and eight, respec-
tively, and evaluated the mAP across three difficulty levels within the car, pedestrian, and
cyclist classes.

Table 7. Ablation experiments on the KITTI validation set regarding the impact of the number of
induction points. The results are reported with mAP at 0.7 IoU threshold and 11 recall positions. The
best results for each column are shown in bold.

Number of
Inducing Points

Car (%) Pedestrian (%) Cyclist (%)

Easy Moderate Hard Easy Moderate Hard Easy Moderate Hard

2 88.34 78.33 77.04 59.08 55.17 50.32 85.69 67.16 63.79
4 88.46 78.49 77.37 61.25 56.80 52.27 83.78 68.22 63.39
8 88.98 78.95 77.76 60.79 57.34 52.44 84.63 70.65 65.53

The results unveiled in the table show that an increase in the number of inducing
points allowed for encoding more comprehensive contextual information, enhancing the
DVST’s modeling capability and improving the detection. These findings are consistent
with those observed in VoxSeT, which explored various latent codes. It is important to
note that in the DVST-TSD, as indicated in the first and fifth rows of Table 6, the model
achieved superior performance compared to VoxSeT when four inducing points were
utilized, despite VoxSeT using eight inducing points. This phenomenon highlights that
introducing deformable mechanisms strengthened the DVST’s ability to model context and
global features, leading to more accurate detection outcomes using fewer inducing points.

4.5. Efficiency Analysis

Table 8 presents the mAP, the number of parameters, the number of floating-point
operations (FLOPs), and the inference time of SECOND, PointPillars, VoxSeT, and the DVST-
SSD on the KITTI validation set. All the models were executed using an NVIDIA 3080Ti
GPU. Analyzing the results in Table 8 reveals that the DVST-SSD model outperformed the
baseline models SECOND and PointPillars, exhibiting precision improvements of 0.33%,
4.36%, and 3.50% for cars, pedestrians, and cyclists under moderate difficulty, respectively,
while having fewer parameters and FLOPs. Compared to VoxSeT, the DVST-SSD achieved
a superior detection accuracy while only undergoing a slight increase in parameters, FLOPs,
and inference time. This model offers a reliable solution for achieving a balance between
efficiency and accuracy in 3D object detection tasks.

Table 8. Performance comparison of DVST-SSD on the KITTI validation set. The best results in each
column are shown in bold.

Method Car
(%)

Pedestrian
(%)

Cyclist
(%) Parameters (M) FLOPs

(G)
Inference_Time

(ms)

SECOND 78.62 52.98 67.15 4.61 76.86 53.10
PointPillars 77.28 52.29 62.61 4.83 63.69 28.73

VoxSeT 78.48 54.74 68.11 2.93 53.01 48.85
DVST-SSD 78.95 57.34 70.65 4.42 57.94 52.80

5. Discussion

In this paper, we used the proposed backbone network DVST to construct single-
stage and two-stage models, respectively, conduct comprehensive experiments on the
KITTI and Waymo datasets, and compare the proposed model with other methods on the
corresponding benchmarks. In addition to the better results achieved by our approach,
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there are several points worthy of attention. As shown in Tables 4 and 5, the improvements
in the DVST were more prominent for the pedestrian and cyclist categories than for the
vehicle categories. Combined with the overall performance of the DVST in the KITTI and
Waymo datasets, we believe that there were two main reasons. One reason was that the
proposed deformable voxel attention module could better learn the offsets of small-sized
targets, thus significantly improving the detection accuracy of small-sized targets. For
the larger vehicle categories, the original method achieved better detection results, so the
DVST showed a relatively small improvement. Another reason was that the trained DVST
could better adapt to the data distribution of the corresponding dataset than the other
models. Another point worth noting is that the accuracy of the division of foreground and
background points affected the performance of the DVST. The DVST uses a three-layer MLP
and foreground threshold to divide foreground and background points. It is reasonable to
suspect that DVST can achieve better results with the blessing of a deeper or more targeted
network. Therefore, a more accurate division of foreground and background points is one
of the focuses of our follow-up research. In addition, although the DVST provides a reliable
solution to achieve a balance between efficiency and accuracy of 3D object detection from
point clouds, in practical applications, higher accuracy and faster speed are still the goals
we pursue.

6. Conclusions

In this work, we proposed a transformer-based method called the DVST for 3D object
detection from point clouds. The DVST addresses the issue of excessive attention caused
by the large receptive field of the transformer backbone network by employing deformable
voxel set attention as its core. It also utilizes induced set attention to ensure computa-
tional efficiency. The DVST effectively learns target-related features and concentrates on
significant foreground regions by selectively deforming only the foreground queries. The
clever integration of a deformable mechanism, transformer, and induced set attention in the
DVST strikes a favorable balance between average precision and computational efficiency.
Moreover, as a voxel-based backbone network, the DVST can be applied to any voxel-based
3D detector. Extensive experiments on the KITTI and Waymo open datasets demonstrated
that DVST performs similarly to state-of-the-art lidar-only detectors. However, to meet
the higher accuracy and faster speed requirements of practical application scenarios, we
will explore the integration of point cloud information with images and lightweight model
optimization in future research.
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