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Abstract: For practical maritime SAR image classification tasks with special imaging platforms,
scenes to be classified are often different from those in the training sets. The quantity and diversity
of the available training data can also be extremely limited. This problem of out-of-distribution
(OOD) generalization with limited training samples leads to a sharp drop in the performance of
conventional deep learning algorithms. In this paper, a knowledge-guided neural network (KGNN)
model is proposed to overcome these challenges. By analyzing the saliency features of various
maritime SAR scenes, universal knowledge in descriptive sentences is summarized. A feature
integration strategy is designed to assign the descriptive knowledge to the ResNet-18 backbone.
Both the individual semantic information and the inherent relations of the entities in SAR images
are addressed. The experimental results show that our KGNN method outperforms conventional
deep learning models in OOD scenarios with varying training sample sizes and achieves higher
robustness in handling distributional shifts caused by weather conditions, terrain type, and sensor
characteristics. In addition, the KGNN model converges within many fewer epochs during training.
The performance improvement indicates that the KGNN model learns representations guided by
beneficial properties for ODD generalization with limited training samples.

Keywords: knowledge-guided neural network (KGNN); OOD generalization; limited training
samples; synthetic-aperture radar (SAR) image scene classification

1. Introduction

Synthetic-aperture radar (SAR) is a microwave imaging system with unique capabili-
ties, being usable in all weathers, timeless, and capable of long-range observation [1]; it
is thus increasingly required in many applications in the military and civil fields [2]. To
utilize SAR images, the first task is to recognize the semantic category of the scene, so that
a series of adaptive detailed computer vision procedures can be conducted, like those for
object detection in different backgrounds. As a fundamental precondition for the advanced
interpretation of SAR images, SAR image classification has become a significant task and
has witnessed rapid development in recent decades.

In early years, researchers mainly focused on classic classification methods, with a fea-
ture extractor and a trainable classifier [3], the performance of which highly depend on the
intra-class stability and inter-class discrimination power of extracted handcrafted features.
Some classic low-level handcrafted features, e.g., color histograms, Gabor transform texture
features, the gray-level co-occurrence matrix, scale-invariant feature transform (SIFT) [4],
and histogram of oriented gradients (HOGs) [5], were studied and widely used in early
scene classification tasks. Later, to achieve a more comprehensive discrimination power, the
mid-level feature learning method was proposed, based on low-level feature representation
through a coding form, such as bag of features [6] and sparse representation [7]. However, it
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is still difficult for these methods to fully characterize the abundance of object singularities,
especially in complex inhomogeneous scenes. In addition, without a feedback mechanism
from classification to feature extraction, it is impossible to ensure that the features extracted
are ideally suited for classification purposes.

In recent years, deep learning methods have achieved great success in SAR image
classification [8]. A hierarchical structure of features can be learned by using convolutional
layers and back-propagation [9,10]. The abundant deep feature statistics supports cutting-
edge accuracy and better robustness in complex scene classification [11,12]. However,
these modern data-driven deep learning methods are developed based on a fundamental
assumption that the training and testing data are independent and identically distributed
(the i.i.d. assumption), which is not true for some real applications like maritime SAR image
classification. The testing data, i.e., the scenes to be classified, are often different from those
in the training sets due to the changes in weather, sea state, geographic location, device,
imaging mode, and other factors. Data distributional shifts render a sharp drop in the
performances of the classic deep learning algorithms, creating the out-of-distribution (OOD)
generalization problem [13]. Many studies [14–16] have shown that models optimized
solely with training errors fail dramatically (sometimes even worse than a random guess)
under strong distributional shifts. Moreover, for some special SAR imaging platforms, the
available sample size is quite small, further exacerbating the difficulty of the OOD problem.

The reason for the OOD problem is that classic supervised learning methods greedily
absorb all dependencies in training data to minimize the training errors, while not all
dependencies remain in unseen testing distributions [13]. Therefore, the principle of OOD
generalization with limited training samples is to add additional constraints that can reflect
universal characteristics through different domains (including unseen domains). In this
paper, a knowledge-guided neural network (KGNN) is proposed to deal with the OOD gen-
eralization problem with limited training samples. Some classic unsupervised model-based
methods are employed to obtain saliency features that highlight the landscape segmenta-
tion in the scene, and knowledge indicating the characteristics or inherent information of
entities in maritime scene classification tasks are summarized based on saliency analysis.
To report the knowledge to the data-driven neural network, we design a feature integration
strategy. Three saliency maps along with the original SAR image are input into separate
branches of a ResNet-18 backbone to generate feature embeddings, then concatenated, and
propagated together into the remaining four residual blocks of ResNet-18, addressing both
the information of the pre-identification results and their inherent relations. The objective of
KGNN is to boost the OOD generalization ability with very few available training samples,
the quantity and diversity of which are limited by weather conditions, terrain type, and
sensor characteristics. The major novelties of this work are as follows:

(1) We define knowledge as task-specific information about relations between entities in
a maritime SAR image scene and extract the knowledge in descriptive sentence form
through saliency analysis from the perspective of frequency and amplitude.

(2) We design a feature integration strategy to reflect the inherent information of objects
(knowledge) in maritime scene classification tasks, and thus propose a new KGNN
network.

The knowledge extracted via saliency analysis is universal through different domains,
and can thus boost KGNN’s OOD generalization ability. The experimental results demon-
strate that the proposed KGNN surpasses advanced supervised learning methods with
a state-of-the-art ODD generalization performance, especially with limited training data.
The KGNN model converges within many fewer epochs during training, indicating that
the parameter optimization is directed by knowledge, not solely based on gradients. The
KGNN model also shows robustness in OOD scenarios affected by independent factors
such as weather conditions, terrain type, and sensor characteristics, with varying degrees
of improvements in the OOD generalization ability compared to the baseline methods.
Improving the OOD generalization in SAR image scene classification with limited training
samples can provide reliable scene classification results for new or niche radar detection
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platforms, such as drone SAR imaging. In these systems, the image distribution often
deviates from those of public datasets, and there is usually a scarcity in both the diversity
and volume of accessible images.

2. Related Works

In the following, we review several bodies of literature that are relevant to the objective
of our paper.

2.1. Unsupervised Representation Learning

OOD generalization is difficult since we have no access to samples in the test distribu-
tion, and if the test distribution is arbitrary or unrelated to the training distribution, the
OOD generalization is then unsolvable [17]. Therefore, assumptions on how test distribu-
tions may change are necessary for OOD generalization. Some researchers have assumed
that some properties of the training data describe spurious correlations and others may
represent the phenomenon of interest, which is stable in unseen data. If these properties
can be separated and identified, it can potentially benefit the OOD generalization [18–21].
These researchers proposed unsupervised representation learning methods based on this
assumption, mainly including disentangled representation learning and causal represen-
tation learning. Dittadi et al. investigate how disentangled representations can be used
for downstream tasks in different domains and scenarios [22]. Träuble et al. explored how
the correlation between factors of variation in data affects the learning of disentangled
representations [23]. Yang et al. propose a new framework for learning disentangled repre-
sentations, that incorporates causal structure as a prior, which can learn more interpretable
and transferable representations [20]. However, whether disentangled representation bene-
fits OOD generalization remains controversial. Leeb et al. [24] conduct some quantitative
extrapolation experiments, finding that the learned disentangled representation fails to
extrapolate to unseen data. For causal representation, Träuble et al. found existing methods
fail to capture the true causal structure of the data when there is correlation [23]. The
challenge is, when the available amount of data is small, one cannot really tell causality
from coincidence.

2.2. Supervised Model Learning

Other researchers have assumed that if the representations remain invariant when the
domain varies, the representations are then transferable and robust on different domains,
including unseen domains [25–28]. Supervised model learning methods are proposed
based on this assumption, mainly including domain-adversarial learning and domain
alignment. For domain-adversarial learning, Ganin et al. propose a domain-adversarial
neural network (DANN) for domain adaptation. By adding a domain classifier that is
trained in an adversarial manner, the DANN is trained to not only perform well on the
main image classification task, but also to adapt to the domain shift between training data
and real-world data [29]. Gwon et al. introduced a new adversarial mixup (AM) training
method, which generates OOD samples that significantly diverge from the support of the
training data distribution but are not completely disjoint. The OOD samples are used to
synthesize differently distributed data for training to increase the OOD generalization
ability [30]. For domain alignment, the domain-invariant representations are learned via
the alignment of features [27,31]. Motiian et al. propose learning semantic alignment
between different domains by minimizing the distance between samples from different
domains but the same class, and maximizing the distance between samples from different
domains and classes [28]. Shao et al. propose a new framework that uses a multi-adversarial
strategy to align the feature distributions of different domains. It can generalize to unseen
face presentation attacks by learning a shared and discriminative feature space from
multiple source domains [26]. However, these supervised model learning methods need a
fundamental diversity in the domain sources to learn the domain-invariant features, which
cannot be satisfied in the OOD case with few training samples available.
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2.3. Few-Shot Learning

There are also some studies that focus on metric-based few-shot learning for SAR
ship classification. These studies usually employ a Siamese network structure and a triplet
loss, with some additional techniques to further increase the robustness and accuracy of
classification, such as a dense connected convolutional network [32] and feature fusion [33].
The basic idea for metric-based few-shot learning is to train the model with a large amount
of data samples on multiple categories, and during testing, the model is provided with
novel categories (also referred to as a novel set) where there are multiple data samples,
usually with few data shifts for each category [34]. One testing sample is chosen to be
fed into the template Siamese branch and other testing samples are fed into other Siamese
branches to determine whether they are a “match”, thus giving the classification results.
The task of few-shot learning is different from the task discussed in this paper: 1. the
quantity and diversity of the available trainable data in our task are highly limited. 2. The
method of template matching via a Siamese network may be impractical due to the vast
diversity of testing data within the same category.

2.4. Integrating Knowledge into Deep Learning

For OOD cases with limited training samples, additional constraints are required to
achieve reliable predictions. Humans are often able to learn without direct examples, opting
instead for high-level instructions or guidelines for how a task should be performed [35],
which means a high-level extrapolation ability. If the properties that can benefit OOD
generalization are already known, it is more effective to assign this knowledge to the
model, rather than letting the model learn by itself. Therefore, many studies extract these
constraints from prior domain knowledge, e.g., from known laws of physics or expert
experience, focusing on how to improve machine learning models by additionally incorpo-
rating prior knowledge into the learning process [36]. Stewart et al. integrated a parabola
function into the loss function, and successfully tracked the height of balls in free fall
without providing labels [35]. Diligenti et al. used semantic-based regularization (SBR) as
the underlying framework to represent the prior knowledge as seen in images [37]. In SAR
classification applications, Huang et al. proposed a physics-guided and -injected learning
(PGIL) model, which employs a physics-guided network to convert prior knowledge as
feature embeddings, then employs a physics-injected network to introduce the physics-
aware features into a CNN pipeline [38]. Zhang et al. preliminarily explored the possibility
of the injection of traditional handcrafted features into modern CNN-based models to
further improve SAR ship classification accuracy [39]. The knowledge-integrated deep
learning methods tend to outperform the pure data-driven methods, strengthening the
interpretability and physics consistency of the predictions. However, though theoretically
feasible, few of these methods have been used in solving the OOD generalization problem
with limited data.

3. Materials and Methods

For the practical application of maritime SAR image scene classification, it is quite
common that scenes encountered in actual tasks are different from those in pre-training due
to the weather, sea state, geographic location, device, imaging mode, motion errors, and
other factors. Figure 1 shows the distributional shift between different series of SAR images
divided by imaging time, location, mode, and device. It can be observed that the features of
image components, such as sea, land facilities, and landscapes, vary greatly between series.
Additionally, for some special SAR imaging platforms, the number of available images can
be quite small. Our goal is to identify if a scene contains land or port facilities (bridge, oil
tanks, harbor, etc.) by classifying a vast number of images from unseen series, using only a
small selection of images from a few series for training.
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Table 1. Detailed information of MSAR 1.0 dataset. For multiple-factor influence experiments, the
yellow shading outlines the series we chose to establish as the training set, the rest of the series were
used to establish the testing set.

Series Image Index Time Location Satellite Imaging Mode
1 1~496 24 Mar. 2021 - HISEA-1 SM
2 613~5251 15 Jan. 2017 E122.0, N30.3 Gaofen-3 FSI

3

5252~5351 24 Oct. 2017 E120.8, N36.1 Gaofen-3 FSI
5352~5745 24 Oct. 2017 E120.9, N35.7 Gaofen-3 FSI
5746~5884 24 Oct. 2017 E121.0, N35.2 Gaofen-3 FSI
5885~5936 24 Oct. 2017 E121.1, N34.7 Gaofen-3 FSI
5937~8229 24 Oct. 2017 E122.0, N30.1 Gaofen-3 FSI

4 8230~8243 16 Nov. 2017 E110.5, N18.1 Gaofen-3 NSC
5 8244~8804 5 Jul. 2017 E120.1, N35.8 Gaofen-3 QPSI
6 8805~8913 12 Aug. 2017 E109.7, N18.4 Gaofen-3 UFS
7 8914~10,119 15 Jul. 2017 E120.4, N35.4 Gaofen-3 FSII
8 10,120~12,972 3 Nov. 2017 E121.9, N30.1 Gaofen-3 QPSI

9
12,973~12,974 20 Feb. 2017 E120.7, N35.0 Gaofen-3 FSI
12,975~13,273 20 Feb. 2017 E120.9, N36.0 Gaofen-3 FSI

10
13,274~13,635 6 Jul. 2017 E129.6, N33.0 Gaofen-3 QPSI
13,636~14,145 6 Jul. 2017 E129.7, N33.5 Gaofen-3 QPSI

11
14,146~14,314 2 Sept. 2017 E129.6, N33.1 Gaofen-3 QPSI
14,315~14,387 2 Sept. 2017 E129.7, N33.4 Gaofen-3 QPSI
14,388~14,411 2 Sept. 2017 E129.7, N33.6 Gaofen-3 QPSI
14,412~15,432 30 Sept. 2017 E120.5, N36.3 Gaofen-3 FSII

12
15,433~17,588 30 Sept. 2017 E121.9, N30.3 Gaofen-3 FSII

13 17,589~19,121 15 Feb. 2017 E122.3, N29.9 Gaofen-3 FSI
14 19,122~21,147 10 Jul. 2017 E122.5, N30.2 Gaofen-3 NSC
15 21,148~22,875 29 Jul. 2017 E121.1, N30.5 Gaofen-3 NSC

16

22,876~23,202 5 Oct. 2017 E120.4, N36.2 Gaofen-3 QPSI
23,203~23,264 5 Oct. 2017 E121.0, N33.5 Gaofen-3 QPSI
23,265~24,122 5 Oct. 2017 E121.9, N30.1 Gaofen-3 QPSI
24,123~24,147 5 Oct. 2017 E121.5, N34.2 Gaofen-3 QPSI
24,148~24,157 5 Oct. 2017 E121.6, N34.7 Gaofen-3 QPSI
24,158~24,168 5 Oct. 2017 E121.7, N35.0 Gaofen-3 QPSI
24,169~24,187 5 Oct. 2017 E121.8, N35.6 Gaofen-3 QPSI
24,188~24,217 5 Oct. 2017 E122.1, N36.7 Gaofen-3 QPSI

17
24,218~24,229 15 Oct. 2017 E124.6, N34.7 Gaofen-3 QPSI
24,230~24,248 15 Oct. 2017 E124.7, N35.2 Gaofen-3 QPSI

18

24,249~24,263 3 Nov. 2017 E121.0, N35.0 Gaofen-3 QPSI
24,264~24,327 3 Nov. 2017 E121.1, N35.4 Gaofen-3 QPSI
24,328~24,378 3 Nov. 2017 E121.1, N35.6 Gaofen-3 QPSI
24,379~24,396 3 Nov. 2017 E121.2, N35.8 Gaofen-3 QPSI
24,397~24,429 3 Nov. 2017 E121.3, N36.2 Gaofen-3 QPSI
24,430~24,435 3 Nov. 2017 E121.4, N36.6 Gaofen-3 QPSI

19

24,436~25,080 15 Nov. 2017 E122.7, N36.5 Gaofen-3 UFS
25,081~25,461 15 Nov. 2017 E123.0, N34.8 Gaofen-3 UFS
25,462~25,623 15 Nov. 2017 E123.0, N35.0 Gaofen-3 UFS
25,624~25,675 15 Nov. 2017 E123.1, N34.5 Gaofen-3 UFS

20 25,676~26,892 6 Jan. 2017 E132.5, N32.5 Gaofen-3 WSC
21 26,893~28,449 4 Aug. 2017 E128.9, N32.2 Gaofen-3 WSC
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We propose a KGNN model to overcome the OOD problem with limited training
samples mentioned above by additionally incorporating prior knowledge into the deep
learning process. Intuitively, the advanced CNN-based model is still regarded as the
main body of the classifier, because its classification performance is commonly better than
traditional ones. The meaning of knowledge is difficult to define in general and is an
ongoing debate in philosophy [36]. In this work, we assume knowledge as task-specific
information about relations between entities in maritime SAR image scenes. We extract
the knowledge in descriptive sentence form through saliency analysis in Section 3.1 and
propose a KGNN model to incorporate the knowledge into a deep learning backbone in
Section 3.2.

3.1. Knowledge Extraction via Saliency Analysis

Figure 1 shows that though the characteristics of entities such as sea, land structures,
and landscapes differ significantly across series, the distinctions between these entities,
such as between the sea and land/port facilities or the sea and ships, remain relatively
consistent in every image series. Based on this observation, we assume a domain-invariant
pre-identification of land regions, marine regions, and targets may be a boost and a good
initialization for OOD generalization. Therefore, we first employ the saliency features
proposed in our previous study [40] to pre-identify the land and marine regions. Saliency
refers to the contrast of an item from its surroundings. For the segmentation task in
maritime SAR images, the main challenge is the high confusion between landforms and sea
clutter under speckle noise. In such circumstances, a bottom-up region-merging technique
such as multiresolution segmentation [41] would be quite time consuming and inaccurate
due to speckle noise [40]. To address the scale difference between noise, sea clutter, and
landforms, a second-order Gaussian regression filter [42,43] is applied to highlight the low-
frequency landforms. The filtration process can be defined by the following minimization
problem [43]:

∫ ly
0

∫ lx
0 ρ


Z0(ξ, η)− Zf(x, y)

−B10(x, y)(ξ − x)− B01(x, y)(η − y)
−B20(x, y)(ξ − x)2 − B02(x, y)(η − y)2

−B11(x, y)(ξ − x)(η − y)

S(ξ − x, η − y)dξdη

⇒ minZf(x,y),B10(x,y),B01(x,y),B20(x,y),B02(x,y),B11(x,y)

(1)

where Z0 is the input SAR image, Zf is the filtration result of Z0 by zeroing the partial
derivatives in the directions of Zf, B10, B01, B11, B20, and B02. B10(x, y) and B01(x, y) are
first-order coefficients. B20(x, y), B11(x, y), and B02(x, y) are second-order coefficients.
ρ(r) = r2/2 is the error metric function of the estimated residual. S(x, y) = 1

α2λcxλcy
exp
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[
−π

(
x

αλcx

)2
− π

(
y

αλcy

)2
]

is the Gaussian weighting function, where α =
√

log(2)/π. λcx

and λcy are the cutoff wavelengths in the x and y directions, respectively. In our case, for an
image with a size of 256 × 256 pixels, the cutoff wavelength is chosen as 32 pixels in both
the x and y directions. Figure 2a shows an SAR image with a harbor scene, and Figure 2b
shows its filtration result; the speckle noise is alleviated, and low-frequency landforms and
targets are emphasized.
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Figure 2. (a) Harbor scene satellite SAR image, and (b) the filtration result.

The filtration result is then rescaled to an intensity level of [0, 255]. For intensity i ∈
{0, 1, . . . , 255}, the corresponding pixel number with intensity i is ni, and the probability
of occurrence is pi = ni/∑255

i=0 ni. A multi-level Otsu’s method that uses the maximized
inter-class variance f of the amplitude as the evaluation function for adaptive threshold
selection is used [44]:

f =
(µwt1 − µt1)

2

wt1

+ · · ·+

(
µtj − µwtj + µwtj−1 − µtj−1

)2

wtj − wtj−1

+ · · ·+ (µwtn − µtn)
2

1 − wtn

(2)

where wtj represents the cumulative probability of occurrence of gray-level interval
[
0, tj

]
,

and wtj = ∑
tj
i=0 pi. µtj denotes the mean value at gray-level interval

[
0, tj

]
, and µtj =

∑
tj
i=0 i · pi. µ is the mean value of the filtration result and µ = ∑255

i=0 i · pi. The thresholds
t = [t1, t2, . . . , tn] can be determined using the Nelder–Mead simplex method [45], in our
case we use three thresholds and thus achieve a 4-level segmentation. The segmentation
result of Figure 2a is shown in Figure 3a. By applying further morphological operations,
two frequency saliency maps that outline the land (SM1) and marine regions (SM2) are
obtained, as shown in Figures 3b and 3c, respectively.
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The distinction between targets and background clutter is another important domain-
invariant feature which can be addressed by target detection. Pixel intensity is a fundamen-
tal feature of SAR images that can be used to detect targets. However, for inhomogeneous
scenes, detection methods using a global intensity threshold would not be suitable since
many false alarms such as strong sea clutter, noise, land facilities, and land clutter will also
be detected [46]. In this paper, we adopt a local constant false alarm rate (CFAR) detector to
estimate an adaptive intensity threshold for each pixel based on the statistical distribution
of the background clutter in its vicinity. Figure 4a illustrates the local CFAR procedure: a
small rectangle represents the protection window that excludes the internal pixels from
the background estimation. A larger rectangle represents the background window, the
pixels between the two windows are used to fit a statistical model and a threshold is thus
derived. This threshold is then applied to examine whether the center pixel belongs to a
target or not. In our case, we use a Gaussian distribution to model the background clutter,
the adaptive threshold matrix Tc can then be calculated by [47]

Tc = Σϕ−1(1 − p f a) + M (3)

where Σ and M are the matrix of the standard deviation and mean of the pixel intensity
values between the concentric windows, and p f a is the false alarm rate (in our case 0.001).
ϕ is the standard normal cumulative distribution function:

ϕ(x) =
1
2

(
1 − erf

(
− x√

2

))
(4)

erf(x) =
2√
π

∫ x

0
e−t2

dt (5)

The matrix of the mean values M can be obtained through mean filtering with kernel K.
Kernel K is a matrix the same size as the background window, with values of 0 for the area
with the same size as the protection window in the center and 1 for the surrounding area,
marked by dashed shading, as shown in Figure 4a. The matrix of standard deviation Σ can
be obtained by

Σ =

√
K ∗ Z0

2 − (M)2 (6)

Figure 4b shows the matrix of adaptive threshold Tc, which is high over the land
region, and low over the target region. The input image Z0 is compared with Tc, and the
part exceeding the threshold is the detection result. Figure 4c shows the result of the local
CFAR detection. With an adaptive threshold, the target is successfully detected with very
few false alarms. This detection forms our target saliency map (SM3).
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To demonstrate the identification ability of these saliency features, pre-identification
results of examples from various scenes are presented in Figure 5. For clean, weak sea
clutter with multiple targets, as shown in Figure 5a, no entities are misidentified in SM1, and
all targets are successfully identified in SM3. Figure 5b,c illustrate that as the amount of sea
clutter increases, it is initially detected in part by SM1 (Figure 5b). Eventually, all sea clutter
is recognized in SM1 while no entities are detected in SM2. Despite the strong sea clutter,
the ship target can still be accurately identified in SM3 (Figure 5c). Figure 5d shows a ship
target with energy leakage; the leakage is identified in SM1, while sea clutter is identified
in SM2. Figure 5e shows inhomogeneous sea clutter, the stronger sea clutter is identified in
SM1, the weaker sea clutter is identified in SM2, while the ship target among strong sea
clutter is successfully identified in SM3. Figure 5f shows scenes with small amounts of dim
land clutter; the land region is successfully identified in SM1, the sea region is identified
in SM2, and all targets are identified in SM3. Figure 5g shows an embankment occupying
a very small area in the image; the embankment can be successfully identified in SM1.
Figure 5h shows dim land with a bright bridge; the land region is successfully identified in
SM1, while the bridge is misidentified at the edge of land in SM3. Figure 5i shows land
with oil tanks; the land region is successfully identified in SM1, while some small bright
land facilities at the edge of land regions are misidentified in SM3. From Figure 5j–n, the
distinction between sea and land becomes less pronounced, yet the identification remains
accurate in SM1, SM2, and SM3 up to Figure 5n. Some strong sea clutter is identified
alongside land clutter in SM1, as shown in Figure 5n.
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It can be seen from the results that the pre-identification ability of the three saliency
maps is quite good for scenes with good sea–land contrast or with clean, weak sea clutter.
The pre-identification ability of SM1 and SM2 deteriorates for scenes with strong/inhomo-
geneous sea clutter, or with very confusing sea–land boundaries. For SM3, entities such
as bright bridges and small bright facilities at the edge of land regions are often detected
as targets rather than a portion of land. It is obvious that these pre-identification results
cannot be simply input into the CNN networks since the error in each saliency map will
also propagate and finally lead to false classification. However, by observing the pre-
identification results of various scenes, we found that no matter whether they were good or
deteriorated, there were certain consistent patterns that the pre-identification results of the
saliency maps adhered to:

(1) Ship targets tend to appear in the center of strong sea clutter and at the edge of land,
but rarely in the center of land.

(2) There is little difference in the uniformity of strong and weak sea clutter, while a
significant difference is observed in the uniformity of sea and land clutter.

(3) The layout of land regions is more regular compared to strong sea clutter.

These laws reflect the relations between entities in maritime SAR image scenes based
on the saliency features. Therefore, with an appropriate integration strategy, addressing
the correlations between saliency features, these pre-identification results can be a boost
and supplement for a data-driven deep learning model. The imperfections in the pre-
identification results can be corrected by their inherent relations.

3.2. Knowledge-Guided Neural Network (KGNN)

SM1, SM2, and SM3 provide some very fundamental information about the layouts of
the entities in an SAR image, with imperfections in several kinds of scene. We summarize
some knowledge based on the saliency analysis and believe this knowledge can be a boost to
OOD generalization with very limited training samples. According to the prior knowledge
in Section 3.1, the inherent relations between the saliency maps need to be addressed. The
sentence-form knowledge in qualitative descriptions cannot be incorporated into a deep
learning model directly; therefore, the following integration strategy is designed:

(1) We feed the three saliency maps along with the original SAR image into separate
branches of a ResNet-18 [48] backbone to generate feature embeddings. We apply
the convolutional block and the first four residual blocks of ResNet-18 as the data-
driven feature extractor branch. The purpose is to extract features with semantic
discrimination beneficial to the classification of each saliency map. The original SAR
image feature extractor branch is designed to address the neighboring information in
the edge between saliency maps. In practice, we implement the four feature extractor
branches using grouped convolutional layers [49] and grouped batch normalization
layers [50].

(2) The feature embeddings generated from the four branches are concatenated and prop-
agate together into the remaining four residual blocks of ResNet-18. The transformed
semantic features of the saliency maps correlate with each other and evolute in the
mid-level and high-level layers of the conventional classification network successively.

To avoid the loss of interactive information, the original image propagates in the same
way with other saliency feature maps. Figure 6 depicts the idea of our KGNN model:
1. extract saliency features; 2. summarize knowledge using saliency analysis; 3. design
integration strategy based on this knowledge. The KGNN model is thus established, the
final output is the scene type of the input image. Figure 7 shows the detailed neural network
architecture diagram of the KGNN model.
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4. Results and Discussion
4.1. Data Description

In this section, we evaluate our proposed method on the MSAR 1.0 dataset [51,52],
which is a large-scale synthetic-aperture radar (SAR) image dataset for target detection.
The dataset consists of 28,449 detection slices, each with a size of 256 × 256 pixels, collected
from two moving satellite platforms: HISEA-1 and Gaofen-3. The dataset covers various
scenarios such as airports, ports, inshore, islands, offshore, urban areas, etc., and includes
four classes of targets: aircraft, oil tank, bridge, and ship (moving target). The HISEA-1
satellite has three imaging modes with resolutions ranging from 1 m to 10 m, the incident
angle from 20◦ to 35◦, and a single VV polarization. The Gaofen-3 satellite has 12 imaging
modes with resolutions ranging from 1 m to 100 m, and four polarization modes, including
HH, HV, VH, and VV. We list the detailed information of the MSAR dataset in Table 1. There
are three key characteristics: the imaging time, which means different weather conditions;
the imaging location, which corresponds to different scenarios; and the imaging modes,
which affect the incident angle, resolution, and polarization. We divide the MSAR dataset
into 21 series based on these three key characteristics. The style and layout of images can
vary greatly across series, as shown in Figure 8.
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There are two issues we would like to discuss in this manuscript:

(1) How the scaling of the training data affects the OOD generalization and the perfor-
mance improvement of KGNN under different training sample sizes.

(2) How robust is the KGNN to independent factors concerning SAR data variation such
as weather conditions, terrain type, and sensor characteristics.

To address the two issues above, two kinds of experiments were designed. Issue 1
is addressed with experiments under multiple-factor influence, and issue 2 is addressed
with experiments under single-factor influence. The data descriptions of multiple-factor
influence and single-factor influence are as follows:

(1) Multiple-Factor (MF) Influence Data Description:
Based on observations of the data series as shown in Figure 8, the series can be roughly

divided into two kinds, one with a clean background and the other with a noisy background.
For conventional CNN methods, if only samples with clean backgrounds are chosen as
the training set, then most of the samples with noisy backgrounds will be misclassified as
sea–land mixture scenes, and very little difference will be witnessed with the change in
training sample size. Such a data configuration is not optimal for examining how variations
in the size of the training samples affect OOD generalization. Therefore, we randomly
select 10, 20, 50, 100, 200, and 500 samples only from series 1, 2, 12, and 13 to establish
the training sets. We repeat the selection process five times to reduce the influence of
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randomness in the training data selection. A total of 6374 samples were randomly selected
from series 3~11 and 14~21 to establish the testing set. Samples with clean backgrounds
and noisy backgrounds can both be found in the training and testing sets. However, the
degree of background noise and overall layout of the samples differ between the two
sets, influenced by a combination of factors such as weather conditions, terrain type, and
sensor characteristics (MF influence). This data selection can effectively demonstrate how
variations in the size of training samples affect the OOD generalization ability of all models.

(2) Single-Factor (SF) Influence Data Description:
Single factors (SFs) mean the independent factors that cause the SAR data variations,

including weather conditions, terrain type, and sensor characteristics. The SFs in MSAR
are as follows:

(a) SF-1 (weather conditions): weather conditions are related to the date information
of the MSAR data. Here, we select data from series 7 and series 12 to establish the training
and testing sets, respectively. As shown in Table 2, samples in series 7 are collected with
the same satellite, same imaging mode, similar location (similar terrain type), but different
weather conditions. A total of 50 samples from series 7 are selected as the training set, and
858 samples are selected from series 12 as the testing set.

Table 2. Data addressing weather condition variation in MSAR dataset, the yellow shading outlines
the series we chose to establish the training set, the rest of the series were used to establish the testing
set.

Series Image Index Time Location Satellite Imaging Mode
7 8914~10,119 15 Jul. 2017 E120.4, N35.4 Gaofen-3 FSII

12 14,412~15,432 30 Sept. 2017 E120.5, N36.3 Gaofen-3 FSII

(b) SF-2 (terrain type): terrain type is related to the location information of the MSAR
data. Here, we select data from series 3 to establish the training and testing sets. As shown
in Table 3, samples 5252~5745 from series 3 are collected with the same satellite, imaging
mode, and date, but quite different locations to samples 5937~8229 (about 670 km apart).
A total of 50 samples from samples 5252~5745 are selected as the training set, and 1210
samples are selected from samples 5937~8229 as the testing set.

Table 3. Data addressing terrain type variation in MSAR dataset, the yellow shading outlines the
series we chose to establish the training set, the rest of the series were used to establish the testing set.

Series Image Index Time Location Satellite Imaging Mode

3
5252~5351 24 Oct. 2017 E120.8, N36.1 Gaofen-3 FSI
5352~5745 24 Oct. 2017 E120.9, N35.7 Gaofen-3 FSI
5937~8229 24 Oct. 2017 E122.0, N30.1 Gaofen-3 FSI

(c) SF-3 (sensor characteristics): there are no data collected with the same date and
location but different imaging modes in the MSAR dataset. Here, we select data from series
2 and 13 and series 5, 8, and 16 to establish the training and testing sets, respectively. The
main differences are their sensor characteristics (imaging modes), as shown in Table 4. A
total of 50 samples from series 2 and 13 are selected as the training set, and 823 samples
from series 5, 8, and 16 are selected as the testing set.
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Table 4. Data addressing sensor characteristics variation in MSAR dataset, the yellow shading
outlines the series we chose to establish the training set, the rest of the series were used to establish
the testing set.

Series Image Index Time Location Satellite Imaging Mode
2 613~5251 15 Jan. 2017 E122.0, N30.3 Gaofen-3 FSI
5 8244~8804 5 Jul. 2017 E120.1, N35.8 Gaofen-3 QPSI
8 10,120~12,972 3 Nov. 2017 E121.9, N30.1 Gaofen-3 QPSI

13 17,589~19,121 15 Feb. 2017 E122.3, N29.9 Gaofen-3 FSI

16

22,876~23,202 5 Oct. 2017 E120.4, N36.2 Gaofen-3 QPSI
23,203~23,264 5 Oct. 2017 E121.0, N33.5 Gaofen-3 QPSI
23,265~24,122 5 Oct. 2017 E121.9, N30.1 Gaofen-3 QPSI
24,123~24,147 5 Oct. 2017 E121.5, N34.2 Gaofen-3 QPSI
24,148~24,157 5 Oct. 2017 E121.6, N34.7 Gaofen-3 QPSI
24,158~24,168 5 Oct. 2017 E121.7, N35.0 Gaofen-3 QPSI
24,169~24,187 5 Oct. 2017 E121.8, N35.6 Gaofen-3 QPSI
24,188~24,217 5 Oct. 2017 E122.1, N36.7 Gaofen-3 QPSI

4.2. Experimental Setup

We conducted extensive experiments to compare our proposed KGNN method with
seven state-of-the-art classification models: ResNet-18 [48], ResNet-50 [48], GoogleNet [53],
Inception-v3 [54], Xception [55], Efficient-b0 [56], and MobileNet-v2 [57]. These models
are widely used for image classification tasks and have achieved remarkable performance
on various benchmarks. The experiments were conducted on a workstation with CPU
12th intel i9 12900K, GPU NVIDA GeForce RTX 3090, and 32 GB RAM. We used Matlab
2021b for model implementation and data analysis. All networks were trained using the
stochastic gradient descent with momentum (SGDM) algorithm. We set the mini-batch size
at 32. The learning rate started from 0.01, and then multiplied by a drop factor of 0.9 every
10 epochs, and a momentum of 0.9 was employed. We removed the dropout layers in all
models to achieve fitting to the training set more easily. All models were trained until the
training accuracy stabilized at 100% for at least 20 epochs, which meant that the model had
learned to fit the training data perfectly, while the total training epochs varied from 60 to
120. After training, all models were utilized on the testing set to make predictions. The test
accuracy, which is the proportion of correct predictions to the total number of samples in
the testing set, was employed to assess the KGNN’s efficacy and comparative performance
against the baseline methods.

4.3. Results under Multiple-Factor Influence

The number of trainable parameters and running time per image of each model are
listed in Table 5. To evaluate the performance of different models, the mean values and
standard deviations of the test accuracies are listed in Table 6. To view the difference
between the performances of all models under all training sets in greater detail, we plot
the mean values and standard deviations of the test accuracies with the change in training
set sizes in Figure 9. Solid lines with an ‘o’ marker represent the average test accuracy,
corresponding to the left-hand blue coordinate axis. Dashed lines with a ‘*’ marker represent
the standard deviation, corresponding to the right-hand orange coordinate axis. The
performances of conventional data-driven deep learning models degenerate when there
exists a distributional shift between the training and testing data. With 500 training samples,
the best performance on the testing set of a conventional data-driven deep learning model
comes from Inception-v3, which only reaches 94.86%, a relatively low index for a binary
classification task with deep learning. The OOD performances of conventional data-driven
deep learning models degenerate further as the size of the training set decreases.
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Table 5. Model sizes and running time for all models.

Model Name Trainable Variables (Millions) Running Time per Image (s)

KGNN 14.4 0.0511
ResNet-18 11.1 0.0013
ResNet-50 23.5 0.0020
GoogleNet 5.9 0.0005

Inception-v3 21.8 0.0013
Xception 20.8 0.0026

Efficient-b0 4.0 0.0033
MobileNet-v2 2.2 0.0018

Table 6. Classification performance obtained by different models with different training set sizes.

Test Accuracy
(%)

Number of Samples in Training Set
10 20 50 100 200 500

KGNN 79.23 ± 3.29 87.07 ± 6.17 96.33 ± 0.91 97.41 ± 1.66 98.43 ± 0.27 98.75 ± 0.37
ResNet-18 68.85 ± 7.53 70.12 ± 7.51 85.94 ± 2.04 89.60 ± 2.81 90.93 ± 1.52 91.61 ± 0.62
ResNet-50 63.33 ± 5.58 72.99 ± 4.94 85.83± 2.07 88.29 ± 3.70 89.27 ± 1.39 91.22 ± 1.44
GoogleNet 65.31 ± 14.16 77.62 ± 4.04 84.67 ± 3.26 88.82 ± 2.76 88.95 ± 2.31 93.99 ± 0.96

Inception-v3 57.50 ± 7.90 64.52 ± 11.10 84.13 ± 1.74 89.38 ± 2.04 92.67 ± 1.26 94.86 ± 2.25
Xception 62.41 ± 4.10 67.40 ± 6.01 83.39 ± 2.44 89.88 ± 2.12 90.79 ± 1.53 94.29 ± 1.19

Efficient-b0 64.98 ± 2.12 65.72 ± 5.30 77.62 ± 3.82 83.58 ± 4.48 88.23 ± 2.72 91.26 ± 0.84
MobileNet-v2 62.75 ± 5.24 70.67± 7.87 84.43 ± 1.46 84.72 ± 1.75 87.03 ± 1.61 89.48 ± 0.34
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Figure 9. The average test accuracy and standard deviation of all models with different training set
sizes. Solid lines with ‘o’ marker represent the average test accuracy, corresponding to the left-hand
blue coordinate axis. Dash lines with ‘*’ marker represent the standard deviation, corresponding to
the right-hand orange coordinate axis.

However, the KGNN model outperformed all conventional deep learning models
under all training set sizes. For a training set with 10 samples, the classification accuracy
of our KGNN model reached 79.23%, approximately 15% higher than those of other
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models. For a training set with 20 samples, the classification accuracy of our KGNN model
reached 87.07%, approximately 17% higher than those of other models. Figure 9 shows
the significant gap in the average test accuracy between our KGNN model and all other
models. This gap generally narrows with the increase in training set size. However, the
smallest gap value is still quite prominent (6%) with the training set size at 500.

The standard deviation of the test accuracy reflects the influence from the randomness
of the training sample selection. As can be seen in Figure 9, the randomness affects the
performance stability more seriously under small training set sizes, but in general, our
KGNN method is less sensitive to this randomness than other models. The significant
improvements in the average test accuracy between KGNN and other models, along with
the resistance to the randomness of training sample selection, strongly demonstrate that
integrating prior knowledge summarized by saliency analysis into a data-driven model can
undoubtedly boost the latter’s OOD generalization ability with limited training samples.

To demonstrate the improvement of the OOD generalization ability with limited
training samples using the KGNN model more intuitively, we compare the classification
results between KGNN and ResNet-18 from one experiment with a training set size of
50. Under identical experimental settings, the test accuracy of KGNN on the testing set is
96.30%, while that of ResNet-18 is 82.63%. There are 940 testing images that are correctly
classified by KGNN but in the meantime misclassified by ResNet-18. Figure 10 shows
several examples from the 940 images. From the first row of Figure 10, we can see that
pure sea scenes with inhomogeneous sea clutter, a large target, a small target with energy
leakage, multiple targets, and strong sea clutter are misclassified by ResNet-18. From
the second row of Figure 10, we can see that sea–land mixture scenes with weak land
clutter, a small proportion of land regions, unexpected land facilities like oil tanks, bright
embankments, strong sea clutter, and confusing sea–land boundaries are misclassified by
ResNet-18. However, the relations between the entities in these scenes are all generalized
by the knowledge summarized from saliency analysis. As a result, through knowledge
integration, the KGNN model can successfully classify all these challenging scenarios with
a training set that is very limited in both diversity and quantity.
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misclassified by ResNet-18.

Figure 11 shows the training process of all models with the first set of 200 and
500 training samples. For the KGNN model, it generally takes less than 10 epochs to
stabilize at 100% training accuracy, while for other models it requires at least 60 epochs to
reach the same training performance. This difference indicates that it is much easier to find
the global minimum in the hyperparameter space with the KGNN model. The guidance of
prior knowledge can greatly facilitate the training process of deep neural networks.
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4.4. Results under Single-Factor Influence

The results under multiple-factor influence give a comprehensive assessment of
KGNN’s OOD generalization ability across varying sizes of training sets. Following this,
we will analyze the OOD generalization ability under the influence of different independent
factors.

(1) Results under SF-1 (weather condition): detailed information about the training
and testing sets is listed in Table 2. Some samples from the training and testing sets are
shown in Figure 12. There is a significant difference in the overall intensity of images
under the influence of different weather conditions. Figure 13 shows the test accuracy of
all models, the KGNN method shows a significant improvement in OOD generalization
ability (approximately 70% higher than other models). The reason for the poor performance
of conventional CNN methods is that they generally identify all test samples as sea–land
mixture scenes due to the image intensity variation under different weather conditions.
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(2) Results under SF-2 (terrain type): detailed information about the training and
testing sets is listed in Table 3. Some samples from the training and testing sets are shown
in Figure 14. For pure sea scenes, the main variation lies in the target type. For sea–land
mixture scenes, the training set mainly consists of natural islands, while the testing set is
mainly composed of oil tanks and dock facilities. Figure 15 shows the test accuracy of all
models, the KGNN method shows superior OOD generalization ability compared to other
models with an approximately 15% improvement in the test accuracy. The KGNN model is
more robust in dealing with distributional shifts caused by terrain or target types.
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(3) Results under SF-3 (sensor characteristics): detailed information about the training
and testing sets is listed in Table 4. Some samples from the training and testing sets are
shown in Figure 16. From observations, the distributional shifts between the training
and testing sets are not as prominent as those in SF-1 or SF-2. Figure 17 shows the test
accuracy of all the models, the test accuracy of the KGNN method is approximately
2%~12% higher than other models, indicating a higher robustness in dealing with sensor
characteristic variations.
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4.5. Discussion

To fully demonstrate the OOD generalization ability of the proposed KGNN model
with limited training samples, two kinds of experiments were conducted. For experi-
ments under MF influence, the distributional shift between the training and testing sets
is determined by the comprehensive influence of weather conditions, terrain type, and
sensor characteristics. The results under MF influence show that the OOD generalization
abilities of all the models degenerate with a decrease in the training sample size, while
the KGNN model outperformed all the conventional data-driven deep learning models
under all training set sizes, with a significant test accuracy increase from about 6% to
17%. From the standard deviation of the test accuracy, KGNN is less sensitive to sample
selection randomness than other models. Image comparisons show that the KGNN model
improves the OOD generalization with a limited training set, especially on pure sea scene
samples with inhomogeneous sea clutter, a large target, a small target with energy leakage,
multiple targets, and strong sea clutter, and on sea–land mixture scene samples with weak
land clutter, a small proportion of land regions, unexpected land facilities like oil tanks,
bright embankment, strong sea clutter, and confusing sea–land boundaries. Moreover, the
integration of knowledge can prominently facilitate the training process. The KGNN model
converges within many fewer epochs than conventional data-driven deep learning models.

For experiments under SF influence, the distributional shift between the training and
testing sets is determined by the independent influence of weather conditions, terrain type,
and sensor characteristics. The results under SF influence show that the greatest distribu-
tional shift between the training and testing sets is caused by weather conditions, followed
by terrain and target type variations. The least impact comes from sensor characteristics.
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The OOD generalization ability of KGNN is approximately 70% higher than other models
under the influence of different weather conditions. Under terrain and target influences,
the improvement is around 15%, and under the influence of sensor characteristics, the
improvement ranges from 2% to 12%.

The main drawback of the KGNN model is the processing time. However, for SAR
scene classification, this delay will not cause problems. To accommodate continuous
imaging, it is generally required to ensure that the program processing time does not exceed
the time it takes to output a single frame. SAR imaging needs time to accumulate echo
pulse signals during the synthetic-aperture interval, followed by post-processing to convert
these signals into an SAR image [58]. It usually takes a few seconds to several minutes
to generate an SAR image depending on the resolution, coverage, and algorithm [58].
Therefore, despite the processing time being longer compared to other models, the KGNN
remains sufficiently rapid for SAR perception tasks.

5. Conclusions

This paper proposed a novel knowledge-guided neural network (KGNN) model by
integrating knowledge summarized by saliency analysis for maritime SAR image classifica-
tion to improve OOD generalization performance with limited training data. Knowledge
reflecting the inherent relations between entities in various SAR image scenes is sum-
marized via saliency analysis. A knowledge integration strategy is then designed to
incorporate the descriptive knowledge into a ResNet-18 backbone. Specifically, all saliency
maps along with the original image are input into the first several convolutional and resid-
ual blocks of ResNet-18 separately to generate individual deep feature embeddings, then
all feature embeddings are concatenated and propagate together into the rest of the residual
blocks of ResNet-18 to generate scene type classification results. The experimental results
demonstrate that the pre-identification results with the saliency map in this paper can be
a boost and supplement for the data-driven CNN-based model in OOD generalization,
although their performance may deteriorate in some complex scenes. The information
of the pre-identification results and their inherent relations can both be addressed by the
feature integration strategy. From the improvements, it is inferred that the deterioration
part in the saliency maps is corrected by their inherent relations. In addition, the KGNN
model shows robustness in OOD scenarios caused by weather conditions, terrain type,
and sensor characteristics. In summary, the proposed KGNN model provides a way to
integrate knowledge summarized by saliency analysis of maritime SAR scene classification
into the data-driven model, boosting the latter’s OOD generalization ability under limited
training samples, which is very important for practical applications with special SAR
imaging platforms.

In future work, we will consider reducing the deterioration part in the saliency maps
to further boost the OOD generalization ability of the KGNN model and applying the idea
of this method in OOD semantic segmentation tasks. We will also consider applying this
method to other detection systems including optical and infrared modalities.
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