
Citation: Zhang, C.; Xie, W.; Li, Y.;

Liu, Z. Multi-Source T-S Target

Recognition via an Intuitionistic

Fuzzy Method. Remote Sens. 2023, 15,

5773. https://doi.org/10.3390/

rs15245773

Academic Editors: Stefano Mattoccia,

Piotr Kaniewski and Fabio Tosi

Received: 9 August 2023

Revised: 7 December 2023

Accepted: 15 December 2023

Published: 18 December 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

Multi-Source T-S Target Recognition via an Intuitionistic
Fuzzy Method
Chuyun Zhang 1,2 , Weixin Xie 1,2, Yanshan Li 1,2 and Zongxiang Liu 1,2,*

1 Guangdong Key Laboratory of Intelligent Information Processing, Shenzhen University,
Shenzhen 518060, China; zhangchuyun2019@email.szu.edu.cn (C.Z.)

2 College of Electronics and Information Engineering, Shenzhen University, Shenzhen 518060, China
* Correspondence: liuzx@szu.edu.cn; Tel.: +86-755-26732055

Abstract: To realize aerial target recognition in a complex environment, we propose a multi-source
Takagi–Sugeno (T-S) intuitionistic fuzzy rules method (MTS-IFRM). In the proposed method, to
improve the robustness of the training process of the model, the features of the aerial targets are
classified as the input results of the corresponding T-S target recognition model. The intuitionistic
fuzzy approach and ridge regression method are used in the consequent identification, which
constructs a regression model. To train the premise parameter and reduce the influence of data
noise, novel intuitionistic fuzzy C-regression clustering based on dynamic optimization is proposed.
Moreover, a modified adaptive weight algorithm is presented to obtain the final outputs, which
improves the classification accuracy of the corresponding model. Finally, the experimental results
show that the proposed method can effectively recognize the typical aerial targets in error-free and
error-prone environments, and that its performance is better than other methods proposed for aerial
target recognition.

Keywords: target recognition; T-S intuitionistic fuzzy rules; ridge regression; adaptive weight

1. Introduction

The complexity of the battlefield environment is enhanced significantly by high-tech
equipment, which has introduced great difficulties to the acquisition of target information.
As the battlefield expands to the five-dimensional space of sea, land, air, sky, and electro-
magnetics, the collection of target information will not only be affected by the accuracy and
stability of sensor equipment, the influences of the climate environment, and the complex
electromagnetic field environment, but also by other factors that lead to deviations or
even errors in the collected target information. In addition, there will be interference and
confusing equipment intentionally released by the enemy, which increases the uncertainty
of the observation of the target. Therefore, it is difficult for a single information source to
obtain accurate and complete intelligence information in such a complex environment, and
also meet the requirements of actual aerial combat.

With the development of multi-source detection technology, a structure able to track
multiple targets and realize target recognition is essential to a multi-sensor data fusion
system. Information fusion can recognize a target from multiple dimensions and multiple
directions, which data can then be comprehensively processed with the complementarity
and redundancy of information, to eliminate the influence of inaccuracy and incompleteness
of information obtained from a single information source. Moreover, multi-feature fusion
processing is designed to obtain more accurate target features by data fusion of two or more
sensors, thus breaking the limits of single-sensor detection, in which equipment generally
collects the information of only one feature within a corresponding sensing range [1].
Target features obtained by different sensors are imprecise and conflict with the influence
of complex environments, interference signals and so on; for example, impulsive noise may
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cause the collected data to deviate from the original range, leading to the drawing of the
wrong conclusions in the target recognition system. Therefore, muti-feature fusion and
improving the interpretability of target recognition are particularly important.

1.1. Literature Review and Motivation

For the recognition system, a series of methods have been presented, such as the
Dempster–Shafer (D-S) [2–4], fuzzy set [5–7], probability statistics [8–10], the gray sys-
tem [11,12], rough sets [13–15], and fractal theory [16–18]. D-S evidence theory, a general
framework for information fusion, is used to combine multi-level information from multi-
source environments for reasoning and dealing with uncertainty, imprecision, and incom-
pletion [19,20]. Therefore, extended evidence theories have been well established in infor-
mation fusion [21], decision analysis [22], risk assessment [23,24], pattern recognition [25],
and other fields. However, traditional evidence theory has low accuracy because of the
problems of constructing a basic probability assignment (BPA) and conflict management.

With regard to the framework of the BPA, some modeling approaches have been
provided. Moreover, Dempster’s combination method is performed to transform the BPA
into probability distribution, the quality of the BPA in evidence theory will determine
whether the recognition result is reasonable. Yin et al. [26] proposed a measurement model
to achieve uncertainty management of the BPA via the processing of negation and the links
between uncertain data and entropy. Jiang et al. [27] constructed a correlation coefficient
to describe the non-intersection and the distinctions between the focal elements. Wang
et al. [28] proposed a belief divergence measurement that presented the correlation of
various kinds of subsets with a belief function and an appropriate probability distribution.
Kaur et al. [8] processed nonnegative and symmetric divergence measures for BPA. Hu
et al. [9] proposed the cross-information to change the comprehensive BPA. However,
an algorithm based on decision-level data fusion needs high data preprocessing and the
decision-making methods are short of general structure after obtaining the characterized
distributions of basis reliability.

When coping with highly conflicting evidence, D-S evidence theory may lead to
counter-intuitionistic recognition. Therefore, many methods have been proposed including
Yager’s combination rules method [29], Murphy’s arithmetically average model of bodies
of evidence [30], Li’s trust-based method [31], and so on. Target recognition methods based
on fuzzy set theory only need a small amount of prior knowledge to achieve more efficient
and accurate recognition. Wang [32] proposed the intuitionistic fuzzy dynamic Bayesian
network to transfer the outputs of intuitionistic fuzzy rules into probability. Jiang [7]
established a hybrid decision-making fuzzy rough and hesitant sets model and developed
a machine learning mechanism to construct the relative loss functions. Guo [33] proposed
the recognition structure of UAVs based on a recurrent convolutional strategy, which
influenced the degrees of super-resolution realization by setting the numbers of cycles
and iterations with changes in the blur degree. Moreover, intuitionistic fuzzy sets (IFS)
can conquer the inaccuracy and limitations of traditional fuzzy sets for solving specific
information and eliminate the bottleneck that Bayesian models excessively rely on. Lei [34]
proposed an intuitionistic fuzzy reasoning (IFR) framework to obtain the membership and
non-membership degrees of the property variables of a recognition model. Dolgiy [35]
combined the D-S method and Takagi–Sugeno (T-S) fuzzy system to develop the empirical
process of an expert system of probability estimates based on subjective preferences of
the description of typical sensors. Therefore, a novel hybrid T-S and intuitionistic fuzzy
inference system are applied to target recognition in our method.

1.2. Our Contributions

In this paper, a novel MTS-IFRM is proposed for high-performance multi-target recogni-
tion in error-free and error-prone environments. The main novelties of our method include:
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• Improving the robustness of the training process of the model: the features of the
aerial targets are classified as inputs to the corresponding T-S target recognition model,
so that features are divided into multi-level features with the target properties;

• In the T-S model algorithm, the study of premise and consequence parameter identifi-
cation has been the key question. We apply an intuitionistic fuzzy C-means method
based on the dynamic particle swarm optimization (DPSO) algorithm and the ridge
regression model to identify the premise and consequence parameter of the T-S intu-
itionistic fuzzy model, respectively, which better realizes the parametric identification
of the model;

• High classification accuracy can be guaranteed in error-free and error-prone environ-
ments. The adaptive weight algorithm reduces the weight corresponding to the model
with a low degree of discrimination and increases the weight corresponding to the
model with a high degree of discrimination, which is better distinguished from the
input features.

1.3. Organization of the Article

The organization of the method is described as follows: The fuzzy target recognition
model is given in Section 2. Model construction and parameter identification are presented
in Section 3. The simulation results and an analysis with comparable methods are given in
Section 4. Finally, the conclusions are organized in Section 5. The meanings of notation in
the article are listed in Table 1.

Table 1. Notation list.

Notation Meaning of the Notation Notation Meaning of the Notation

Θ Discriminative frame s Scoring function set
Rl Fuzzy rule l N Number of training samples

zCA Inputs of CA Xi, Vi, Pi Position, velocity, optimal solution of the i-th particle

ECA
Universe of discourses

of CA G Size of particle swarm

Al
1 Intuitionistic fuzzy subsets Pg Current global optimal solution

pl Consequent parameter wmin, wmax Minimum, maximum inertia weights
µ(•), υ(•) Membership, non-membership degree c1, c2 Learning parameter

π(•) Intuitionistic index T Number of iterations
LRG Number of fuzzy rules M Number of label vector dimensions

y0
RG Outputs for the model fmin, fmax, favg

Minimum, maximum, and average fitness of the
particle swarm

2. Preliminaries

In this section, the preliminaries of the Dempster–Shafer evidence theory and Takagi–
Sugeno intuitionistic fuzzy rules method are first introduced.

2.1. Evidence Theory

Dempster–Shafer evidence theory has flexibility and effectiveness in modeling uncer-
tainties without prior information [19]. A discriminative frame Θ consisting of all possible
propositions is defined as follows:

Θ = {θ1, θ2, · · · , θi, · · · , θn} (1)

Mass function mapping m from 2Θ to [0, 1] is defined as BBA, which satisfies the
following conditions:

m(∅) = 0 and ∑
θ⊆Θ

m(θ) = 1 (2)
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If m(θ) > 0 , then θ is described as the focal element. Suppose two independent
basic belief assignments m1, m2 construct the form m1 ⊕ m2 according to Dempster’s rule
of combination, which can be expressed as follows:

m(θ) =


1

1−K ∑
E∩F=θ

m1(E)m2(F), θ ̸= ∅

0 θ = ∅
(3)

With
K = ∑

E∩F ̸=∅
m1(E)m2(F) (4)

where E, F ∈ 2θ and K is the conflict coefficient of m1 and m2. When the evidence is highly
conflicting, the evidence fusion processing will lead to counter-intuitionistic results. For a
multi-source target recognition system, a degree of conflict of the information is provided
by each sensor, so dealing with the conflicts between the evidence is the key to applying
various evidence-based theories for accurate target recognition.

The common features of information on aerial targets, such as flight speed, acceleration,
flight height and so on, can be detected by a multi-source system. Due to the problem
of various forms of signal interference and other factors, a system detecting the target
information will contain a lot of uncertainty. Most methods based on decision-level data
fusion, such as D-S and Yager, require a high level of data preprocessing and display low
interpretability. In order to improve the interpretability of the information fusion and
the process of aerial target recognition, the T-S intuitionistic fuzzy model is introduced to
establish mapping between the feature space and the target space. The T-S intuitionistic
fuzzy model has strong learning ability and robustness, which means it can label historically
detected targets with the correct categories, and input their feature information into the
T-S intuitionistic fuzzy model for training after intuitionistic fuzzification, then forming a
correct mapping relationship. By continuously learning target features, the final trained
model can accurately obtain the mapping relationship between the features and the targets.

2.2. Takagi–Sugeno Intuitionistic Fuzzy Rules Method

When the number of input variables increases, the number of rules of the T-S model
will increase exponentially, resulting in a decrease in training performance. For typical
aerial targets, we divide the features of the aerial targets into two or three groups for
modeling. Figure 1 illustrates the classification and the process of target recognition.
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First, the features are divided into primary features and secondary features with the
target properties, and each secondary feature contains two or three primary features. Then,
the model is trained by the training data to obtain the premise and consequence parameters,
and the primary features are fused and judged by the trained MTS-IFRM. Finally, the
identity estimation results of the target are fused with secondary features to obtain the final
recognition result of the target.

The main difficulty of aerial target recognition lies in the fusion of multiple features.
Achieving accurate recognition of targets from imprecise and conflicting feature data is the
key. This section will mainly introduce the proposed aerial target recognition algorithm.
The MTS-IFRM is designed by taking the radar graphic (RG) as an example, the inputs of
the model are the feature values of aspect ratio (AR) and cross-sectional area (CA) after
intuitionistic fuzzification, then we define the MTS-IFRM based on a fuzzy set:

Rule Rl : I f zCA is Al
1, and zAR isAl

2, then :
f l
RG(zRG) = pl

RG0 + pl
RGS(zCA) + pl

RGS(zAR), l = 1, 2, . . . , LRG
(5)

where the part after “if” denotes the premise and the part after “then” denotes the consequence of
the rule. zCA = {⟨CA, µ(CA), υ(CA)⟩|CA ∈ ECA} and zAR = {⟨AR, µ(AR), υ(AR)⟩|AR ∈ EAR}
denote the inputs of the CA and AR after intuitionistic fuzzification, respectively. µ(•) and
υ(•) are the degrees of membership and the non-membership, respectively, which represent the
intuitionistic fuzzy number. Then, 0 ≤ µ(•) + υ(•) ≤ 1. π(•) = 1− µ(•)− υ(•) denotes the
intuitionistic index of the intuitionistic fuzzy number. The specific process can be referenced
in [36]. ECA and EAR denote the universe of discourses of the CA and AR, respectively. Al

1 and
Al

2 denote the intuitionistic fuzzy subsets corresponding to the inputs zCA and zAR of rule
l, respectively. The input vector zRG = [zCA, zAR] denotes the premise variable of the model.
pl

RG =
[

pl
RG0, pl

RG1, pl
RG2

]
denotes the consequence part. S(•) denotes the scoring function with

the abilities of sequencing and decision-making, which converts an intuitionistic fuzzy set into a
definite numerical value [37]. LRG denotes the RG number of fuzzy rules. Therefore, the weighted
average y0

RG of the final outputs for each rule f l
RG(zRG) are obtained by:

y0
RG =

LRG

∑
l=1

µl(zRG) f l
RG(zRG)

∑L1
l̃=1

µl̃(zRG)
=

LRG

∑
l=1

µ̃l(zRG) · f l
RG(zRG) (6)

where µl(zRG) denotes the fuzzy membership degree of fuzzy rule l to input zRG. The
normalization method is defined as:

µ̃l(z) =
µl(zRG)

∑LRG
l̃=1

µl̃(zRG)
(7)

where
µl(zRG) = µAl

1
(zCA) · µAl

2
(zAR) (8)

µ̃l(zRG) =
µl(zRG)

∑LRG
l̃=1

µl̃(zRG)
(9)

µAl
1
(zCA) = λ1µAl

1
(zCA) + λ2υAl

1
(zCA) + λ3πAl

1
(zCA) (10)

µAl
1
(zAR) = λ1µAl

1
(zAR) + λ2υAl

1
(zAR) + λ3πAl

1
(zAR) (11)

Here, µAl
i
(•) , υAl

i
(•) and πAl

i
(•) are calculated by the premise parameter identification.

µAl
i
(•) can be expressed by using a suitable index λ (generally setting λ1 = 1, λ2 = 0, and

λ3 = 0.5).
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Similarly, the MTS-IFRM based on the feature of motion (M) and location (L) can be
established. The output results of the corresponding model are defined as follows:

y0
MF =

LM

∑
l=1

µl(zM) f l
M(zM)

∑LM
l̃=1

µl̃(zM)
=

LM

∑
l=1

µ̃l(zM) · f l
M(zM) (12)

y0
L =

LL

∑
l=1

µl(z3) f l
L(zL)

∑L3
l̃=1

µk̃(zL)
=

LL

∑
l=1

µ̃l(zL) · f l
LF(zL) (13)

where zM = [zFS, zA, zVS], zL = [zFH , zDD], zFS, zA, zVS, zFH and zDD denote flight speed,
acceleration, vertical speed, flight height, and detection distance features after intuitionistic
fuzzification, respectively.

3. Aerial Target Recognition Methods Based on the MTS-IFRM

According to the above analysis, parameter identification is a central role of a T-S
rule-based system, which evaluates the quality of the rule modeling. Therefore, the related
work of the MTS-IFRM contains the structure identification of consequent parameters
based on the ridge regression method, the identification of the premise part with a novel
intuitionistic fuzzy C-means (IFCM) clustering model, and the adaptive weight algorithm.

3.1. Construction of MTS-IFRM

In this section, we take the training of the RG consequence parameters as an example.
First, according to Equations (5) and (6), let:

se =
(

1, sT
)T

(14)

where s = [S(zCS), S(zAR)] denotes the scoring function set of the input z. So that:

s̃l
RG = µ̃l(zRG)se (15)

sg,RG =

((
s̃1

RG

)T
,
(

s̃2
RG

)T
, . . . ,

(
s̃LRG

RG

)T
)T

(16)

pl
RG =

(
pl

RG, pl
RG, pl

RG

)T
(17)

pg,RG =

((
p1

RG

)T
,
(

p2
RG

)T
, . . . ,

(
pLRG

RG

)T
)T

(18)

where µ̃l(zRG) is acquired in Equation (7). Next, the output of the model is denoted as:

y0
RG =

(
pg,RG

)Tsg,RG (19)

In Equation (19), we obtain the RG output of the MTS-IFRM. To solve the target
recognition problem, each secondary feature needs to have the corresponding output.
Therefore, the MTS-IFRM is constructed. The ridge regression method, a modified analysis
of the least-squares estimation, can deal with multicollinearity by operating the unbiased
estimator. To obtain a more reliable estimate of the consequent parameter, ridge regression
analysis is constructed to train the model:

min
pg,m,RG

J
(

pg,m,RG
)
=

1
2

M

∑
m=1

N

∑
n=1

((
pg,m,RG

)Tsg,n,RG − ỹn,m

)2
+ γ1

M

∑
m=1

N

∑
n=1

(
pg,m,RG

)T pg,m,RG (20)

Equation (20) contains the minimization of empirical risk and structure risk. Where
pg,m,RG denotes the consequent parameter of the m-th aerial target, N denotes the number
of training samples, ỹn,m denotes the M-dimensional label vector of the n-th training sample,
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γ1 represents the regularization parameter. To adjust the consequent parameter pg,m,RG,
the final optimization result is calculated by the first-order necessary condition:

∂J
(

pg,m,RG

)
∂pg,m,RG

=
M

∑
m=1

N

∑
n=1

(
sg,n,RG(sg,n,RG)

T + γ1 Il×l

)
· pg,m,RG −

M

∑
m=1

N

∑
n=1

(
sg,n,RG ỹn,m

)
= 0 (21)

In Equation (21), pg,m,RG is as follows:

pg,m,RG =
N

∑
n=1

(
γ1 Il×l + sg,n,RG(sg,n,RG)

T
)−1 M

∑
m=1

N

∑
n=1

(
sg,m,RG ỹn,m

)
(22)

Therefore, a new MTS-IFRM of RF for aerial target recognition can be expressed as
follows according to Equations (5) and (22):

Rule Rl′ : I f z′CS is Al′
1 , and z′AR isAl′

2 , then :
f l′
RG(z

′
RG) = pl′

g,j,RG0 + pl′
g,j,RG1S(z′CS) + pl′

g,j,RG2S(z′AR), l′ = 1, 2, . . . , L′
RG

(23)

where z′CS and z′AR are the CS features and AR features after intuitionistic fuzzification,
respectively. pl′

g,m,RGi denotes the consequent parameter corresponding to rule l′ of model
m, here, i = 0, 1, 2 and L′

RG denotes the number of rules. Similarly, the corresponding rules
of the MTS-IFRM for the motion feature (MF) and location feature (LF) can be established
in the same construction procedures.

3.2. Premise Identification

IFCM and the FCM clustering are very sensitive to the initial clustering center position
and are prone to converging to the local optimal solution in a noisy environment. Moreover,
the variation factors of dynamic evolution theory are introduced into the PSO algorithm to
improve the clustering optimization model [38].

Suppose the position of the i-th particle is Xi = (xi,1, xi,2, . . . , xi,d), the velocity is
Vi = (vi,1, vi,2, . . . , vi,d) and Pi = (pi,1, pi,2, . . . , pi,d) is the optimal solution in d-dimensional
space, where i = 1, 2, · · · , G, G is the size of the particle swarm, then the velocity and
position updated in the j-th dimension at an iteration are:

vi,j(t + 1) = ωvi,j(t) + c1r1(pi,j − xi,j(t)) + c2r2(pg,j − xi,j(t)) (24)

xi,j(t + 1) = xi,j(t) + vi,j(t + 1), j = 1, 2, · · · , d (25)

where Pg = (pg,1, pg,2, . . . , pg,d) denotes the current global optimal solution, w denotes the
inertia weight. r1 and r2 are random numbers in the interval [0, 1], respectively. c1 and c2
denote the learning parameter of the DPSO, respectively, and are defined as follows:

c1 = 2.5 − 2 × t
T

(26)

c2 = 2.5 + 2 × t
T

(27)

where t denotes the number of iterations in this round, and T denotes the maximum
number of iterations. c1 and c2 change dynamically to meet the changing rule with the
increase in the number of iterations. Therefore, the algorithm can adaptively expand the
local search range in the early stage of iteration and accelerate the global convergence speed
in the late iteration. This learning mechanism is used to accelerate the overall convergence.

In the iterative process, the inertia weight can affect the search range of the current
round according to the speed of the previous round. At the end of each round of iterations,
the fitness function of the selected particle swarms should be obtained. Moreover, the
inertia weights can be dynamically adjusted based on the results of the fitness values, which
will make the selected particle swarms in this round of iterations have a more balanced
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position. The nonlinear adaptive inertia weight strategy is used to calculate the inertia
weight, and the method is as follows:

w =

{
wmin + (wmax−wmin)×( fi− fmin)

favg− fmin
, fi ≤ favg

wmax, fi > favg
(28)

where wmax and wmin are the maximum and minimum inertia weights set, respectively, and
fmin and fmax represent the minimum and maximum fitness values of the particle swarm
in this round, respectively. favg represents the average fitness of a particle swarm. At this
point, the speed of the particle swarm mainly refers to the speed of the previous round to
increase the activity of the particle swarm. Conversely, the speed of the particle swarm
at this time mainly refers to the local optimal position and the global optimal position to
accelerate the particle swarm to move closer to the dominant space.

Suppose Z = {z1, z2, . . . , zN} is the dataset, where zn = [z1, z2, . . . , zd]
T and zi =

{⟨xi, µ(xi), υ(xi)⟩|xi ∈ E}, 1 ≤ i ≤ d. N is the number of data items. m is the num-
ber of clusters. Here, V = {v1, v2, . . . , vm}, vm ∈ Rd, is a set of M clustering centers
where M ≥ 2. Each clustering center vector can be expressed as vm = [cm

1 , cm
2 , . . . , cm

d ],
where cm

i =
{〈

cm
i , µvm(c

m
i ), υvm(c

m
i )

〉
|1 ≤ i ≤ d, 1 ≤ m ≤ M

}
. The objective function is

given below:

Jm(U, V) =
N
∑

n=1

M
∑

m=1
µnm

c0 dnm
2(zn, vm)

µnm ∈ [0, 1], 1 ≤ m ≤ M, 1 ≤ n ≤ N
M
∑

m=1
µnm = 1, ∀n, m

(29)

where µnm is the membership degree of the sample data in the m-th class. U = [µnm]N×M
denotes the fuzzy membership matrix of X.c0 ∈ [1,+∞) denotes the fuzzification index.
dnm

2(zn, vm) denotes the ordinary Euclidean distance between the measurement point zn
and the clustering center vm, which is defined as:

dnm
2(zn, vm) =

1
2

d

∑
i=1

pi

{
[µzn (xi)− µvm (c

m
i )]

2 + [υzn (xi)− υvm (c
m
i )]

2 + [πzn (xi)− πvm (c
m
i )]

2
}

(30)

where pi = (1/p, 1/p, . . . , 1/p), µzn(xi), υzn(xi) and πzn(xi) are the fuzzy membership
degree, non-membership degree, and intuitionistic index of input data zn, respectively.
µvk (c

m
i ), υvk (c

m
i ) and πvk (c

m
i ) are the fuzzy membership degree, non-membership degree,

and intuitionistic index of clustering center vm, respectively.
Therefore, to obtain the optimal objective function by DPSO, it can be considered

that the smaller the result of the objective function Jm(U, V), the better the fitness of the
particles, so the particle fitness can be expressed by the following:

f (xi) =
λ

J(U, V)
=

λ
N
∑

n=1

M
∑

m=1
µnm2dnm2(zn, vi,m)

(31)

where vi,m denotes the intuitionistic fuzzy number of the m-th dimension of particle xi
and also denotes m-th clustering center. λ is a constant, which can be manually adjusted
according to the specific situation. The main steps for DPSO-IFCM are summarized in
Figure 2.
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In Figure 2, it is shown that the proposed DPSO-IFCM clustering algorithm includes
the following steps:

1. Initialization: Initialize G particles to form G first-generation particles, where each
particle randomly generates M clustering centers. The fitness value is calculated by
Equation (31) and determines the current optimal position of each particle i by the fitness
value, and the position of the current particle swarm with the highest fitness is pg;

2. Compute the velocity and position of each particle in the new particle swarm using
Equations (24) and (25);

3. Compute the fitness value of each particle in the new particle swarm using Equation (31)
and compare it with the previous generation. For the same individual, if the indi-
vidual fitness in the new population is larger than the corresponding individual in
the previous generation, replace the individual of the previous generation and this
becomes the optimal position of particle i, otherwise, it remains unchanged;

4. Compare the fitness value of the optimal individual of the new particle swarm with
the optimal individual of the previous generation, if the fitness is greater than the
previous generation, update the optimal position of the population to the optimal
position of the new particle swarm, otherwise, it remains unchanged, then t = t + 1.

5. Repeat Steps 2–4 until a criterion is met that is usually of a sufficiently good fitness or
a maximum number of iterations;

6. Obtain the individual position with the highest fitness value as the initial clustering
center of the IFCM algorithm;

7. Compute the membership degree µnm of each sample dataset to each clustering
center and the premise parameters µAm

i
(xi), vAm

i
(xi), πAm

i
(xi) of the model. A detailed

method can be found in Ref. [36].
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Finally, we input the intuitionistic fuzzy features into the trained MTS-IFRM. The
output of the j-th model is:

ỹj =
L′

∑
l′=1

µl′(z) f l′(z)

∑L′
i=1 µi(z)

=
L′

∑
l′=1

µ̃l′(z) · f l′(z) (32)

3.3. Adaptive Weight Algorithm

From Equation (32), we know that every target has a corresponding MTS-IFRM, then
each model is trained and obtains the corresponding label vector output. If the features
of the input data are more similar to a certain class, then the value of the corresponding
class in the label vector output will be closer to one, otherwise, the value will be closer to
zero. When the values of more than one class are relatively close, the class cannot be well
distinguished from the input features; that is, the degree of discrimination is not obvious.
At this point, we can focus on other models to realize the classification and recognition
of the target; that is, reduce the weight corresponding to the model with a low degree of
discrimination, and increase the weight corresponding to the model with a high degree
of discrimination. First, the initial weight of each model is 1/h, h denotes the number of
secondary features, the weight distribution is also related to the following two points:

1. For a certain secondary feature, in the output result of the corresponding model, if all
the values in the output vector are less than 0.5, the possibility of the feature belonging
to the target being classified is too low. Therefore, the secondary feature should be
reduced according to the impact of the secondary features on the classification results,
the weight corresponding to the secondary features is reduced and assigned to other
features. Suppose that the maximum value of the label vector output by the model is
xmax, the weight of the corresponding model can be expressed as:

S1(xmax) =
1

1 + eh1·(h2−xmax)
(33)

The final output matrix can be obtained:

f1(xmax) =
1
h
· 1

1 + eh1·(h2−xmax)
(34)

where h1 and h2 are two constants to control the speed of weight change. Figure 3 shows
the weight change under h1 = 20, h2 = 0.25.
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In Figure 3, when xmax is less than 0.5, the weight of the corresponding model will
gradually decrease. When xmax = 0.25, the weight of the corresponding model will
decrease rapidly. When the weight is below 0.1, the corresponding model weight is close to
0 and the larger weight will be allocated to the model that can be better identified, which
can obtain a higher recognition accuracy.
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2. For a certain secondary feature to the corresponding T-S IFM output, if the maximum
value in the label vector is greater than 0.5, and the difference between the maximum
value and the second large value is less than 0.3, then the classification ability of the
secondary features for all of the targets to be classified is weak. However, because the
maximum value in the label vector is greater than 0.5, the feature has a certain classi-
fication ability for a certain type or several types of targets, but it cannot determine
which type the input feature data belongs to. Therefore, the corresponding weight
can be appropriately reduced and assigned to other features.

Suppose that the difference between the maximum value and the sub-maximum value
in the label vector output by the model is xdi f = x f irst − xsec ond, 0 ≤ xdi f ≤ 0.3. Finally, in
case 2, Figure 4 shows the weight adjustment under h1 = 20, h2 = 0. Different from case
1, case 2 cannot clearly distinguish which category the target belongs to, because there is
a value in the label vector, only the weight is appropriately reduced. From Figure 4, the
weight is reduced to at most half of the original.
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According to the above two points of analysis, the final weight allocation method of
each model is designed, and the process is as follows:

To assign the reduced weight portion of the model of cases 1 and 2 equally to the other
models, first, the number of secondary features that do not satisfy the above two cases can
be expressed as:

num =

{
num, xmax ≤ 0.5 or xdi f ≤ 0.3
num + 1, 0.5 < xmax ≤ 1 and 0.3 < xdi f ≤ 1

(35)

Equation (35) denotes the number of models with obvious classification effects. Then,
the final weight adjustment of each model can be expressed as:

Wi =


fmax(xmax), xmax ≤ 0.5
f2(xdi f ), 0.5 < xmax ≤ 1 and xdi f ≤ 0.3

1
n + 1

num

n
∑

j=1,j ̸=i
(1 − f (xj)), 0.5 < xmax ≤ 1 and 0.3 < xdi f ≤ 1

(36)

where Wi denotes the final weight of the i-th model. f (xj) denotes the weight of the
corresponding model when case 1 or case 2 occurs. Therefore, the final fusion results are
calculated as follows:

y0 = WRFy0
RF + WMFy0

MF + WLFy0
LF (37)

3.4. Computational Complexity Analysis

In the proposed MTS-IFRM, the main program includes the implementation of the
DPSO-IFCM algorithm and the structure identification of consequence parameters based
on the ridge regression method. The total computational complexity of the ridge regression
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is calculated as N(L · N · M2), where L is the number of intuitionistic T-S fuzzy rules, N is
the number of samples, and M is the number of label vector dimensions. In the DPSO-IFCM
algorithm, the total computational complexity of the main loop of DPSO is N(G · T · d),
where G is the size of the particle swarm, T is the maximum number of iterations, d is the
dimension of the solution space, and the calculation time of the IFCM is mainly used for
the fuzzy membership µnm and the computational complexity is N(L · N · M). In summary,
the computational cost of the proposed algorithm is determined by L, N, M, G, T, and d.

4. Simulation Results and Analysis

To evaluate the performance of the MTS-IFRM approach to the problem of recognizing
aerial targets in a complex environment, two examples were used to show the recogni-
tion performance of MTS-IFRM compared to that of the standard forms of the D-S [19],
Yager [29], Murphy [30], multi-sensor data fusion algorithm (MSDF) [32], Kaur [8], and
Hu [9] in a complicated environment. Table 2 presents the feature ranges of five typical
aerial targets (bomber (Br), fighter (Fr), helicopter (Hr), air-to-ground missile (AGM), and
tactical ballistic missile (TBM)).

Table 2. Feature ranges of five aerial targets.

Br Fr Hr AGM TBM

Flight height (km) 25–35 7–13 1.6–2.5 3.8–5.2 55–80
Detection distance (km) 350–450 250–350 130–180 100–140 130–180

Flight speed (m/s) 300–500 500–700 70–130 1000–1500 1700–2300
Acceleration (m/s2) 0–20 0–50 0–30 150–250 200–400
Vertical speed (m/s) 0–50 0–300 0–50 800–1200 1600–2300

Cross-section area (m2) 0.25–0.35 0.17–0.23 0.08–0.12 0.05–0.08 0.06–0.11
Aspect ratio 1.2–2.0 2.6–3.6 3.2–4.8 6.7–9.3 8.5–11.5

Table 2 shows the complete discernment frame is Θ = {Br, Fr, HG, AGM, TBM}, and
the target recognition feature set is E = {EA, EB, EC, ED, EE, EF, EG}, which represents
the credibility of the evidence of the flight altitude (FH), detection distance (DD), flight
speed (FS), acceleration (A), vertical speed (VS), cross-section area (CA), and aspect ratio
(AR), respectively. The training data is generated within the scope of feature ranges,
the experiment uses 125 sets of target feature data within the appropriate range as the
training phase with the rules of nine sets. Table 3 presents seven training datasets from the
training datasets.

Table 3. The feature data of aerial targets.

Serial
Number

FH
(km)

DD
(km)

FS
(m/s)

A
(m/s2)

VS
(m/s)

CA
(m2) AR Target

1 58.6 135.6 1845.5 210.4 1685.6 0.08 9.5 TBM
2 4.2 125.8 1250.7 211.9 952.2 0.06 8.4 AGMM
3 8.3 344 612.3 42.6 258.4 0.22 2.7 Fr
4 4.5 132.8 1252.1 158.7 958.8 0.06 6.9 AGM
5 31.6 377.4 315.3 14.6 25.3 0.31 1.6 Br
6 1.7 136.6 88.6 11.3 29.3 0.09 3.8 Hr
7 56.6 179.1 2200.6 365.6 1936.7 0.10 11.5 TBM

Table 3 shows that the collected 13–14 d historical feature datasets with results are
obtained as the training datasets and the testing target is recognized according to the trained
MTS-IFRM, then the feature datasets and model parameters of the target are updated with
the recognition result.

The fuzzy membership function is very important for the initial recognition process
because of the uncertainty in the feature data. By analyzing the features of aerial targets,
the Gaussian membership function is used to recognize the target in Equation (38) and
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Table 4 presents δ and x of five typical aerial targets with difference features, showing the
fuzzy membership functions corresponding to the detection distance.

µ(xi) = exp(−∥x − xi∥
δ

) (38)

Table 4. Five typical aerial targets with different features.

Br Fr Hr AGM TBM

FH (km) (30,7.5) (10,4.5) (2,1) (4.5,1) (65,15)
DD (km) (400,80) (300,80) (200,60) (120,45) (150,60)
FS (m/s) (400,150) (600,150) (100,50) (1200,500) (2000, 500)
A(m/s2) (10,10) (25,25) (15,15) (200,60) (300,100)
VS(m/s) (25,25) (150,150) (25,25) (1000,300) (1950,600)
CA (m2) (0.3,0.08) (0.2,0.06) (0.1,0.03) (0.06,0.02) (0.08,0.03)

AR (1.5,0.5) (3,0.6) (4,0.8) (8,1.3) (10,1.5)

Table 4 shows the appropriate membership function µ(xi) can be designed by adjusting
δ and x with the different features of the targets xi by analyzing the various feature attributes
of each target in Table 2. Then, take the feature of detection distance as an example. Figure 5
presents the fuzzy membership functions corresponding to the detection distance.
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From Figure 5, the fuzzy membership degree of each target will be different with
different values of primary features. When the detection distance is 450 km, the fuzzy
membership degree belonging to target Br is the highest, which is 0.8226, and the fuzzy
membership degree belonging to the target AGM is the lowest, approaching zero. When
the target features obtained by the radar system are inaccurate and uncertain, the features
are calculated by the membership function, thus effectively recognizing the target initially.
Figure 6 shows the target recognition framework based on fuzzy membership degree and
evidence theory.

In Figure 6, the supporting information of the target obtained by the fuzzy membership
function may not be consistent. We use the recognition result of the target obtained by the
fuzzy membership function as the confidence degree, and evidence theory is used to fuse
the confidence degree and obtain a target recognition result.
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4.1. Example 1: The Data Does Not Contain Fault Features

In this example, data without fault features is employed to show the performance of the
methods, that is, all target features support a certain target. Suppose the radar detects a sus-
picious target, the target features are: A = 23 km, B = 450 km, C = 350 m/s, D = 10 m/s2,
E = 40 m/s, F = 0.31 m2, and G = 1.0. Table 5 presents the BPA example of multi-source
information fusion.

Table 5. The BPA example of the multi-source information fusion.

Evidence Br Fr Hr AGM TBM X

EA 0.4185 2.37 × 10−4 0 0 3.93 × 10−4 0.5809
EB 0.6766 0.0297 2.88 × 10−4 0 0 0.2936
EC 0.8837 0.0297 0 0.0549 1.84 × 10−5 0
ED 0.3857 0.0614 0.3451 1.70 × 10−5 8.59 × 10−5 0
EE 0.3525 0.2691 0.3525 1.80 × 10−5 2.01 × 10−5 0
EF 0.9660 0.0340 0 0 0 0
EG 0.3679 1.49 × 10−5 7.81 × 10−5 0 0 0.6321

Table 5 shows the corresponding BPA functions and X denotes the unknown term.
The features are expressed with fuzzy membership for the unknown targets detected by
radar, all the features of the unknown target have high credibility for the target Br, and no
feature opposes the Br. Tables 6–9 show the recognition results of the target with different
numbers of evidence in an error-free environment.

Table 6. Comparison of algorithms with EA and EB in an error-free environment.

Method m(Br) m(Fr) m(Hr) m(AGM) m(TBM) m(X) Target

D-S 0.8095 0.0176 0 0 0 0.1728 Br
Yager 0.2832 0 0 0 0 0.7168 X

Murphy 0.7905 0.0705 0.0715 0.0047 0 0.0627 Br
MSDF 0.7946 0.0692 0.0694 0.0047 0 0.0621 Br
Kaur 0.8056 0.0862 0.0891 0.0056 0 0.0135 Br
Hu 0.8134 0.0923 0.0451 0.0026 0 0.0466 Br

MTS-IFRM 0.9894 0.0064 0.0042 0 0 0 Br
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Table 7. Comparison of algorithms with EC, ED and EE in an error-prone environment.

Method m(Br) m(Fr) m(Hr) m(AGM) m(TBM) m(X) Target

D-S 0.9610 0.0390 0 0 0 0 Br
Yager 0.1201 0.0049 0 0 0 0.8750 X

Murphy 0.9020 0.0385 0.0391 0.0021 0 0.0183 Br
MSDF 0.9050 0.0374 0.0375 0.0021 0 0.0180 Br
Kaur 0.9156 0.0395 0.0357 0.0035 0 0.0057 Br
Hu 0.9265 0.0402 0.0315 0.0018 0 0 Br

MTS-IFRM 0.9342 0.0187 0.0472 0 0 0 Br

Table 8. Comparison of algorithms with EF and EG in an error-free environment.

Method m(Br) m(Fr) m(Hr) m(AGM) m(TBM) m(X) Target

D-S 0.9782 0.0218 0 0 0 0 Br
Yager 0.3554 0 0 0 0 0.6446 X

Murphy 0.7905 0.0705 0.0715 0.0047 0 0.0627 Br
MSDF 0.7946 0.0692 0.0694 0.0047 0 0.0621 Br
Kaur 0.8165 0.0712 0.0718 0.0056 0 0.0349 Br
Hu 0.8564 0.0522 0.0559 0.0062 0 0.0293 Br

MTS-IFRM 0.9790 0.0210 0 0 0 0 Br

Table 9. Comparison of algorithms with E in an error-free environment.

Method m(Br) m(Fr) m(Hr) m(AGM) m(TBM) m(X) Target

D-S 0.9998 1.75 × 10−4 0 0 0 0 Br
Yager 0.0121 0 0 0 0 0.9879 X

Murphy 0.9970 0.0014 0.0014 0 0 0 Br
MSDF 0.9973 0.0013 0.0013 0 0 0 Br
Kaur 0.9981 0.0010 9 × 10−4 0 0 0 Br
Hu 0.9985 0.0008 0.0011 0 0 0 Br

MTS-IFRM 0.9813 0.0015 0.0172 0 0 0 Br

From Tables 6–9 when the quantity of evidence increases, the recognition accuracy of
the other six methods steadily improves except for Yager. The reason is that Yager assigns
all the conflicts between evidence to X, which leads to cumulative conflicts between pieces
of evidence in the synthetic evidence, and the value of X will increase as the quantity of
fusing conflicting evidence increases. When the quantity of evidence is small, the MTS-
IFRM maintains better target recognition performance and faster convergence because it
can deal with the uncertainty well. Regardless of whether fewer features or more features
are available, the MTS-IFRM has higher accuracy when recognizing the targets.

4.2. Example 2: The Data Contains Fault Features

The dataset simulated in this paper contains one or more fault features obtained by
the equipment, so that the multiple features do not all support a certain target. Suppose the
radar detects a suspicious target, the obtained target features are: A = 23 km, B = 450 km,
C = 350 m/s, D = 10 m/s2, E = 40 m/s, F = 0.31 m2, and G = 4.1. Except for the target
aspect ratio, other features are the same as in example 1. Due to the influence of factors
such as noise and the working status of the sensor device, the target aspect ratio feature is
abnormal, and the BPA of the aspect ratio can be expressed as:

EG : mG(Br) = 0, mG(Fr) = 0.0340, mG(Hr) = 0.9658,
mG(AGM) = 0.0001, mG(TBM) = 0, mG(X) = 0.

The aspect ratio has a high degree of support for target Hr, while the support degree for
Br is 0. Therefore, EG shows significant conflict with the other evidence. Tables 10 and 11
compare the target recognition performance of the algorithms.
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Table 10. Comparison of algorithms with EF and EG in an error-free environment.

Method m(Br) m(Fr) m(Hr) m(AGM) m(TBM) m(X) Target

D-S 0 1 0 0 0 0 Fr
Yager 0 0.0012 0 0 0 0.9988 X

Murphy 0.7060 0.0631 0.2003 0.0035 0 0.0270 Br
MSDF 0.7746 0.0702 0.1257 0.0037 0 0.0258 Br
Kaur 0.7945 0.0642 0.1254 0.0034 0 0.0125 Br
Hu 0.8563 0.0281 0.1043 0.0021 0 0.0092 Br

MTS-IFRM 0.9639 0.0345 1.23 × 10−4 0 0 0 Br

Table 11. Comparison of algorithms with E in an error-prone environment.

Method m(Br) m(Fr) m(Hr) m(AGM) m(TBM) m(X) Target

D-S 0 1 0 0 0 0 Fr
Yager 0 0 0 0 0 1 X

Murphy 0.9830 6.31 × 10−4 0.0163 0 0 0 Br
MSDF 0.9965 5.89 × 10−4 0.0029 0 0 0 Br
Kaur 0.9905 0.0084 0.0011 0 0 0 Br
Hu 0.9942 0.0049 0.0009 0 0 0 Br

MTS-IFRM 0.9811 0.0184 0.0019 0 0 0 Br

Tables 10 and 11 show that because of the conflicting evidence EG, D-S finally deter-
mines that Fr is the final result, which is counter-intuitionistic. Meanwhile, the Yager is
also unable to correctly recognize the target because it assigns the high-conflict part of the
evidence to X. Murphy, MSDF, Kaur, Hu, and the MTS-IFRM can process the conflicting
evidence and realize reasonable results. The Murphy method has lower convergence be-
cause it calculates the averages without considering the correlations between the evidence,
the MSDF method modifies the entropy method to calculate the weight of the evidence,
and the Kaur and Hu methods comprehensively improve the credibility of evidence by
analyzing the discrepancy in different aspects. Moreover, the accuracy of the MTS-IFRM is
higher compared to other methods in the case of fewer features. The MTS-IFRM establishes
a higher stability and reliability structure when confronting uncertainty.

The reasons why the MTS-IFRM shows better performance for aerial target recognition
can be explained as follows. First, the MTS-IFRM is constructed according to intuitionistic
fuzzy theory, which deals with uncertainty data of aerial targets using DPSO-IFCM cluster-
ing. Second, the adaptive weight algorithm is used to further improve the classification
accuracy of the model, which is crucial for addressing the target recognition problem in an
error-free or error-prone environment.

To further verify the effectiveness of the method, a dataset of 10,000 target features is
randomly generated within the range given in Table 12 as the test dataset of the simulation.

Table 12. Range of the test dataset.

Br|δ Fr|δ Hr|δ AGM|δ TBM|δ

FH (km) 30|15 10|5 2|1 4.5|2 70|30
DD (km) 400|200 300|150 150|75 120|60 150|75
FS (m/s) 400|200 600|300 100|50 1200|600 2000|1000
A(m/s2) 10|10 25|25 15|15 200|100 300|150
VS(m/s) 25|25 100|100 20|20 1000|500 2000|1000
CA (m2) 0.30|0.15 0.20|0.1 0.10|0.05 0.05|0.02 0.10|0.05

AR 1.5|0.75 2.5|1.0 4.0|2.0 8.0|4.0 10.0|5.0

The data model for the simulation feature parameters is:

Fij = fij ± randn × δij (39)
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where fij denotes the j-th feature of the target i corresponding to the deviation δij, randn
denotes a normal random number with a mean of 0 and a variance of 1. Six algorithms
with higher recognition rate methods are employed in the experiment.

In Table 13, a( ) represents the recognition rate of the target “·”, which is obtained
by dividing the number of correctly recognized samples by the total number of testing
samples, and in bold is the best simulation result under the same conditions. After fusing
the seven features, Figure 7 shows the final recognition rates of six algorithms.

Table 13. Recognition rates for five algorithms.

EA, EB EC,ED,EE EF,EG E

D-S

a(Br) = 0.4970 a(Br) = 0.6085 a(Br) = 0.7044 a(Br) = 0.8381
a(Fr) = 0.6394 a(Fr) = 0.8698 a(Fr) = 0.3802 a(Fr) = 0.9347
a(Hr) = 0.6663 a(Hr) = 0.9133 a(Hr) = 0.5227 a(Hr) = 0.9997

a(AGM) = 0.6102 a(AGM) = 0.8389 a(AGM) = 0.4165 a(AGM) = 0.9160
a(TBM) = 0.4207 a(TBM) = 0.7138 a(TBM) = 0.2678 a(TBM) = 0.9041

Murphy

a(Br) = 0.5976 a(Br) = 0.7861 a(Br) = 0.5915 a(Br) = 0.9174
a(Fr) = 0.7350 a(Fr) = 0.8473 a(Fr) = 0.7326 a(Fr) = 0.9064
a(Hr) = 0.7956 a(Hr) = 0.9602 a(Hr) = 0.7904 a(Hr) = 0.9990

a(AGM) = 0.6463 a(AGM) = 0.7983 a(AGM) = 0.6228 a(AGM) = 0.9044
a(TBM) = 0.4862 a(TBM) = 0.6907 a(TBM) = 0.4968 a(TBM) = 0.8611

MSDF

a(Br) = 0.6173 a(Br) = 0.7892 a(Br) = 0.6141 a(Br) = 0.9087
a(Fr) = 0.7709 a(Fr) = 0.8557 a(Fr) = 0.7776 a(Fr) = 0.8951
a(Hr) = 0.8553 a(Hr) = 0.9749 a(Hr) = 0.8489 a(Hr) = 0.9990

a(AGM) = 0.6977 a(AGM) = 0.8217 a(AGM) = 0.7023 a(AGM) = 0.9212
a(TBM) = 0.5365 a(TBM) = 0.7119 a(TBM) = 0.5362 a(TBM) = 0.8549

Kaur

a(Br) = 0.6215 a(Br) = 0.8021 a(Br) = 0.6042 a(Br) = 0.9213
a(Fr) = 0.7821 a(Fr) = 0.8566 a(Fr) = 0.7511 a(Fr) = 0.9155
a(Hr) = 0.8163 a(Hr) = 0.9713 a(Hr) = 0.8224 a(Hr) = 0.9990

a(AGM) = 0.7062 a(AGM) = 0.8078 a(AGM) = 0.6634 a(AGM) = 0.9156
a(TBM) = 0.6035 a(TBM) = 0.7256 a(TBM) = 0.5264 a(TBM) = 0.8744

Hu

a(Br) = 0.7654 a(Br) = 0.8156 a(Br) = 0.6317 a(Br) = 0.9315
a(Fr) = 0.7905 a(Fr) = 0.8557 a(Fr) = 0.7812 a(Fr) = 0.9213
a(Hr) = 0.8632 a(Hr) = 0.9812 a(Hr) = 0.8497 a(Hr) = 0.9992

a(AGM) = 0.7256 a(AGM) = 0.8247 a(AGM) = 0.7123 a(AGM) = 0.9336
a(TBM) = 0.6636 a(TBM) = 0.7311 a(TBM) = 0.5546 a(TBM) = 0.8639

MTS-IFRM

a(Br) = 0.8834 a(Br) = 0.7145 a(Br) = 0.8345 a(Br) = 0.9354
a(Fr) = 0.7341 a(Fr) = 0.8844 a(Fr) = 0.5341 a(Fr) = 0.9555
a(Hr) = 0.7589 a(Hr) = 0.9253 a(Hr) = 0.8835 a(Hr) = 0.9952

a(AGM) = 0.7954 a(AGM) = 0.9051 a(AGM) = 0.4954 a(AGM) = 0.9862
a(TBM) = 0.8795 a(TBM) = 0.9493 a(TBM) = 0.7101 a(TBM) = 0.9899

In Figure 7, the MTS-IFRM algorithm has better performance than the other five
methods and is slightly inferior to other algorithms for the Hr. The main reasons for this:
in other methods, the preliminary recognition of the target with the fuzzy membership
function will have high accuracy, and the results will be fused by the evidence theory
method. Moreover, Table 2 shows that the features of flight height and speed for Hr have
a large difference from those of other targets, for example, suppose the radar detects a
suspicious target, the target features are: A = 1.7 km, B = 135 km, C = 75 m/s, D = 10 m/s2,
E = 25 m/s, F = 0.09 m2 and G = 3.8, in our proposed method, the existing target features are
used to construct the T-S intuitionistic fuzzy training model, and the feature datasets and
model parameters of the target are updated with the recognition result, which has higher
requirements for training data. If the number of Hr in the training data is insufficient,
the suspicious target may be recognized as an AGM or TBM with EA and EB, because Hr,
AGM, and TBM have the similar feature ranges of detection distance. In addition, due
to the similar feature ranges of acceleration and vertical speed, the suspicious target may
be recognized as a Br or Fr with EC, ED and EE. However, the final recognition rate of
the MTS-IFRM is more than 99% for the Hr with abundant training datasets. Overall, if a
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richer and more effective training dataset can be obtained, the recognition accuracy of the
proposed MTS-IFRM can be improved.
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5. Conclusions

In this paper, a target recognition approach based on MTS-IFRM is proposed, which
constructs a fuzzy classification model to enhance the robustness of the recognition pro-
cess. The intuitionistic fuzzy theory and ridge regression method are employed in the
consequent identification, the intuitionistic fuzzy C-regression clustering based on dynamic
optimization can realize the premise identification. Then, the adaptive weight algorithm
improves the classification accuracy of the corresponding model. The experimental results
show that the MTS-IFRM can effectively recognize aerial targets in error-free and error-
prone environments, and its performance is better than the methods proposed for aerial
target recognition.

Although the proposed MTS-IFRM can show encouraging results for target recognition,
many issues remain. For example, when fusing the outputs of multiple models, the
method of the weight distribution is still relatively rough. As the features of the target
increase, a more complete weight allocation algorithm needs to fuse the outputs of multiple
models accurately. In the future, further methods can be proposed to improve accuracy
by extending the models to adjust to different types of datasets and by developing more
efficient objective functions for the MTS-IFRM using specific samples.
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