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Abstract: Continuously global warming and landscape change have aggravated the damage of
flood disasters to ecological safety and sustainable development. If the risk of flood disasters under
climate and land-use changes can be predicted and evaluated, it will be conducive to flood control,
disaster reduction, and global sustainable development. This study uses bias correction and spatial
downscaling (BCSD), patch-generating land-use simulation (PLUS) coupled with multi-objective
optimization (MOP), and entropy weighting to construct a 1 km resolution flood risk assessment
framework for the Guanzhong Plain under multiple future scenarios. The results of this study show
that BCSD can process the 6th Climate Model Intercomparison Project (CMIP6) data well, with a
correlation coefficient of up to 0.98, and that the Kappa coefficient is 0.85. Under the SSP126 scenario,
the change in land use from cultivated land to forest land, urban land, and water bodies remained
unchanged. In 2030, the proportion of high-risk and medium-risk flood disasters in Guanzhong
Plain will be 41.5% and 43.5% respectively. From 2030 to 2040, the largest changes in risk areas
were in medium- and high-risk areas. The medium-risk area decreased by 1256.448 km2 (6.4%), and
the high-risk area increased by 1197.552 km2 (6.1%). The increase mainly came from the transition
from the medium-risk area to the high-risk area. The most significant change in the risk area from
2040 to 2050 is the higher-risk area, which increased by 337 km2 (5.7%), while the medium- and
high-risk areas decreased by 726.384 km2 (3.7%) and 667.488 km2 (3.4%), respectively. Under the
SSP245 scenario, land use changes from other land use to urban land use; the spatial distribution of
the overall flood risk and the overall flood risk of the SSP126 and SSP245 scenarios are similar. The
central and western regions of the Guanzhong Plain are prone to future floods, and the high-wind
areas are mainly distributed along the Weihe River. In general, the flood risk in the Guanzhong Plain
increases, and the research results have guiding significance for flood control in Guanzhong and
global plain areas.
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1. Introduction

The dramatic changes in the global climate have led to an increase in the frequency
of flood disasters. Meanwhile, anthropogenic activities have increased the proportion of
impervious surfaces in the world and reduced the area of green space. In this case, it is
causing serious economic and life losses on a global scale [1–5]. Especially in developing
countries, the abuse of resources and environmental protection awareness is relatively
low, making them more vulnerable to floods [6]. Recently, various parts of China have
suffered from the effects of flooding [7]. For example, on 20 July 2021, Zhengzhou City,
Henan Province, saw a “once-in-a-millennium” torrential rain, causing severe flash floods,
landslides, river floods, and large-scale urban floods. The disaster caused 380 deaths
and missing people in Zhengzhou City, with direct economic losses of CNY 40.9 billion,
seriously affecting people’s lives [8–10]. The frequent occurrence of floods is closely linked
to climate change. The latest assessment report of the Intergovernmental Panel on Climate
Change (IPCC) shows that human activities have led to increasing climate change and
dramatic changes in the regional environment [11–13], with more frequent extreme weather
events and climate change disrupting the smoothness in hydrological analysis, thus further
increasing the intensity of regional flooding. Flood disasters and human activities have a
direct impact on land use and land cover, and changes in land use and land cover can subtly
change regional temperature, rainfall, vegetation, and other neglected climatic factors to a
certain extent [14,15], making flood prevention more difficult. At present, China’s research
on the impact of climate change and land-use types on floods is still in its infancy, which
poses a considerable challenge for future flood control and disaster reduction work and
flood disaster risk management [16,17].

The research on global climate and land-use change has made great strides in recent
years [14,18,19]. Climate models are indispensable for the prediction of climate change.
The Coupled Model Intercomparison Project Phase 6 (CMIP6) global climate model (GCM)
is now widely used in climate change research [20–22]. Chen [20] found that the CMIP6
model improved the modeling of extreme index trends in critical regions of the world,
predicting a significant increase in extreme rainfall days and five consecutive days of
maximum precipitation. It is crucial to predict areas prone to waterlogging on a fine scale.
Studies showed that human activities change land-use conditions, which is an important
reason for the occurrence of floods [23–27]. The probability of a waterlogging disaster is
proportional to the proportion of the impervious surface and inversely proportional to the
proportion of green space [28,29]. At present, the cellular automata (CA), future land-use
simulation (FLUS), and PLUS models are widely used to simulate and predict dynamic
changes in land use [30,31]. Lin et al. [31] used maximum entropy (MAXENT) and the
FLUS model to predict future waterlogging-prone areas. Zhang [32] used the PLUS model
to simulate future multi-scenario land-use types in the Yangtze River basin for 2035–2095,
and the Kappa coefficient was 0.896. Most studies demonstrated that the PLUS model
has a higher accuracy for the landscape pattern, location, and quantity simulation than
the FLUS model [33,34]. Meanwhile, the PLUS model can be used to simulate regional
ecological environment changes and to evaluate, design, and plan ecological management
behaviors [35]. Compared with other models, the PLUS model can better reveal the internal
relationship of land-use change. However, few studies have considered the impact of
climate change and land use on flood disasters at the same time. This paper aims to fill
this gap.

Another key issue is the selection and proportion of flood-disaster-causing factors [36,37].
In the current research, the methods of using multi-criteria analysis to evaluate flood
disaster and vulnerability include the Technique for Order of Preference by Similarity
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to Ideal Solution (TOPSIS) and Simple Additive Weighting [38], hierarchical analysis
(AHP) [39], the fuzzy analytic hierarchy process [40], the set pair analysis–variable fuzzy
sets model [41], and entropy weighting [42]. The entropy weight method is mainly used
in the study of environmental science, but it is a relatively new method for flood risk
assessment. This method does not consider the decision maker’s factors in the calculation
process, calculating the weight by solving the mathematical model, so it produces more
objective results [43,44]. In previous flood risk studies, higher-resolution data play an
essential role in regional future flood risk evaluation. A coarse resolution product [39] was
used to predict the runoff under four typical concentration paths (RCPs) using 21 general
climate models (GCMs), and runoff estimates at 25 km resolution in Canada from 1961 to
2005 and from 2061 to 2100 were generated [45]; Rincón [45] used CMhyd to downscale
seven GCMs in CMIP5, and the study based its calculations on station data, with the
number of stations directly influencing the spatial resolution. In contrast, most of the
existing multi-scenario flood risk assessments focus on RCPs; Li [46] constructed flood risk
assessments for different scenarios (RCPs 2.6, 4.5, 6.0, and 8.5). However, less consideration
is given to SSPs, where the main flood-inducing factors that should be considered are
precipitation (SSPs-RCPs), land use (SSPs-RCPs), GDP, and population (SSPs-RCPs). To
optimize the scenario change and the resolution of the flood assessment, this study builds
on this to construct a high-resolution multi-scenario flood risk assessment framework.

The present work aims to construct a 1 km resolution future multi-scenario flood risk
assessment framework in the context of climate change and urbanization, to conduct a multi-
scenario flood risk assessment for the future Guanzhong Plain via coupling BCSD, PLUS,
and the entropy weighting methods, to guide future flood prevention in the Guanzhong
Plain, and to supply references for other plain areas globally.

2. General Situation of the Research Area
2.1. Research Area

The Guanzhong Plain is located in the Weihe River alluvial plain on the northern foot
of the Qinling Mountains in Shaanxi Province. It is also known as the Weihe Plain. It is
between 107.4◦~111.49◦E and 33.92◦~36.05◦N, with an average altitude of about 500 m
(Figure 1a). There have been significant spatial and temporal differences in the occurrence
of floods in the Guanzhong Plain over the last 400 years, compared to other regions [47].
In the first 200 years, the flood disasters in the Guanzhong Plain mainly occurred in Xi’an
and Tongchuan, in the lower reaches of the Luo River. The occurrence of floods in the
Guanzhong Plain over the last 200 years has had noticeable seasonal differences, with the
extremes mainly occurring in the summer and autumn. In addition, the flat topography,
loose soils, and sparse surface vegetation of the Guanzhong Plain are unique natural
conditions that can lead to regional flooding.
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Figure 1. (a) Location map of the Guanzhong Plain; (b) monthly precipitation, evaporation, and
temperature in Guanzhong Plain during the study year.
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2.2. Data Sources

HRLT (1975–2014): Comprehensive statistical analysis methods such as machine learn-
ing, generalized additive models, and thin plate splines were used to interpolate daily grid
data. They were based on the 0.5◦ × 0.5◦ grid dataset of the China Meteorological Admin-
istration, with elevation, aspect, slope, terrain humidity index, latitude, and longitude as
the main covariates. The MAE, RMSE, Cor, R2, and NSE were 1.30 mm, 4.78 mm, 0.84, 0.71,
and 0.70. The resolution of the dataset was 1 km × 1 km [48].

CMIP6 data (1975–2050) were derived from the historical test data of cmip6 and the
data of different shared social and economic paths (SSPs, including SSP126 and SSP245);
this study predicts the daily precipitation in the Guanzhong Plain under different scenarios
from 2030 to 2050.

The data on land use and driving factors used in this study are shown in Table 1.

Table 1. Driving factors and land-use data.

Type Data Time Original
Resolution Resource

Land use
2010

1 km
www.globallandcover.com/, accessed on

3 January 20222020

Socio-economic factors

POP 2010, 2020
0.5◦

https://springernature.figshare.com/
articles/dataset, accessed on

10 January 2022

Gross domestic product
(GDP) 2010, 2020

http://cstr.cn/31253.11.sciencedb.01683,
accessed on 10 January 2022.

CSTR:31253.11.sciencedb.01683.
Grain sown area and

output 2010, 2020
Statistical Yearbook of Shaanxi

Province 2022Rural and urban
population 2010, 2020

Grain purchase price 2010, 2020

Natural environmental
conditions

Digital elevation model
(DEM) 2010 1 km

NASA SRTM1 v3.0
Slope 2010 1 km

Traffic location factors

Railway 2010 OpenStreetMap
https://www.openstreetmap.org/,

accessed on 10 January 2022

Highway 2010
Expressway 2010

River 2010

To ensure data consistency during the calculation, the drive factor data were uniformly
resampled to 1 km × 1 km using ArcGIS.

3. Materials and Methods
3.1. BCSD

To obtain reliable datasets at a conventional resolution of 0.5◦, GCMs at different
resolutions need to be bias-corrected and downscaled. Based on the bias between the
simulated and observed climate variables at each percentile, the simulated dataset’s cumu-
lative distribution function (CDF) is adjusted using the equidistant cumulative distribution
function (EDCDF) method. The method can be expressed as follows:

xcorrect = x + F−1
oc (Fms(x))− F−1

mc (Fms(x)) (1)

where x is the climate variable, in which the precipitation is used in this paper;
F−1

oc (Fms(x))− F−1
mc (Fms(x)) is the deviation between the model output and the observation;

F is the cumulative distribution function (CDF); F−1
oc and F−1

mc denotes the observation and
the model output during the historical training period; and Fms denotes the model output
during the correction period.

www.globallandcover.com/
https://springernature.figshare.com/articles/dataset
https://springernature.figshare.com/articles/dataset
http://cstr.cn/31253.11.sciencedb.01683
https://www.openstreetmap.org/
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3.2. MOP + PLUS
3.2.1. MOP

MOP [49] is an open and flexible method incorporating various ecological and macroe-
conomic policies. To construct a reasonable land-use structure, this study designs two
scenarios according to different constraints and objective functions: (1) a sustainable devel-
opment model that balances economic benefits and ecological values (SSP126); (2) natural
development scenarios predicted by the Markov chain (SSP245).

The optimization objectives of MOP are listed in Table 2. The constraint conditions
of these objective functions are shown in Table 3. Finally, the multi-objective optimization
results are calculated using Lingo.

Table 2. Multi-objective optimization function for evaluation.

Function Formula Description

Function for estimating
economic benefits.

M1 = max
6
∑

i=1
ebixi =

max{5.89x1 + 0.40x2 + 24.37x3 + 249.6x4+ 0.001x5 + 1.97x6}

The coefficient ebi is the economic benefits of
each land-use type (unit: 104 CNY/ha),
CNY = Chinese yuan.

Function for estimating
ecological service value

M2 = max
6
∑

i=1
esvixi =

max{0.68x1 + 2.89x2 + 0.22x3 + 0.000142x4+ 0.4x6}

The coefficient esvi is the ecological service
values of each land-use type (unit:
104 CNY/ha).

MOP function under the SSP126
scenario SSP126 = max

{
0.5∑6

i=1 ebixi + 0.5∑6
i=1 esvixi

} x1 ∼ x6 represents the area of different
land-use types (ha): cultivated land (x1),
woodland (x2), grassland (x3), urban land (x4),
bare land (x5), and water (x6).

Table 3. Multi-objective optimization constraints for evaluation.

Constraint Description

∑6
i=1 xi = 3552159.78 The total land-use area remains unchanged.

0.35
3
∑

i=1
xi + 66.53x4 ≤ Pi

The population density of agricultural land and urban land
are 0.35 and 66.53, respectively (person/ha). Pi is the total
population by 2030, 2040, and 2050; Pi is, respectively,
30 million, 31.2 million, and 32.3 million.

x3+x5
3552159.78 ≥ 0.04

To ensure the diversity of land use, the total grassland and
bare land area in this study are less than 0.04.

3
∑

i=1
xi ≥ 3080771

Considering that the change in cultivated land should keep
a dynamic balance, the total area of cultivated land should
be greater than or equal to the current value.

875920.6 ≤ x2 ≤ wi × 120%
We set the woodland area to be between the woodland area
in 2020 and wi × 120%, and wi is the predicted woodland
area of the Markov chain in 2030, 2040, and 2050.

0.038 ≤ x3
3552159.78 ≤ 0.043

We set the grassland coverage in 2020 as the upper limit
(0.043) and the grassland coverage in 2050 predicted by the
Markov chain as the lower limit (0.038).

ui × 80% ≤ x4 ≤ ui × 120%
ui is what the Markov chain predicts as the urban land area
in 2030, 2040, and 2050. We set ui × 120% as the upper limit
(0.043) and ui × 80% as the lower limit (0.038).

49539.33 ≤ x6 ≤ vi × 120%
vi is what the Markov chain predicts as the water area in
2030, 2040, and 2050. We set vi × 120% as the upper limit
and the water area in 2020 as the lower limit.

3.2.2. PLUS

The PLUS model combines rule mining based on the land expansion analysis strategy
with cellular automata based on multiple random patch seed types [34]. It allows the driver
to be explored, and it is possible to obtain the reasonable probability of various kinds of
LULC extensions using the RF classification.

(1) Land expansion strategy analysis (LEAS)
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The transition rules obtained in LEAS have the characteristics of time, which can
describe the nature of land-use change during a specific time interval.

Pd
i,k(x) =

∑M
n=1 I(hn(x) = d)

M
(2)

where P is the final growth probability of the land-use type K in unit I, I (·) is the indicator
function of the decision tree set, hn(x) is the prediction type of the nth decision tree of the
vector x, and M is the total number of decision trees.

(2) CA

The CA model is a land-use simulation model driven by scenarios. Its main principle
is divided into two parts: “top-down” (global land-use demand) and “bottom-up” (local
land-use competition).

OPd=1,t
i,k = Pd=1

i,k ×Ωt
i,k ×Dt

k (3)

where OPd=1,t
i,k represents the change probability of the kth land-use type at the ith place of

the data grid, Dt
k is the influence of k on the future land use in t time, and Ωt

i,k represents
the neighborhood effect at the ith position of the grid.

(3) Model validation

Based on previous studies and the principles of data availability, data consistency,
data comprehensiveness, and data redundancy [50–54], this paper selects natural driving
factors such as elevation, slope, and precipitation; accessibility driving factors such as
river distance, road distance, and railway distance; and socio-economic driving factors
such as GDP and population density. The land-use demand under the scenarios of SSP126
and SSP245 in 2030, 2040, and 2050, calculated by the Markov chain and MOP, is used
to determine the land-use demand of the project. Based on the land-use pattern of the
Guanzhong Plain in 2010 and 2020, the land-use patterns in 2030, 2040, and 2050 under the
joint action of the above driving factors are simulated. By setting the same PLUS model
parameters, this study simulates the land-use pattern in 2020 based on the land-use pattern
in 2010 and compares it with the real land-use situation in 2020. The Kappa coefficient is
0.8507, which indicates that the prediction accuracy is higher, and the land-use pattern
simulation results are reliable.

3.3. Construction of Flood Risk Assessment Model

This paper selects the flood risk evaluation index of the Guanzhong Plain from three
aspects: disaster-causing factors, disaster-pregnant factors, and disaster-bearing factors.
The disaster-causing factors are the average annual rainfall and Rx5day; the disaster-
pregnant factors are the elevation, slope, distance from rivers, distance from roads, and
land use, based on the land-use data for 2030, 2040, and 2050 under the two scenarios of
SSP126 and SSP245 simulated by the PLUS model. Runoff coefficients (RC) were used
to assign values to each of the six land uses: 0.60, 0.30, 0.35, 0.92, 0.70, and 1.00; and the
disaster-bearing factors are the population density and GDP. All data were normalized
to obtain the respective factor indicators. The flood risk assessment structure is shown in
Figure 2.

For calculating the hazard, sensitivity, and vulnerability indicators, the entropy weight-
ing method was chosen for each precipitation unit under different scenarios for 2030, 2040,
and 2050.
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4. Results
4.1. Verification of Future Precipitation Accuracy

The GCMs data selected for this study are shown in Table 4. The research, first,
compares the performance of observation data and model data during the historical period
(1970–2014). From the deviation index between the root-mean-square error and the multi-
year average value, the error of the multi-mode ensemble average is significantly smaller
than that of the single mode. The precipitation of the multi-mode set is consistent with the
observed monthly precipitation during the year (Figure 3). The Taylor chart shows that
each model has a good simulation ability for precipitation in the Guanzhong Plain. Among
them, the standard deviation of each mode is less than 1, and the correlation coefficient is
more than 0.95.

Table 4. Basic information of 5 GCMs from CMIP6.

Model Country Original Resolution (◦) Resolution after Downscaling (◦)

CanESM5 Canada 2.8 × 2.8 0.5 × 0.5
CNRM-ESM2-1 France 2.5 × 1.2676 0.5 × 0.5

GFDL-ESM4 U.S.A. 2.88 × 1.8 0.5 × 0.5
MIROC6 Japan 1.4063 × 1.4 0.5 × 0.5

MRI-ESM2-0 Germany 1.125 × 1.12 0.5 × 0.5

Moreover, the standard deviation is smaller than that of the single mode, and the
correlation coefficient is higher than that of the single mode, reaching more than 0.98.
As can be seen from Figure 3, the simulated monthly precipitation values before the
model correction significantly deviated from the observed values. After the correction, the
difference between the simulated and observed monthly precipitation values is controlled,
with the maximum error within 5 mm (Figure 4). The constructed deviation correction
model can correct the model deviation very well. In conclusion, the simulation effect of
multi-mode ensemble averaging is better than that of single-mode. Still, the resolution and
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accuracy of the mode after ensemble averaging have not reached the accuracy required by
this study, so deviation correction and downscaling are necessary.
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The corrected downscaling model is used to downscale the cmip6 data from 2030 to
2050 under the SSP126 and SSP245 scenarios, that is, to complete the future precipitation
forecast in the Guanzhong Plain. Ultimately, this study uses the downscaled CMIP6 data to
calculate the annual precipitation and Rx5day.

4.2. Future Land-Use Scenario Simulation Results

The spatial distribution of the drivers selected for this study is shown in Figure 5.
Combining the drivers with the future land-use demand of the Guanzhong Plain under
different scenarios obtained from MOP and Markov chain projections, the land-use pattern
of the Guanzhong Plain can be simulated under multiple scenarios in 2030, 2040, and 2050
(Figure 6).

Figure 6 and Table 5 show the predicted results and the number of LULC types for
the different scenarios. The area occupied by cultivated land is always higher, while urban
land, water bodies, woodland, and grassland are lower, and bare land is always at the
lowest level. In the SSP126 scenario, from 2030 to 2050, all land types show an increasing
trend except for urban land, which decreases by 6.9% year on year. In contrast, urban land
increases by 4.1% from 2030 to 2040 and by 2.6% from 2040 to 2050. Overall, it shows an
upward trend and a slower growth rate. In contrast to the SSP126 scenario, urban land
under the SSP245 scenario maintains a higher growth rate from 2030 to 2050, increasing by
18.4% year on year, with all other land types showing a decreasing trend.
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Table 5. Land-use demands under different scenarios.

Type
SSP126 SSP245

2020 2030 2040 2050 2030 2040 2050

Cropland 22,879,843 22,628,622 22,396,611 22,240,356 22,398,817 22,005,502 21,685,365
Woodland 9,732,451 9,730,251 9,718,942 9,748,918 9,656,993 9,575,550 9,490,178
Grassland 1,618,498 1,697,143 1,657,674 1,660,798 1,569,406 1,529,747 1,497,225

Water 548,437 550,432 633,893 622,750 538,184 528,244 518,958
Urban land 4,660,253 4,831,098 5,033,004 5,167,280 5,276,346 5,801,081 6,248,796
Bare land 28,960 28,696 28,318 28,340 28,696 28,318 27,919

Figure 7 shows the simulated LULC changes for the SSP126 and SSP245 scenarios. In
2020–2030, the arable land in the SSP126 scenario is mainly converted to grassland and
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urban land. Between 2030 and 2040, 1.8% of the arable land converts to urban land, while
4.6% of the urban land converts to arable land (and vice versa, to a lesser extent), resulting
in a lower rate of change for urban land between 2030 and 2040 and a similar shift in the
previous period between 2040 and 2050, with a continued overall conversion of agricultural
land to other land types and, significantly, urban land use. Under the SSP2-4.5 scenario,
the main changes between cropland, urban land, and forest land occur between 2020 and
2030, with conversion rates from cropland to urban land and forest land of 3.8% and 1.1%,
respectively. In addition, similar changes occur between 2030–2040 and 2040–2050, with
arable land mainly being converted to urban land, resulting in a significant increase in the
urban land area.
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4.3. Risk Assessment of Future Flood
4.3.1. Hazard Indicators

The Geographic Information System (GIS), as a visual technical means, is mainly used
in flood disaster risk assessment [55]. Figure 8 shows the flood hazard maps under different
scenarios during different periods, from which the spatial distribution characteristics of
flood hazards in the Guanzhong Plain can be analyzed. Based on the GIS environment,
the Jenks method creates a flood hazard map using the hazard index. The map shows
the potential areas where flood events are more likely to occur. For scenario SSP126, the
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medium-to-higher-risk area gradually shifts from the northeast to the southwest of the
Guanzhong Plain. There is a significant increase in the medium-to-higher-risk area. SSP245
is similar to the above, but the medium-to-higher-risk area is more significant. The rise in
hazards in the southwest also contributes to a certain extent to the eventual concentration
of the higher-risk areas for flooding in the southwestern part of the Guanzhong Plain.
Combined with Figure 9, it can be seen that in the 25%–75% interval, more data exist for
SSP245 than for SSP126. For Rx5day, the SSP245 scenario is mainly concentrated in the
80–90 mm range. The SSP126 scenario is primarily focused in the 70–100 mm range, with
the former concentration associated with higher precipitation and more extreme values. In
contrast, the annual rainfall also shows a similar distribution, which leads to the SSP245
scenario being more likely to produce higher precipitation in both scenarios relative to the
SSP126 scenario, thus leading to flooding.
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2030–2050.

4.3.2. Sensitivity Indicators

The spatial distribution of the environmental sensitivity to flooding in the Guanzhong
Plain between 2030 and 2050 is shown in Figure 10. The spatial distribution of the sensitivity
to flood hazards in the Guanzhong Plain can be analyzed from this. To better analyze
the changes, three typical areas of change are selected for analysis; when coupled with
Figure 11, it can be seen that the green area mainly represents the variation in low-risk
areas, which remains around 0.06 for all years, except for the SSP245 scenario, where it is
0.03 in 2030. The red areas mainly show the change from low-risk areas to medium- and
high-risk areas, and the blue areas mainly show the transition from medium-risk areas
to high- and higher-risk areas. As we set the distance from the river to remain constant,
the changes in this part are mainly influenced by land use. Combined with Figure 6, it
can be seen that there is a more obvious expansion of urban land in this area. Under the
SSP245 scenario, the high- and higher-risk areas in 2050 account for more than 30%, with
the higher-risk area reaching 38.9%, so the area’s risk level is significantly higher.
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4.3.3. Vulnerability Indicators

This study primarily considers flood vulnerability regarding demographic and socioe-
conomic factors. On this basis, the Jenks methodology is used to classify the risk levels into
five, which are lower, low, medium, high, and higher. Most of the medium–higher vulnera-
ble areas are mainly located in urban land areas. Most areas have low vegetation cover but
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are densely populated and more economically developed, which has been shown to play
a somewhat important role in increasing vulnerability. The areas of low vulnerability are
mainly located in agricultural areas, and most are flat. As seen in Figure 12, there is little
change in the vulnerability between the two scenarios, mainly in the form of a decrease in
the lower-risk areas and an increase in the medium-to-higher-risk areas.
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4.3.4. Future Multi-Scenario Flood Risk Assessment

The flood risk map for the Guanzhong Plain (Figure 13) was obtained by integrating
the GIS environment-based hazard, sensitivity, and vulnerability maps described above.
The equal spacing approach was used to classify the flood risk into five categories: lower,
low, medium, high, and higher risk.
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Combined with Figures 14 and 15, it can be seen that under the SSP126 scenario, the
percentage of flood risk zone levels in the Guanzhong Plain in 2030 are 0.018, 0.123, 0.435,
0.415, and 0.009, where the high- and medium-risk zones occupy a large area and are
mainly concentrated in the areas where rivers converge, with the high-risk zones located
near the Weihe River (Pucheng, Wugong, Fengxiang, and Yongji). The largest changes
in the risk area between 2030 and 2040 are in the medium- and high-risk areas, with the
medium-risk area decreasing by 1256.448 km2 (0.064) and the high-risk area increasing by



Remote Sens. 2023, 15, 5778 18 of 24

1197.552 km2 (0.061); the increase mainly comes from the transition from the medium-risk
area to the high-risk area. The spatial distribution of risk areas is similar, but the high-risk
areas increase in Qindu and near the lower reaches of the Weihe River and the Ba River,
and a comparison of Figures 5 and 7 shows that the increase in the high-risk areas is related
to the rise in urban land use and precipitation. The most significant change in the risk area
in the Guanzhong Plain between 2040 and 2050 is in the higher-risk area, which increases
by 337 km2 (0.057), while the medium- and high-risk areas decrease by 726.384 km2 (0.037)
and 667.488 km2 (0.034), respectively, with a distribution similar to that of precipitation and
urban land use in 2050. This distribution is identical to that of precipitation and urban land
use in 2050. As shown in Figure 13, a large proportion of the area at risk overall is related
to the distribution of DEM, the slope, and arable land, and the overall flat topography of
the Guanzhong Plain and its well-developed rivers are more prone to flooding.
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In the SSP245 scenario, the overall risk distribution is similar to that in the SSP126
scenario, with an overall increase in the high-risk area in the central and western parts of
the plain, with the percentage of flood-risk areas in the Guanzhong Plain in 2030 being
0.021, 0.117, 0.418, 0.429, and 0.012, respectively. Between 2030 and 2040, the medium- and
high-risk areas continue to have the greatest change in the area, with the medium-risk
area decreasing by 1433.136 km2 (0.073) and the high-risk area increasing by 1099.392 km2

(0.056), mainly due to changes in precipitation and an increase in urban land use; between
2040 and 2050, the increase in the area of the higher-risk area peaks at 1472.4 km2. This is
mainly in the vicinity of the Weihe River’s mainstem. The urban land area has significantly
changed, from 236.112 km2 to 905.096 km2 and, finally, to 2380.796 km2.



Remote Sens. 2023, 15, 5778 19 of 24Remote Sens. 2023, 15, x FOR PEER REVIEW 21 of 27 
 

 

 
Figure 15. Change in risk transfer under different scenarios. 

In the SSP245 scenario, the overall risk distribution is similar to that in the SSP126 
scenario, with an overall increase in the high-risk area in the central and western parts of 
the plain, with the percentage of flood-risk areas in the Guanzhong Plain in 2030 being 
0.021, 0.117, 0.418, 0.429, and 0.012, respectively. Between 2030 and 2040, the medium- and 
high-risk areas continue to have the greatest change in the area, with the medium-risk 
area decreasing by 1433.136 km2 (0.073) and the high-risk area increasing by 1099.392 km2 

(0.056), mainly due to changes in precipitation and an increase in urban land use; between 
2040 and 2050, the increase in the area of the higher-risk area peaks at 1472.4 km2. This is 
mainly in the vicinity of the Weihe River’s mainstem. The urban land area has significantly 
changed, from 236.112 km2 to 905.096 km2 and, finally, to 2380.796 km2. 

5. Discussion 
5.1. CMIP6 Downscaling and Validation 

Based on the CMIP6 data, we selected five GCMs’ data that are suitable for the study 
area, and the selected data were revised for bias and downscaled by pooled averaging as 
well as BCSD methods, which showed that after ensemble averaging, the standard devia-
tion of each mode is less than 0.5, the root-mean-square error is within 0.4, and the corre-
lation coefficient is more than 0.95. For higher accuracy, the BCSD method was chosen to 
downscale the data after ensemble averaging, and it can be seen that BCSD can completely 
carry out downscaling and correction work. Zhu [56,57] used the model ensemble aver-
aging method to validate the CMIP6 precipitation data for the Tibet Plateau and the Yang-
tze River Basin, and the results showed that the model ensemble averaging method can 
reduce model errors well, but further corrections are needed. Eum [58] ranked four 
downscaling methods, BCSD, the bias-correction/constructed analog, multivariate adap-
tive constructed analogs (MACA), and the bias-correction/climate imprint, based on per-
formance metrics using the TOPSIS; the results showed that MACA and BCSD have con-
siderable skills regarding the time series correlation criteria, while BCSD is superior to the 
other methods regarding the distribution and extreme value correlation criteria. This 
would suggest that the BCSD method chosen for this study has some advantages over 
other downscaling methods and is a tool that can be used well for downscaling. 

5.2. MOP Coupling PLUS Multi-Scenario Simulation 
This study uses the MOP and PLUS models for land-use multi-scenario prediction. 

The simulation accuracy can reach a Kappa of 0.85 and an overall accuracy of 0.92, which 
can better simulate the future land-type distribution of the Guanzhong Plain. The change 
in land use also shows different characteristics under different scenarios. In the SSP126 

Figure 15. Change in risk transfer under different scenarios.

5. Discussion
5.1. CMIP6 Downscaling and Validation

Based on the CMIP6 data, we selected five GCMs’ data that are suitable for the study
area, and the selected data were revised for bias and downscaled by pooled averaging
as well as BCSD methods, which showed that after ensemble averaging, the standard
deviation of each mode is less than 0.5, the root-mean-square error is within 0.4, and
the correlation coefficient is more than 0.95. For higher accuracy, the BCSD method was
chosen to downscale the data after ensemble averaging, and it can be seen that BCSD
can completely carry out downscaling and correction work. Zhu [56,57] used the model
ensemble averaging method to validate the CMIP6 precipitation data for the Tibet Plateau
and the Yangtze River Basin, and the results showed that the model ensemble averaging
method can reduce model errors well, but further corrections are needed. Eum [58] ranked
four downscaling methods, BCSD, the bias-correction/constructed analog, multivariate
adaptive constructed analogs (MACA), and the bias-correction/climate imprint, based on
performance metrics using the TOPSIS; the results showed that MACA and BCSD have
considerable skills regarding the time series correlation criteria, while BCSD is superior to
the other methods regarding the distribution and extreme value correlation criteria. This
would suggest that the BCSD method chosen for this study has some advantages over other
downscaling methods and is a tool that can be used well for downscaling.

5.2. MOP Coupling PLUS Multi-Scenario Simulation

This study uses the MOP and PLUS models for land-use multi-scenario prediction.
The simulation accuracy can reach a Kappa of 0.85 and an overall accuracy of 0.92, which
can better simulate the future land-type distribution of the Guanzhong Plain. The change
in land use also shows different characteristics under different scenarios. In the SSP126
scenario, the conversion of agricultural land to forests, buildings, and water is constant [59].
In Europe, the area of forested land in a similar context has increased due to the introduction
of policies and the designation of nature reserves [60]. “Forest conservation”, “Reforestation
and Revegetation”, and other eco-civilizations promote environmental protection as well
as sustainable development, which also leads to the continuous return of cultivated land
to forest and grass [61]. This is in line with our results. In the SSP245 scenario, the future
conversion of arable land to buildings and increased population density in the southeast
will continue to affect climate change and lead to more extreme rainfall events [62].
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5.3. Flood Risk Assessment

The entropy weight method is used in this article for flood risk assessment. The
analysis shows that the higher risk areas for flooding in the Guanzhong Plain are mainly
found in the central part of the Guanzhong Plain as well as in the northern part, which is in
line with the findings of Dou’s study [63]. In other regions, Liu [64] used the entropy weight
method to assess flood risk in the Bangladesh–India–Myanmar region and found that the
results were generally consistent with those obtained from the study when compared with
historical flood hazards. The impact of different flood disaster risk factors on future flood
disaster risk was quantitatively analyzed. The results of the quantitative calculation by the
entropy weight method in this study show that when the flood risk is determined by spatial
weight superposition, the weights of each factor in the two scenarios are similar, among
which the distance from the river has the highest weight (16.8%), and the second is RMAX3
(16.3%). These results are deviated from those of previous studies [65–67]. Stefanos [65]
pointed out that compared with natural factors, human factors are the main cause of flood
disasters in most basins. Hammami [67] selected eight kinds of flood causes to evaluate
the sensitivity of regional flood disasters. The results showed that the factor that had
a significant impact on the occurrence of floods was elevation. Based on this study of
flood disaster risk assessment, it is found that the most important flood-disaster-causing
factors are different in multi-criteria systems in different regions. Therefore, the most
appropriate flood control measures should be taken according to the evaluation results of
different regions.

This paper combines the risk of flood disasters during historical periods with the accu-
rate prediction of flood risks in future development scenarios, which is of great significance
for future sustainable development. Previous studies have shown that this is an effective
method to determine the future flood risk distribution through future land-use scenarios.
Lin et al. [68] used the FLUS model to simulate future land-use scenarios in Guangzhou
to assess the city’s flood risk. Canters et al. [69] used the CA model to simulate land-use
change on the Belgian coast and analyze its impact on flood risk. However, the commonly
used land-use scenario simulation methods (FLUS, the Conversion of Land Use and its
Effects at Small Region Extent model, etc.) have the disadvantages of an unclear model
conversion mechanism and inconvenient operation. There are great deficiencies in excavat-
ing the law of land-use conversion and revealing dynamic changes in the landscape, and
it is difficult to effectively identify the factors affecting the dynamic evolution of various
land-use patches [60,70]. These problems limit the application of these models in land-use
simulation and will inevitably affect the prediction accuracy of flood risk. At the same time,
the assessment of flood risk is mostly based on history and the current situation [71,72]
or climate change [73,74]. Few studies have linked the PLUS model to future urban land
development planning and urban flood disaster risk evolution. In this study, the flood
disaster risk maps under different development scenarios obtained by coupling PLUS,
MOP, and the entropy weight method can provide a basis and reference for future urban
planning and flood control in plain areas.

5.4. Flood Adaptation Strategies and Policies

In the 21st century, flood control in plain cities is a major challenge, and government
departments need the guidance of risk analysis to determine flood control policies. In
this study, the proposed framework can be used to explore future flood disaster risks.
The results can provide support for land-use planning and provide a basis for decision-
makers to decide how to set flood control measures and urban development directions,
which is crucial for developing countries in the process of rapid urbanization. In the
future, the Guanzhong Plain area must increase flood control planning, such as drainage
systems, flood buffer zones, etc. Low-impact development and a sponge city can effectively
reduce rainfall runoff, the amount of pollutants in rainwater, and return rainfall, which are
sustainable flood control and disaster reduction measures [75,76]. Luo et al. [6] considered
that the combination of gray (engineering measures) and green (natural measures) can
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effectively reduce the damage of floods to cities. Therefore, increasing the proportion of
green space and green plants in Guanzhong and global plain urban areas, combining the
natural conditions with urban flood control measures, and forming an integrated rainwater
control system to reduce rainwater runoff are all suggested measures. At the same time,
the government should incorporate the protection and restoration of natural systems into
policies and regulations to promote urban flood control construction in plain areas.

For the urban areas that have been built, flexible and multi-spatial scale flood manage-
ment strategies should be proposed. Among them, the most critical thing is to dynamically
adjust the land-use function for future flood scenarios. For example, flood-prone agricul-
tural areas can be changed to aquaculture models. In the planning of building types, the
building structure should be innovated, the building specifications should be enhanced,
and the flood control capacity should be improved. At the same time, the government
should establish emergency strategies for flood risk management, plan evacuation routes
in advance, improve rescue systems and assistance mechanisms, and ensure the safety of
people’s lives and property. According to the survey results of flood disasters in recent
years, the disorder of social and economic development is the main reason for the increase
in flood losses. The scientific land-use planning of the flood detention area can avoid
large-scale development, thus greatly reducing flood losses [77].

6. Conclusions

In this study, after averaging the five GCMs by mode ensemble, the BCSD method
was used for downscaling analysis. The results show that the standard deviation after
ensemble averaging is less than 1, and the correlation coefficient exceeds 0.95. However, the
resolution is still relatively low, and, to improve the resolution, the resolution and accuracy
after the operation with the BCSD method are better than after ensemble averaging.

Under different scenarios, there is a wide range of future land-use changes. The SSP126
scenario, except for cultivated land, maintains an increasing trend, with woodland and
grassland showing fluctuating growth trends and with cultivated land consistently shifting
to woodland, urban land, and water bodies; the SSP245 scenario, except for urban land,
maintains a decreasing trend, with cultivated land and other land types mainly shifting to
urban land, leading to a large increase.

The results of the flood risk assessment using the entropy weighting method show
that the overall spatial distribution of flood risk is similar between the SSP126 and SSP245
scenarios, with the central and western parts of the Guanzhong Plain being more susceptible
to flooding in the future, mainly due to the regional increase in future precipitation and
the expansion of urban land use. Under the SSP245 scenario, the higher-risk area increases
to 2380.796 km2 by 2050, and the higher-risk area for the whole region shows a gradual
increase from east to west along the Wei River. This study can provide a guide for future
flood hazard prevention in the Guanzhong Plain.
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