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Abstract: Obtaining spatial distribution information on mariculture in a low-cost, fast, and efficient
manner is crucial for the sustainable development and regulatory planning of coastal zones and
mariculture industries. This study, based on the Segment Anything Model (SAM) and high-resolution
remote sensing imagery, rapidly extracted mariculture areas in Liaoning Province, a typical northern
province in China with significant mariculture activity. Additionally, it explored the actual marine
ownership data to investigate the marine use status of Liaoning Province’s mariculture. The total
area of mariculture we extracted in Liaoning Province is 1052.89 km2. Among this, the area of cage
mariculture is 27.1 km2, while raft mariculture covers 1025.79 km2. Through field investigations, it
was determined that in the western part of Liaodong Bay, cage mariculture predominantly involves
sea cucumbers. In the southern end of Dalian, the raft mariculture focuses on cultivating kelp. On
the other hand, around the islands in the eastern region, the primary crop in raft mariculture is
scallops, showing a significant geographical differentiation pattern. In the planned mariculture
areas within Liaoning Province’s waters, the proportion of actual development and utilization is
11.2%, while the proportion approved for actual mariculture is 90.2%. This indicates a suspicion
that 9.8% of mariculture is possibly in violation of sea occupation rights, which could be due to
the untimely updating of marine ownership data. Based on SAM, efficient and accurate extraction
of cage mariculture can be achieved. However, the extraction performance for raft mariculture is
challenging and remains unsatisfactory. Manual interpretation is still required for satisfactory results
in this context.

Keywords: remote sensing; mariculture; coastal management; spatial analysis

1. Introduction

Mariculture is a crucial global source of food, nutrition, income, and livelihood for
humans [1]. In recent years, the unregulated expansion of mariculture has posed a sig-
nificant threat to the ecological environment, leading to issues such as water pollution
and the outbreak of green algae blooms in coastal areas [2–4]. Effective management of
mariculture by relevant government agencies is a critical foundation for the sustainable
development of mariculture. However, the rapid expansion of mariculture and the high
cost of on-site research pose challenges for governments in conducting timely monitoring
and management of mariculture. Therefore, low-cost, rapid, and accurate monitoring of
mariculture is particularly important for the sustainable development of coastal areas and
for the harmonious coordination of human, terrestrial, and marine resources.
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Remote sensing offers advantages such as long-term observation and complete cover-
age, and currently, remote sensing-based monitoring of mariculture has made significant
progress. It is important to note that mariculture comprises a diverse range of types. Gener-
ally, research on remote sensing extraction of mariculture refers to the extraction of visible
culture facilities on the sea surface, such as cages and rafts. In addition to these two meth-
ods, there is also bottom culture. Bottom culture is a relatively extensive farming model that
involves releasing juvenile mariculture organisms into the seabed area, cultivating species
like mollusks and sea cucumbers without the need for artificial feeding. This cultivation
method leans more towards natural processes, covering a much larger area compared to
cage and raft mariculture. However, due to its seabed location, it cannot be observed using
remote sensing methods. Therefore, unless otherwise specified, the mariculture extracted in
this paper generally includes raft and cage mariculture. Based on remote sensing imagery,
the extraction of mariculture areas can be broadly categorized into methods such as visual
interpretation [5,6], information enhancement [7], feature learning [8,9], object-oriented
methods [10,11], and deep learning methods [12–14]. Initially, research related to remote
sensing extraction of mariculture areas focused largely on relatively small experimental
zones, such as key bays for mariculture. However, with the continuous development of
technological methods, there is now research conducted at a large regional scale for the
extraction of mariculture areas.

For example, in the case of China, which accounts for over 60% of global mariculture
production, several scholars have successfully conducted studies on mariculture extraction
at both national and regional scales [11,15–19]. However, many of these studies have
primarily focused on the spatial distribution and patterns of mariculture itself, overlooking
alignment and correlation analysis with government-allocated mariculture planning areas.
They have not effectively monitored or discriminated against information related to illegal
mariculture activities. This limitation hinders the further planning and management
of mariculture.

In a few rare studies, following the extraction of mariculture using remote sensing, an
assessment of the regional mariculture development has been conducted by overlaying
it with government-defined marine functional zoning. For instance, Wang et al., using
Landsat satellite imagery, performed a multi-temporal extraction of mariculture areas
in Shandong Province from 1990 to 2018 [20]. By overlaying the mariculture area data
with government marine functional zoning maps, they evaluated the implementation and
effectiveness of marine functional zoning. Similarly, Kang et al., also based on Landsat
imagery, extracted mariculture areas in Liaoning Province from 2000 to 2018 and evaluated
the developmental changes in mariculture [21]. While the aforementioned studies con-
ducted a correlation analysis between the spatial distribution of mariculture and planning
maps, they were limited by the accuracy and timeliness of these planning maps, making it
challenging to monitor mariculture areas in violation of sea occupation rights effectively.
Additionally, in terms of mariculture target extraction, the extraction methods in these
studies still required parameter adjustments for different regions, resulting in relatively
lower efficiency in practical applications.

Deep learning methods, as advanced techniques in the field of image recognition,
have achieved success in remote sensing-based mariculture extraction. For example, using
convolutional neural network models, mariculture at the object level can be successfully
extracted [22–25]. However, most of these studies have focused on method exploration and
investigating the macro-level spatial distribution and change patterns of mariculture. They
have lacked case studies oriented towards the specific management needs of coastal areas.

Furthermore, deep learning methods still face significant challenges in practical appli-
cations. Aside from hardware requirements, in order to achieve effective feature extraction
with deep learning methods, it is essential to build a high-quality sample database. The
nature of mariculture, with its high dynamics and the inherent difficulty of acquiring
information underwater, coupled with the complexity of remote sensing imaging caused by
environmental changes, results in substantial variations in the mariculture targets within
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remote sensing images from different mariculture modes, processes, regions, hydrological
conditions, weather conditions, and data sources or resolutions. As a result, the comprehen-
sive cost of building a high-quality mariculture sample database from scratch is relatively
high. Therefore, in practical management tasks, in order to ensure interpretation accuracy,
management departments predominantly rely on manual visual interpretation methods to
extract mariculture objects, which is highly inefficient. Currently, practical methods that
can simultaneously achieve a high degree of automation, strong adaptability, and high
interpretation accuracy are essentially lacking.

With the continuous accumulation of vast amounts of data and the further develop-
ment of deep learning and artificial intelligence technologies, the field of image recognition
has seen the emergence of large models represented by SAM [26]. Compared to tradi-
tional deep learning models, SAM is trained on 1 billion masks from 11 million images
and has the ability for zero-shot generalization. It eliminates the need to rebuild the sam-
ple database when performing object extraction, providing the possibility for efficient
automatic extraction in the context of mariculture.

Based on the background described above, this research attempts to apply SAM for
the automatic extraction of mariculture targets. The study focuses on Liaoning Province,
the northernmost and most complex mariculture environment in China, to investigate
the extraction performance of the SAM model. The targets extracted in our study include
raft mariculture and cage mariculture at sea, excluding benthic mariculture that is not
observable on the seabed. Building upon this, real maritime ownership data will be
integrated to identify areas with unauthorized occupation and to analyze and discuss
various issues in the existing mariculture practices in Liaoning.

2. Study Area and Data
2.1. Study Area

Liaoning Province is the northernmost coastal province in China, bordering the Bohai
Sea and the Yellow Sea to the south. It experiences a temperate monsoon climate and is
situated between 118◦53′ to 125◦46′E and 38◦43′ to 43◦26′N, as shown in Figure 1. The
coastline of Liaoning Province stretches from the mouth of the Yalu River in the east to the
boundary with Hebei Province in the west, spanning five different latitudes from north to
south. The coastline is characterized by its winding and intricate nature, featuring diverse
geological types. Numerous rivers flow into the sea along the coast, enriching the area with
nutrients. This has given rise to two major marine ecosystems, the northern Yellow Sea and
the Liaodong Bay, which are significant for fisheries production in the region [27]. In recent
years, influenced by market demand and policies, the mariculture areas of various scales
in Liaoning Province have shown a growing trend [21]. The growth rate of mariculture
production and the expansion rate of mariculture ponds in Liaoning also rank among the
highest in China’s coastal provinces [28].

Liaoning Province ranks at the forefront among Chinese provinces in terms of the di-
versity of mariculture types and the total mariculture area [16]. However, most mariculture
activities in Liaoning Province are conducted by mariculture companies or individuals. Due
to the relatively shallow water depth in the Bohai Sea, mariculture is spatially dispersed,
and there are also numerous mariculture activities around some offshore islands, increasing
the complexity of mariculture monitoring. Remote sensing observations in Liaoning’s mari-
culture primarily include cage mariculture and raft mariculture. Cage mariculture is mainly
for cultivating fish and sea cucumbers, while raft mariculture focuses on shellfish and algae.
Based on preliminary visual interpretation, we found that the majority of mariculture in
Liaoning is distributed within 20 km of the mainland coastline. Some mariculture areas
also appear around islands relatively far from the mainland but generally not exceeding
20 km from the islands. To ensure that mariculture areas are not overlooked, we used the
coastlines of the mainland and islands as a reference, creating a 35 km buffer zone seaward
as the experimental area for this study.
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2.2. Data

Due to frequent cloud cover and rainfall over the sea, which is unfavorable for satellite
observations, various high-resolution optical remote sensing images were used in the study
to ensure coverage of the research area. These images primarily include satellites such
as GF-1, GF-2, GF-6, and ZY-3, with specific parameters detailed in Table 1. The data has
undergone fusion processing, achieving a resolution equivalent to the panchromatic band,
typically within the range of 1–2 m. We completed the pansharpening process for images
in ArcGIS using the Gram–Schmidt method.

The coastal zone is often cloudy and rainy, which limits the availability of optical
imagery. Furthermore, Liaoning is located in the northern part of China, and during the
winter, nearshore seawater can freeze, making it challenging to observe mariculture activi-
ties and further reducing the available imagery within the temporal window. Additionally,
strong winds can generate significant waves on the sea surface, hindering the recognition
of mariculture and further reducing the available imagery. To ensure effective extraction of
mariculture, it is necessary to carefully select remote sensing images.

In this study, we initially obtained images for the entire year of 2021 from the satellites
listed in Table 1. We observed that the sea near Bohai Bay freezes in January and February,
affecting the recognition of mariculture. Therefore, we first excluded images from these
two months. Subsequently, most images with relatively poor quality were eliminated
based on the condition of cloud cover being less than 15%. This is primarily because the
main body of mariculture is located beneath the water surface, and a high cloud cover
can obscure the mariculture area and alter the reflectance distribution of both main and
ancillary images, making the already weak signals of mariculture even fainter. Following
this, manual inspection was carried out to remove images with significant wind and waves,
as turbulent waves can also impact the identification of mariculture. The final set of images
used in our analysis was concentrated in the period from March to May when the image
quality was relatively better. As a supplement, a small number of images from September
and November were also included. On the other hand, to minimize the data processing
workload, we prioritized images with relatively larger swath widths. GF-2 images, with a
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smaller swath width, were used only as a supplement to the 2 m resolution data, as they
could not completely cover the study area. In conclusion, we utilized a total of 19 scenes of
GF-1 images, 2 scenes of GF-2 images, 8 scenes of GF-6 images, and 8 scenes of ZY-3 images.

Table 1. High-resolution satellite parameters.

Satellite Band Spectral
Range (µm)

Spatial
Resolution

(m)

Swath
Width (km)

Revisit
Period (Day)

(Satellite
Yaw)

GF-1 (PMS)

PAN 0.45~0.90 2

60 4
B 0.45~0.52 8
G 0.52~0.59 8
R 0.63~0.69 8

NIR 0.77~0.89 8

GF-2 (PMS)

PAN 0.45~0.90 1

45 5
B 0.45~0.52 4
G 0.52~0.59 4
R 0.63~0.69 4

NIR 0.77~0.89 4

GF-6 (PMS)

PAN 0.45~0.90 2

90 4
B 0.45~0.52 8
G 0.52~0.60 8
R 0.63~0.69 8

NIR 0.76~0.90 8

ZY-3 (TDI
CCD)

PAN 0.45~0.80 2.1

51 5
B 0.45~0.52 6
G 0.52~0.59 6
R 0.63~0.69 6

NIR 0.77~0.89 6

3. Method

The overall methodology employed in this study is illustrated in Figure 2. High-
resolution remote sensing images undergo preprocessing, including radiometric calibration,
geometric correction, and image fusion. Land and water separation is achieved based on
continental vector data and the Normalized Difference Water Index (NDWI) to remove
land areas and reduce interference in the extraction of mariculture. For the ocean areas, the
first step involves using SAM to extract the more prominent cage mariculture. Then, for the
weaker information associated with raft mariculture, after further using NDWI to remove
small islands, vessels, and cage mariculture in the sea, brightness stretching is applied to
the raft mariculture areas to enhance the information. SAM is then employed for extraction.
The results are subsequently visually inspected, modified, and supplemented to obtain
the final spatial distribution data of mariculture. These results are overlaid with maritime
ownership data, and an overall assessment of the distribution of mariculture is conducted.

3.1. Segment Anything Model

The SAM model is a large-scale model in the field of image segmentation based on
the Transformer vision model. It is trained on a total of over 1.1 billion masks from more
than 11 million images [26], showcasing remarkable image segmentation capabilities. SAM
consists of three main components: an image encoder, a flexible prompt encoder, and a
fast mask decoder. The image encoder is built upon a pre-trained Vision Transformer with
a Masked Autoencoder (MAE), enabling it to handle high-resolution image inputs. The
prompt encoder can support sparse types of prompts in the form of points, boxes, and text,
as well as dense types of prompts in the form of masks. The mask decoder maps the image
embedding, prompt embeddings, and an output token to a mask. SAM is designed as an
interactive promptable model during training, allowing it to perform image segmentation
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tasks with zero-shot capability in practical applications, making it more efficient compared
to traditional deep learning models.
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the SAM model. We extracted mariculture based on SAM by utilizing the deep learning
object detection feature in ArcGIS. The specific parameter settings for SAM extraction of
mariculture in ArcGIS are as follows: padding = 256; batch_size = 64; box_nms_thresh = 0.7;
points_per_batch = 64; stability_score_thresh = 0.95; min_mask_region_area = 0.

3.2. The Extraction of Cage Mariculture Based on SAM

The contrast between the segmented target and its surrounding background has a
direct impact on the segmentation results achieved with the SAM model. Cage mariculture
is primarily composed of the framework, buoys above the water surface, and cages or nets
beneath the water surface (See Figure 3a). Since the cages or nets are located below the
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framework and cannot be identified in remote sensing images, extracting cage mariculture
essentially involves extracting the framework above the water surface.

Remote Sens. 2023, 15, 5781 7 of 19 
 

 

3.1. Segment Anything Model 
The SAM model is a large-scale model in the field of image segmentation based on 

the Transformer vision model. It is trained on a total of over 1.1 billion masks from more 
than 11 million images [26], showcasing remarkable image segmentation capabilities. 
SAM consists of three main components: an image encoder, a flexible prompt encoder, 
and a fast mask decoder. The image encoder is built upon a pre-trained Vision 
Transformer with a Masked Autoencoder (MAE), enabling it to handle high-resolution 
image inputs. The prompt encoder can support sparse types of prompts in the form of 
points, boxes, and text, as well as dense types of prompts in the form of masks. The mask 
decoder maps the image embedding, prompt embeddings, and an output token to a mask. 
SAM is designed as an interactive promptable model during training, allowing it to 
perform image segmentation tasks with zero-shot capability in practical applications, 
making it more efficient compared to traditional deep learning models. 

In this study, we initially downloaded the SAM.dlpk file from the internet 
(https://www.arcgis.com/home/item.html?id=9b67b441f29f4ce6810979f5f0667ebe, 
accessed on 7 June 2023.) and configured the deep learning framework in ArcGIS Pro 3.1 
software to invoke the SAM model. We extracted mariculture based on SAM by utilizing 
the deep learning object detection feature in ArcGIS. The specific parameter settings for 
SAM extraction of mariculture in ArcGIS are as follows: padding = 256; batch_size = 64; 
box_nms_thresh = 0.7; points_per_batch = 64; stability_score_thresh = 0.95; 
min_mask_region_area = 0. 

3.2. The Extraction of Cage Mariculture Based on SAM 
The contrast between the segmented target and its surrounding background has a 

direct impact on the segmentation results achieved with the SAM model. Cage 
mariculture is primarily composed of the framework, buoys above the water surface, and 
cages or nets beneath the water surface (See Figure 3a). Since the cages or nets are located 
below the framework and cannot be identified in remote sensing images, extracting cage 
mariculture essentially involves extracting the framework above the water surface. 

The framework is typically made of plastic materials and has a higher reflectance 
compared to the background seawater, appearing as a gray-white tone in images. The 
framework is generally in a regular rectangular shape, and at high resolutions, it is 
possible to discern the fine mesh pattern of cage mariculture, which forms a distinctive 
texture feature. In an area, cage mariculture typically follows similar specifications, so 
their shapes and sizes are relatively regular. Additionally, because the cage mariculture 
framework floats on the water surface, it has a significant contrast with the background 
seawater. Therefore, the SAM model can be directly used for segmentation and extraction. 

   
(a) (b) (c) 

Figure 3. Field inspection photos. (a) Cage mariculture; (b) alga raft mariculture (kelp); (c) bivalve 
raft mariculture (hanging cages). 

3.3. The Extraction of Raft Mariculture Based on SAM 
Raft mariculture consists primarily of three components: floating rafts, hanging ropes 

or cages, and fixed cables. The floating rafts are composed of floats connected by ropes, 
keeping the rafts afloat on the sea surface. At even intervals along the floating raft ropes, 

Figure 3. Field inspection photos. (a) Cage mariculture; (b) alga raft mariculture (kelp); (c) bivalve
raft mariculture (hanging cages).

The framework is typically made of plastic materials and has a higher reflectance
compared to the background seawater, appearing as a gray-white tone in images. The
framework is generally in a regular rectangular shape, and at high resolutions, it is possible
to discern the fine mesh pattern of cage mariculture, which forms a distinctive texture
feature. In an area, cage mariculture typically follows similar specifications, so their shapes
and sizes are relatively regular. Additionally, because the cage mariculture framework
floats on the water surface, it has a significant contrast with the background seawater.
Therefore, the SAM model can be directly used for segmentation and extraction.

3.3. The Extraction of Raft Mariculture Based on SAM

Raft mariculture consists primarily of three components: floating rafts, hanging ropes
or cages, and fixed cables. The floating rafts are composed of floats connected by ropes,
keeping the rafts afloat on the sea surface. At even intervals along the floating raft ropes,
hanging ropes, or cages are connected. Hanging ropes are primarily used for cultivat-
ing seaweed (See Figure 3b), while cages are used for rearing scallops and oysters (See
Figure 3c), among other marine products. These hanging ropes and cages are submerged
in the seawater. One end of the fixed cable is attached to the floating raft, while the other
end is secured to weights, serving the purpose of anchoring.

Since the main components of raft mariculture are located mostly beneath the water
surface, only individual floats are visible on the sea surface in remote sensing images. This
results in very weak imaging information. Raft mariculture is often densely arranged, with
several dozen ropes forming a group, leading to the appearance of rectangular bands in
images. Raft mariculture for seaweed cultivation gradually exhibits vegetation features as
the mariculture products mature. In remote sensing images, it appears as deep blue rectan-
gular bands with relatively strong information in the near-infrared spectrum. However,
information for shellfish cultivation is much weaker compared to seaweed cultivation, and
direct extraction using the SAM model yields less satisfactory results.

To achieve this, information enhancement is required for raft mariculture. After
extracting cage mariculture, the sea surface is divided into areas of high-brightness targets
and low-brightness regions based on the Normalized Difference Water Index (NDWI).
High-brightness targets generally include small islands, vessels, and other high-brightness
objects like cages, while the low-brightness region contains the weak information associated
with raft mariculture. After removing the high-brightness areas, brightness stretching is
applied to the sea areas where raft mariculture is located to enhance the raft mariculture
information. Subsequently, segmentation is carried out based on the SAM model.

3.4. Accuracy Assessment

In order to examine the extraction effectiveness of SAM on mariculture, an accuracy
assessment was performed on the automatically extracted mariculture data. Within the
study area, 1000 random sample points were generated for both cage mariculture and
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raft mariculture intensive areas. The categories of these sample points were determined
through manual visual interpretation, and an accuracy assessment was conducted using
the F1 score method.

The F1 score is a combination of precision and recall. Precision represents the pro-
portion of correct identification in the extracted mariculture area, and recall represents
the proportion of the actual mariculture area correctly extracted. In practice, precision
and recall are often in conflict, so the F1 value is commonly used to comprehensively
measure the two indicators [11]. The larger the F1 value, the better the accuracy of the
extraction result.

F1 = 2× Recall× Precision
Recall + Precision

(1)

Recall =
TP

TP + FN
(2)

Precision =
TP

TP + FP
(3)

where TP refers to the number of sample points when the type of mariculture area is
correctly identified, FP refers to the number of sample points incorrectly identified as the
mariculture area, and FN refers to the number of sample points in the actual mariculture
area but not identified.

3.5. Overlay Assessment with Maritime Ownership Data

In order to assess the actual status of mariculture development and its consistency
with government planning, the extraction results of mariculture are overlaid with maritime
ownership data. Maritime ownership data is non-public government data, and therefore,
the consistency between actual mariculture and planning is measured in the form of a
spatial grid. Initially, a 0.01◦ × 0.01◦ grid is created as the basic unit to cover the policy
planning and actual mariculture areas. Subsequently, the mariculture data is overlaid with
management data, and a comparison is made between the mariculture extraction results
and the policy planning status within each grid. Each grid may fall into one of the following
four categories:

Type 1: “Both approved and cultivated” means that within a specific grid, both
the extracted mariculture area and management data are present. This indicates that
mariculture activities in that grid are legitimate, meaning they have been approved by
authorities and are actively taking place.

Type 2: “Approved but not cultivated” means that within a specific grid, only man-
agement data exists, and there is no extracted mariculture area. This indicates that there is
currently no actual mariculture activity in that grid. However, based on the management
data, the government has approved the use of that area for mariculture. Therefore, this
grid is considered a potential mariculture development area, and it may be developed for
mariculture in the future.

Type 3: “Cultivated but not approved” means that within a specific grid, only the
extracted mariculture area exists, and there is no management data. This indicates that
there is mariculture activity in that area, but there is no relevant government approval
or regulatory data. As a result, this may be considered as unauthorized mariculture.
Further investigations and legal measures may be necessary to either legalize or stop the
mariculture activities, depending on local regulations and policies.

Type 4: “Neither approved nor cultivated” means that within a specific grid, there is
neither an extracted mariculture area nor relevant management data. This indicates that
there is no mariculture activity in that area, and it has not received government approval
for mariculture. Therefore, this grid is considered unsuitable for developing mariculture,
and other uses or conservation measures may need to be considered to maintain ecological
balance and environmental sustainability.
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Through overlay assessment, each grid in the study area is assigned a specific category,
and the degree of consistency between the actual state of mariculture development and
government planning is quantified based on the concept of a confusion matrix.{

Rre =
T1

T1+T2

Rra =
T1

T1+T3

(4)

where T1, T2, T3, T4 represent the proportions of different types of grids; Rre stands for the
retention rate, indicating the proportion of planned mariculture areas that have been actu-
ally developed and utilized; Rra represents the rationality rate, indicating the proportion of
extracted mariculture areas that have received legitimate approvals.

4. Results
4.1. Mariculture Extraction Results

Based on the technical process described in this article, the mariculture in Liaoning
Province’s coastal zone was extracted, and the extraction results are shown in Figure 4.
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The results of SAM’s automatic extraction of cage aquaculture and raft aquaculture are
shown in Figure 4b,c, respectively. After randomly generating 1000 samples, the accuracy of
SAM’s automatic extraction results was validated using the F1 score. For cage mariculture,
SAM demonstrated excellent recognition performance with an F1 score of 96.1%, including
a recall of 95.6% and precision of 96.6%. However, SAM’s automatic identification of raft
mariculture was not ideal, with an F1 score of only 63.8%, including a recall of 95.3%
and precision of 47.9%. This indicates that SAM has outstanding extraction performance
for cage mariculture, enabling fast and accurate extraction. However, it is not effectively
applicable to the extraction of raft mariculture.

After automatic extraction, manual inspection and correction of the data were per-
formed. For cage mariculture, due to the good performance of automatic extraction, only a
small number of missed cages were added manually, and some objects incorrectly identified
as ship or seawall were removed. In contrast, raft mariculture automatic extraction had
more omissions, requiring more manual supplementation. Since the boundaries of many
raft mariculture are blurry in remote sensing images, manual correction only involved
outlining the outer contours of the raft mariculture areas. The manually corrected areas are
indicated by blue boxes in Figure 4b,c. The final obtained data for Liaoning mariculture are
shown in Figure 4a.

Mariculture in Liaoning is mainly concentrated in the southern-central part of Liaoning
Province near Dalian, with Dalian serving as the dividing point. In the areas west of Dalian
within Liaodong Bay, the primary mode of mariculture is cage mariculture, while in the
areas east of Dalian, raft mariculture is the predominant mode. According to the statistics,
the total area of extracted mariculture is 1052.89 km2, with a cage mariculture area of
27.1 km2 and a raft mariculture area of 1025.79 km2. Cage mariculture areas are all located
within 10 km of the coastline and have relatively smaller distribution areas. In contrast, the
spatial distribution of raft mariculture is more extensive, with some located up to nearly
20 km offshore. Even on the eastern side, where raft mariculture is more distant from the
mainland, the farthest distance can exceed 60 km, but they are all distributed around the
offshore islands.

According to on-site inspections, cage mariculture in Liaodong Bay primarily involves
the cultivation of sea cucumbers, while raft mariculture mainly includes the cultivation of
kelp and scallops. Kelp cultivation is predominantly located at the southern end of Dalian,
while raft mariculture in the vicinity of the Changshan Islands to the east focuses on the
cultivation of scallops and oysters, among other shellfish.

Among the various types of mariculture, cage mariculture is the most effectively
extracted because it primarily floats on the surface of the water, making both its spectral
and geometric characteristics more prominent. Algae raft mariculture, when algae crops are
mature, exhibits distinct dark brown stripes and relatively clear spectral features, resulting
in good extraction during this period. However, when algae crops are not mature, the
spectral information is weaker, making automatic extraction more challenging. On the other
hand, scallop raft mariculture, which involves hanging cages in a submerged manner, lacks
prominent spectral characteristics, making it the most challenging to identify. Automatic
extraction is less effective for this method, often requiring manual visual interpretation for
accurate identification.

4.2. The Overlap Statistics between Mariculture Extraction Results and Management Data

After establishing a grid with units of 0.01◦ × 0.01◦, the mariculture extraction data
are overlaid with the maritime ownership data, as shown in Figure 5.

According to the statistics, in the marine area of Liaoning Province, there are 2036 grids
classified as “Both approved and cultivated”, covering an area of approximately 2508 km2

(converted grid area, not actual area, the same applies to the following). There are
16,168 grids classified as “Approved but not cultivated,” covering an area of approxi-
mately 19,920 km2. And there are 222 grids classified as “Cultivated but not approved,”
covering an area of approximately 273 km2. Based on the calculation method in Section 3.4,
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the retention rate of planned mariculture areas that are actually developed is 11.2%, while
the rationality rate of those actually approved for mariculture is 90.2%.
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The relatively low retention rate of planned mariculture areas that are actually devel-
oped may have two main reasons. First, remote sensing can only observe and extract surface
mariculture activities, while bottom cultivation practices in mariculture are widespread
but cannot be detected through remote sensing. As a result, there may be a significant
portion of the planned areas where bottom cultivation occurs, but this is not reflected
in the remote sensing extraction results, leading to the low rate. Second, in this study,
data was selected to ensure image quality, and the available dataset is concentrated in the
months of April and May. This means that some mariculture areas might not be captured,
resulting in a lower proportion of actual mariculture compared to planned areas. The
fact that 90.2% of mariculture activities are conducted with official approval suggests that
mariculture activities are generally effectively regulated. However, the presence of 9.8%
of mariculture activities that are not within the planned range could be attributed to two
main reasons. First, there may be instances of unauthorized or unreported mariculture
activities conducted in areas where they have not been approved. Second, it is possible
that the marine ownership data used in this study is not up-to-date or does not cover some
areas where mariculture activities are conducted in compliance with regulations.

Furthermore, we observed that areas suspected of illegal activities consistently occur
at the edges of existing mariculture zones, with rare instances of independently occurring
illegal mariculture zones. Since, during data overlay, we have standardized both the
marine ownership data and the mariculture data we extracted to the WGS-84 coordinate
system, spatial positioning discrepancies between the data can be ruled out. In most
cases, these expansions occur in the direction away from the shore in existing mariculture
zones, aligning with the expansion pattern of mariculture. However, this suspected illegal
expansion could also be a result of farmers or mariculture companies being unaware of
their actual legal boundaries at sea. The determination of the nature of the suspected illegal
area still needs to be combined with actual visits and investigations.
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5. Discussion
5.1. Comparison with Other Studies

This study is based on high-resolution remote sensing imagery and utilizes the deep
learning SAM model to extract the mariculture areas in Liaoning Province, China. In
addition to this study, there have been several other studies that have also extracted
mariculture areas in Liaoning using remote sensing imagery (See Figure 6). For example,
Kang et al. used 15 m Landsat imagery and the OBVS-NDVI method to extract multi-year
mariculture data from 2000 to 2018 [21]. Fu et al. used 16 m wide GF-1 WFV imagery
and the deep learning HCHNet model to extract mariculture areas in China [22]. Liu et al.
(2022) used dense time series 10 m Sentinel-2 and Sentinel-1 imagery to extract mariculture
areas in China in 2020 [16]. We have conducted a comparative analysis of these studies
with respect to extraction results, data characteristics, and the methods employed.
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5.1.1. Comparison of Mariculture Extraction Results

In the above-mentioned studies, Kang’s extraction resulted in a mariculture area of
204.28 km2 (data year 2018), Fu’s extraction covered 116.01 km2 (data year 2016–2019), and
Liu’s extraction encompassed 1432.24 km2 (data year 2020). These figures significantly
differ from the mariculture area extracted in this study, which is 1052.89 km2. The main
reason for these disparities is that Kang and Fu’s studies focused on extracting individual
mariculture targets, leading to smaller area statistics. On the other hand, Liu’s results
encompassed the spatial regions of mariculture areas, including the mariculture targets
and the surrounding background water. As a result, it produced the largest area. In this
study, SAM was used to extract both cage mariculture and raft mariculture as separate
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targets. However, due to the poor extraction performance of SAM for raft mariculture, a
large number of artificially interpreted mariculture areas have been added in a regional
form. This delineation method is consistent with the data form in Liu’s study. As a
result, our mariculture area is lower than Liu’s but far exceeds the studies of Kang and Fu.
Furthermore, the temporal differences in remote sensing imagery used in these studies
also lead to differences in the area between different studies to some extent. However, in
comparison, the primary factor influencing the variation in area is still the differences in
mariculture targets and regions.

From a spatial distribution standpoint, we have conducted a comparative analysis of
our extraction results with those of other studies. Our extraction results largely coincide
with Kang’s findings, where Kang’s results exhibit noticeable omissions in cage mariculture
within the Bohai Bay and raft mariculture on the easternmost side. However, in comparison
to Kang’s results, our findings also show minor omissions in raft mariculture in the central
part of Dalian. Fu’s extraction results are slightly smaller in comparison to Kang’s, with the
primary difference being a higher rate of omission in raft mariculture around the Changshan
Islands. Liu’s extraction results are the most comprehensive, covering the mariculture areas
extracted in other studies for the most part. There are only isolated instances where our
results include mariculture areas not captured in Liu’s results. Conversely, our results have
some omissions in raft mariculture areas in the eastern and central parts of the study area
compared to Liu’s results. The primary reason for this could be Liu’s utilization of year-long
time-series data from two types of imagery, namely the 2020 Sentinel-2 multispectral and
Sentinel-1 SAR, which minimizes omissions. In contrast, our study employed imagery
primarily concentrated in April and May, failing to cover the entire year’s time series,
potentially leading to some omissions.

5.1.2. Comparison of Remote Sensing Images Used

Figure 7 displays a detailed comparison of the research results within a specific area.
The mariculture type depicted in the figure is cage mariculture. Our study employed optical
imagery with a spatial resolution of 2 m, which offers superior spatial detail representation
compared to optical imagery with a resolution of 10 m or greater. Therefore, our results
have effectively extracted individual cage mariculture objects. Kang’s research, on the
other hand, utilized Landsat 8 imagery with a spatial resolution of 15 m. Consequently,
it was unable to effectively capture individual mariculture cages and shellfish rafts with
less distinctive spectral characteristics, leading to omissions in the extraction results. Fu’s
imagery had a spatial resolution of 16 m and thus faced similar challenges. In contrast, Liu’s
study utilized optical Sentinel-2 imagery with a 10-m spatial resolution, covering the entire
year of 2020, in addition to Sentinel-1 SAR imagery. Due to Liu’s study using temporal
images, their extraction of mariculture areas is the most comprehensive. However, the final
results present the outer boundaries of mariculture areas without individual mariculture
objects, mainly constrained by the spatial resolution of the images.

5.1.3. Comparison of Extraction Methods

Kang’s study, based on an object-oriented approach, required an initial object-based
segmentation of the study area. Following segmentation, a combination of edge and
spectral features was employed, with threshold values set to perform the final mariculture
extraction. Notably, both the size of segmentation units and the threshold values required
iterative adjustments for each scene, resulting in relatively low efficiency.

Fu’s research was based on deep learning models, which, once trained, allowed for
the direct extraction of mariculture targets from new remote sensing imagery. However, in
the initial stages of the study, there was a need to create a specialized mariculture sample
library, incurring relatively high time costs. Additionally, the extraction performance was
poorer for mariculture objects not well represented in the sample library, particularly those
in different watercolor environments or imaging conditions. To improve performance,
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additional samples needed to be incorporated into the training process, and the challenge
of incorporating expert knowledge for decision support proved complex.
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Liu’s approach relied on the Google Earth Engine (GEE) platform for synthesizing
time-series remote sensing imagery and enhancing mariculture target extraction. While
effective for capturing the overall distribution of sea-based mariculture within a certain
time frame, it yielded relatively poor results in the extraction of changing mariculture
objects within single-scene imagery. This method is suitable for obtaining the overall
distribution range of offshore mariculture within a certain time frame, but it is not suitable
for mariculture regulation with high timeliness requirements.

This study interprets mariculture areas based on the SAM model. The SAM model is
developed using a large dataset and does not require the construction of additional training
samples. It can directly interpret mariculture from high-resolution imagery. Moreover, it
does not necessitate setting extraction thresholds repeatedly for different scenes or images,
making it the most efficient method. However, since the SAM model is still trained on
natural images, its performance in recognizing features in remote sensing imagery is
relatively poor. Real-world mariculture monitoring still heavily relies on manual inspection
and correction. However, if deep learning models are developed using remote sensing
imagery as training data in the future, it will further enhance the extraction accuracy of
mariculture targets and reduce the need for human intervention.

Additionally, most of the current extraction methods still primarily rely on the fea-
tures of remote sensing imagery for extraction. To truly achieve automatic extraction and
intelligent monitoring of mariculture, further exploration is required in the direction of
incorporating knowledge into the process [29].

5.2. Analysis and Recommendations for the Inconsistent Areas in the Mariculture Planning of
Liaoning Province

From a spatial distribution and mariculture-type perspective, the areas inconsistent
with the plan are mainly concentrated on the eastern side of the study area. The primary
mariculture mode is raft-based farming, with shellfish such as scallops and oysters as the
main cultured species. In contrast, there are relatively fewer areas inconsistent with the
plan for sea cucumber cage mariculture within Bohai Bay, and these areas are sporadically
distributed. The likely reason for this difference is closely related to the mariculture mode
used for the cultured species. In the case of sea cucumber mariculture in Bohai Bay, while
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it involves using sea cages at sea to a certain extent, large-scale sea cucumber farming
is primarily conducted in onshore pond facilities. Sea cucumber cage mariculture, due
to reasons related to cost and farming efficiency, typically remains at a relatively small
scale. Consequently, it is not likely to undergo significant expansion, and there will not
be substantial spatial changes associated with it. On the other hand, in the eastern side
of the study area, particularly around Haiwang Jiudao, the primary mariculture mode is
raft-based farming of shellfish. This region exhibits characteristics of being “large-scale”
and “rapidly expanding”. The development trend is characterized by radiating expansion
outward from the mariculture islands as its central point. Therefore, it is more likely
for mariculture areas to exceed the originally planned areas. In addition, sea cucumber
mariculture in Liaoning is mostly located in the mainland coastal areas, while shellfish
raft mariculture is mainly concentrated in the vicinity of islands at a certain distance from
the mainland, which is relatively inconvenient for timely supervision and may lead to the
occurrence of illegal mariculture practices.

In Figure 5, there is still a significant area within the planned mariculture zone where
mariculture activities have not been observed. It is highly likely that this portion of the
area is used for bottom culture mariculture. The spatial distribution of bottom culture
mariculture cannot be accurately determined through remote sensing methods. However,
according to the Fisheries Statistical Yearbook [30], bottom culture mariculture accounts for
approximately 70% of the mariculture in Liaoning Province. In this study, the “approved
but not cultivated” areas make up 87.7% of the overall approved mariculture zones, indi-
cating that a significant portion of these areas are indeed designated for bottom culture
mariculture.

Based on the above analysis, we have formulated the following recommendations for
the regulation of mariculture in Liaoning:

(1) Establish varying levels of regulatory oversight for different types of mariculture

Liaoning’s sea cucumber cage mariculture is scattered, but shellfish and seaweed raft
mariculture are more widely distributed, with rapid expansion in shellfish mariculture.
Therefore, different types of mariculture should have varying levels of regulatory oversight.
There should be a particular focus on strengthening the regulation of shellfish raft culture.

(2) Enhance offshore island-based mariculture monitoring using remote sensing techniques

With the advancement of mariculture technology and regional economic development,
mariculture around offshore islands is growing rapidly. In comparison to coastal maricul-
ture near the mainland, monitoring mariculture around offshore islands is relatively more
challenging, and illegal encroachment on marine areas is more likely to occur. Therefore,
remote sensing methods can be employed to promptly assess the development status of
mariculture around offshore islands, preventing the occurrence of illegal encroachment for
mariculture.

(3) Integrate underwater detection technology to enhance the investigation and regulation
of bottom culture mariculture

In Liaoning, bottom culture mariculture is widely distributed, and it represents a
significant portion of the industry. However, it is difficult to accurately determine its
spatial distribution using remote sensing satellites or drones. Therefore, for bottom culture
mariculture, advanced underwater detection technologies such as underwater robots and
submersible instruments can be utilized to strengthen the investigation and regulation of
bottom culture mariculture.

(4) Refine and timely update the types of marine data

The marine ownership data contains information about culture types. However, due
to different marine usage patterns, cultivation methods such as cage and raft mariculture,
as well as bottom culture, can coexist. This results in areas registered as bottom culture
showing the presence of raft and cage mariculture. However, the actual extent of raft
and cage mariculture cannot be accurately displayed in marine ownership data. What
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management authorities may require is a further refinement of marine ownership data,
clearly defining the actual extent of bottom culture and the areas within it where raft and
cage mariculture occur. In addition, timely verification and updating of marine information,
along with the establishment of a real-time, shared marine property registration system,
should help reduce inconsistencies between mariculture distribution and marine ownership
data. This would contribute to better scientific management and development of marine
aquaculture.

6. Conclusions

This study utilized high-resolution remote sensing imagery and the SAM model to
extract and analyze mariculture in Liaoning Province, China. It also incorporated marine
ownership data to assess the marine usage situation in Liaoning’s mariculture. Based on
the findings and identified issues, the study has provided recommendations for addressing
these concerns.

This study attempts to acquire mariculture objects automatically based on the SAM
model. We found that SAM demonstrates outstanding extraction performance for cage
mariculture, with an F1 score reaching 96.1%. However, SAM’s performance is less satisfac-
tory for raft aquaculture, and the F1 score can only reach 63.8%. Manual interpretation is
still required to obtain more comprehensive raft mariculture data.

The study extracted a total mariculture area of 1052.89 km2. Within this, cage mar-
iculture covered an area of 27.1 km2, and raft mariculture occupied 1025.79 km2. Cage
mariculture was evenly distributed within 10 km of the mainland coastline, while raft
mariculture extended as far as offshore islands, distributed in sea areas located 60 km or
more away from the mainland coastline.

Through field surveys, it was observed that cage mariculture in Liaodong Bay on
the western side of Liaoning primarily involved sea cucumber as the cultivated species,
while raft mariculture at the southern tip of Dalian was focused on kelp cultivation. On the
eastern side of the islands, raft mariculture primarily cultivated scallops, demonstrating a
distinct geographical differentiation pattern in the choice of mariculture species.

When overlaying the results of the mariculture extraction with marine ownership
data, it was found that in the marine areas of Liaoning Province, the ratio of planned
mariculture areas that are actually developed and utilized is 11.2%, while the ratio of
approved mariculture areas in actual cultivation is 90.2%. This suggests that there is a
suspicion that 9.8% of mariculture potentially involves illegal encroachment, which might
be attributed to delays in updating the marine ownership data. The relatively low ratio
of actual development and utilization of mariculture areas may be due to the significant
presence of bottom culture mariculture, which cannot be effectively monitored through
remote sensing techniques.
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