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Abstract: In recent years, convolutional neural networks (CNNs) have gained widespread adoption
in remote sensing image processing. Deploying CNN-based algorithms on satellite edge devices
can alleviate the strain on data downlinks. However, CNN algorithms present challenges due to
their large parameter count and high computational requirements, which conflict with the satellite
platforms’ low power consumption and high real-time requirements. Moreover, remote sensing image
processing tasks are diverse, requiring the platform to accommodate various network structures. To
address these issues, this paper proposes an algorithm–hardware co-optimization and deployment
method for FPGA-based CNN remote sensing image processing. Firstly, a series of hardware-centric
model optimization techniques are proposed, including operator fusion and depth-first mapping
technology, to minimize the resource overhead of CNN models. Furthermore, a versatile hardware
accelerator is proposed to accelerate a wide range of commonly used CNN models after optimization.
The accelerator architecture mainly consists of a parallel configurable network processing unit and a
multi-level storage structure, enabling the processing of optimized networks with high throughput
and low power consumption. To verify the superiority of our method, the introduced accelerator was
deployed on an AMD-Xilinx VC709 evaluation board, on which the improved YOLOv2, VGG-16,
and ResNet-34 networks were deployed. Experiments show that the power consumption of the
accelerator is 14.97 W, and the throughput of the three networks reaches 386.74 giga operations
per second (GOPS), 344.44 GOPS, and 182.34 GOPS, respectively. Comparison with related work
demonstrates that the co-optimization and deployment method can accelerate remote sensing image
processing CNN models and is suitable for applications in satellite edge devices.

Keywords: convolutional neural networks (CNNs); remote sensing image processing; satellite
edge devices; FPGA; algorithm–hardware co-optimization; hardware-centric model optimization;
hardware accelerator

1. Introduction

In recent years, space remote sensing technology has developed rapidly. Remote
sensing image processing technologies such as object detection [1,2] and scene classifica-
tion [3,4] have gained widespread adoption in military and civilian fields [5,6]. With the
advancements in deep learning algorithms, significant progress has been made in image
processing models based on convolutional neural networks (CNNs), greatly enhancing
the performance of remote sensing image processing [7,8]. Traditionally, image processing
tasks in space remote sensing are carried out at ground stations [9]. The images are down-
loaded from satellites to processing equipment at ground stations, where algorithms are
used to analyze and interpret the images. However, in recent years, remote sensing images’
resolution and data volume have increased rapidly, placing a considerable burden on data
downlinks [10]. An intuitive and effective solution to this problem is to perform the image
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processing based on CNN models directly on satellite edge devices and only transmit the
extracted relevant information to ground stations [11]. Consequently, many researchers
focus on deploying CNN models on satellite edge devices [12,13].

Nevertheless, CNN models for image processing typically have a substantial number
of parameters, leading to high computational and memory overheads. In deep learn-
ing, graphics processing units (GPUs) are commonly employed to train and infer CNN
models [14,15]. However, the significant power consumption of GPUs makes them un-
suitable for satellite platforms [16]. Despite NVIDIA’s introduction of some embedded
GPUs that curtail power consumption, these are not aerospace-grade embedded devices,
hence their inapplicability on satellites [17]. Field-Programmable Gate Arrays (FPGAs) and
Application-Specific Integrated Circuits (ASICs) exhibit low power consumption and high
computing power characteristics, meeting space image processing requirements. However,
ASICs are not ideal due to their long development cycle and high costs [18]. Therefore,
FPGAs have become the preferred choice for satellite edge processing devices [10,14].

Researchers have primarily focused on deploying CNN models on FPGA platforms.
Neris et al. [19] conducted a comparative analysis of commonly used remote sensing image
processing models and determined the MobileNet1Lite model to be the most well-suited for
FPGA deployment. They developed a MobileNet1Lite accelerator on the FPGA platform
using high-level synthesis (HLS) technology, implementing both 32-bit floating-point and
16-bit fixed-point precision. Kim et al. [20] proposed an RTL-level reconfigurable accel-
erator based on CNN for mobile FPGA and evaluated its performance on the ResNet-20
network. This accelerator demonstrated exceptional throughput and utilization. However,
on-board remote sensing image processing imposes stringent requirements on power con-
sumption and real-time performance [9,21], which the current FPGA-based CNN hardware
accelerators lack in terms of sufficient energy efficiency.

Furthermore, typical remote sensing image processing tasks, such as object detection
and scene classification, often require diverse CNN models with different structures [22,23].
Additionally, the requirements for these tasks may change [24], or the algorithms may
be updated [25], necessitating the replacement of various CNN models. However, most
existing research focuses on custom-designed FPGA-based CNN acceleration schemes. For
instance, Wang et al. [26] trained the L-CNN model and developed a customized FPGA
accelerator specifically for ship detection on satellites. Although these custom accelerators
are effective in accelerating CNN models with specific structures, they do not support the
implementation of CNN models with different structures [27].

To address the aforementioned problems, an algorithm–hardware collaborative opti-
mization and deployment method for FPGA-based CNN remote sensing image processing
is proposed. In terms of algorithm optimization, a series of hardware-centric model op-
timization techniques are proposed to minimize the resource requirements of the remote
sensing CNN model, making it more suitable for hardware deployment. As for hardware,
a versatile hardware accelerator for remote sensing CNN models is presented, capable of
accommodating a wide range of commonly used CNN models for remote sensing image
processing. By co-optimizing both algorithm and hardware, the proposed accelerator
achieves a balance between versatility and energy efficiency when accelerating remote
sensing CNN models. The contributions of this paper can be summarized as follows:

• An algorithm–hardware co-optimization and deployment method for FPGA-based
CNN remote sensing image processing is proposed, including a series of hardware-
centric model optimization techniques and a versatile FPGA-based CNN accelera-
tor architecture.

• A series of hardware-centric model optimization techniques are proposed, includ-
ing operation fusion and unification, as well as loop tiling and loop unrolling based
on the depth-first mapping technique. These techniques reduce the hardware over-
head requirements of the model and consequently improve the energy efficiency of
the accelerator.
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• An FPGA-based CNN accelerator architecture is proposed, comprising a highly parallel
and configurable network processing unit. This architecture is specifically designed
to accelerate the optimized CNN model effectively. Additionally, a multi-level storage
structure is incorporated to enhance data access efficiency for tiled and unrolled models.

This study implemented the proposed CNN hardware accelerator on an AMD-Xilinx
VC709 evaluation board and utilized it to accelerate improved YOLOv2, VGG-16, and
Resnet-34 networks. The experimental results demonstrate notable achievements, with
respective throughputs of 386.74 giga operations per second (GOPS), 344.44 GOPS, and
182.34 GOPS. Moreover, the power consumption of the system was measured to be 14.97 W,
indicating superior energy efficiency compared to existing related work.

The rest of this paper is organized as follows: Section 2 introduces the fundamen-
tal structure of CNNs and the network quantization method employed in this paper. In
Section 3, this study initially performs operational fusion and unification on the network,
followed by the proposition of a depth-first mapping technique for convolutional opera-
tions. Additionally, the architecture of the designed hardware accelerator is introduced.
Section 4 presents the experimental results and provides a comprehensive performance
evaluation. Finally, Section 5 discusses the experimental results, and Section 6 concludes
this paper.

2. Background

This section introduces the fundamental composition of commonly used CNN models
and the network quantization method employed in this paper.

2.1. The Composition of CNNs

Standard convolution is the primary component in CNNs. Additionally, CNNs include
depth-wise convolution, batch normalization, fully connected layers, global average pooling,
activation functions, and shortcuts. This sub-section will introduce these operations.

2.1.1. Standard Convolution

Convolutional layers are employed to extract features from an input image [28].
Figure 1a illustrates the 3-D convolution operation in a convolutional layer. The input of
a convolutional layer is a 3-D feature map (fmap) of the size Li × Li × Ci where Li and Ci
denote the length and the number of channels of the input fmaps, respectively. The input
fmap is convolved with Co weights with the size of K × K × Ci to generate a 3-D output
fmap of the size Lo × Lo × Co, where K, Lo, and Co are respectively the length of weight,
the length of output fmap and the number of the output fmap channels. The convolution
operation is defined as follows:

oj(x, y) =

(
Ci−1
∑

i=0

K−1
∑

u=0

K−1
∑

v=0
Ii(xS + u, yS + v) · wj

i(u, v)

)
+ bj

0 ≤ x, y ≤ Lo, 0 ≤ j ≤ Co,
Lo = (Li − K + 2P)/S + 1

(1)

where I and o represent the input fmap and output fmap, respectively, while w and b
denote the weights and bias. S represents the stride of the convolution operation and P
represents the number of paddings. Ci, Co, K, S, and P are considered the hyperparameters
of convolution [29].

2.1.2. Depth-Wise Convolution

Depth-wise convolution, unlike standard convolution, does not alter the number
of channels in the fmap but extracts features utilizing fewer parameters [30]. Figure 1b
illustrates the operation process of depth-wise convolution. The input fmap size for depth-
wise convolution remains the same, Li × Li × Ci, while only one weight with a size of
K × K × Ci is utilized. Unlike standard convolution, the cith channel of the input fmap in
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depth-wise convolution is convolved solely with the corresponding channel of the weight.
Consequently, the result becomes the cith channel of the output fmap. Therefore, both the
input and output fmaps have Ci channels. The depth-wise convolution operation is defined
as follows:

oj(x, y) =
(

K−1
∑

u=0

K−1
∑

v=0
Ij(xS + u, yS + v) · wj(u, v)

)
+ bj

0 ≤ x, y ≤ Lo, 0 ≤ j ≤ Ci,
Lo = (Li − K + 2P)/S + 1

(2)
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Figure 1. The convolutional layers in CNNs. (a) The normal convolutional operation. (b) The
depth-wise convolution operation.

2.1.3. Batch Normalization

Batch normalization (BN) is used in CNN training to promote network convergence
and prevent overfitting [31]. Due to its advantageous properties, BN has been widely
adopted in state-of-the-art networks [32,33]. Typically, BN layers are placed after convolu-
tional layers to normalize the output fmaps [34]. BN is a channel-wise operation, and the
formula for BN can be expressed as follows:

y = γi ·
x − µi√

σ2
i + ε

+ βi (3)

where y and x represent the outputs of batch-normalization and convolutional layers,
respectively. µi and σ2

i are the channel-wise mean and variance estimations of the output
fmaps from the preceding convolutional layer. γi and βi are the trainable channel-wise
scale and bias, respectively. ε is a small constant for numerical stability.

2.1.4. Full Connection and Global Average Pooling

Fully connected layers are commonly utilized in classification CNN algorithms [35].
In fully connected layers, each neuron is connected to all the neurons in the previous layer,
allowing local information integration [36]. The equation of the fully connected layer is
as follows:

oj =
Ci−1
∑

i=0
Ii · wj

i

0 ≤ j ≤ Ci

(4)

where Ci represents the input nodes, wj
i represents the weight at position (i, j) in the weight

matrix, and oj represents the output node at position j.
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In state-of-the-art models such as ResNet and GoogLeNet, global average pooling
(GAP) is used instead of the FC layer to decrease the number of parameters in the net-
work [37,38]. The GAP layer has no weight matrix and does not change the number of
channels in the fmap. It can be defined as follows:

oj =
Li−1
∑

x=0

Li−1
∑

y=0
Ij(x, y) · 1

L2
i

0 ≤ j ≤ Ci

(5)

where i and o denote the input and output fmap, respectively. The size of the input fmap is
Li × Li × Ci, while the size of the output fmap is 1 × 1 × Ci.

2.1.5. Activation Function

Activation functions are primarily employed to introduce nonlinear characteristics in
neural networks [39]. In remote sensing image processing, the Rectified Linear Unit (ReLU)
activation function is commonly utilized in CNN models [40]. Its equation is as follows:

y = max(x, 0) (6)

However, the ReLU function has drawbacks such as node death during training [41]. In
this case, some models use LeakyReLU as a replacement [42]. The equation for LeakyReLU
is as follows:

y =

{
x x ≥ 0

αx x < 0
(7)

2.1.6. Shortcut

Shortcut connections are highly effective structures that have emerged in the devel-
opment of CNN models to address the problem of degradation in deep neural networks.
They are widely used in models such as ResNet [43]. The relationship between the input x
and output y of the shortcut structure is shown in Equation (8):

y = F(x, W) + x (8)

where F(x, W) represents a certain function mapping relationship. For example, in the
residual structure of ResNet illustrated in Figure 2, this mapping relationship involves two
convolution operations and one activation function [43].
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2.2. Quantify

Network quantization can significantly reduce the number of parameters and com-
putational resource consumption of an algorithm, provided that it remains within an
acceptable range of performance loss [44]. Our previous work [45] presents a hardware-
friendly symmetric network quantization scheme for efficient FPGA-based implementation
of CNNs. Considering the general case of k-bit symmetric quantization as described in [45],
the quantization function Q is defined as follows:

q = Q(r; k) = σ
(⌊

r
s +

1
2

⌋
,−2k−1 + 1, 2k−1 − 1

)
(9)



Remote Sens. 2023, 15, 5784 6 of 24

where r ∈ Z denotes the full-precision value in matrix Z and q denotes the quantized
value. For k-bit quantization, q is quantized as a k-bit signed integer. σ is used to limit
the quantized value to the range

[
−2k−1 + 1, 2k−1 − 1

]
. s is a floating-point value that

denotes the scaling factor and is defined as follows:

s = max(|max(Z)|, |min(Z) |)
2k−1−1

(10)

The weights can be quantized into integers for inference using Equations (9) and (10).
However, directly obtaining the scaling factor of input fmaps with Equation (10) is not
feasible. It would be inefficient to collect the ranges of each input fmap. To address this
issue, approximate maximum and minimum values via exponential moving averages
(EMA) are adopted for fmap quantization.

As mentioned in [45], it was found that BN requires higher calculation accuracy. There-
fore, integer/floating-point Hybrid-Type Inference is used in the quantization strategy. In
this strategy, convolutional and fully connected layers are computed using low-bit signed
integers while maintaining floating-point normalization and activations. To implement the
Hybrid-Type Inference strategy, a dequantization layer is inserted after the quantized con-
volution layer, which converts fixed-point fmaps into floating-point fmaps. The equation
for the dequantization layer is as follows:

r = q × s (11)

3. Algorithm–Hardware Co-Optimization Method for CNN Models

This paper proposes a novel algorithm–hardware co-optimization method for FPGA-
based CNN remote sensing image processing, as shown in Figure 3. In this method,
the CNN models are firstly unified and simplified to minimize resource consumption
during hardware deployment. Subsequently, the models are converted into parameters
and instructions, which are then utilized by the proposed hardware accelerator to facilitate
rapid inference of the models. Through algorithms and hardware co-optimization, the
proposed accelerator achieves a balance between versatility and energy efficiency when
accelerating remote sensing CNN models.
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3.1. Hardware-Centric Optimization

A series of hardware-centric model optimization techniques are proposed to enhance
the suitability of remote sensing CNN-based models for hardware deployment. Under
the premise of adopting the symmetric quantization scheme, certain operations in CNN
are unified or fused to conserve hardware resources. Additionally, this study introduces a
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depth-first mapping technique that unifies the implementation of convolution with varying
hyperparameters. The details are described in the following two sub-sections.

3.1.1. Operation Fusion and Unification

It is evident that when a = 0 in Equation (7), it will reduce to Equation (6), allowing for
the completion of LeakyReLU and ReLU within the same implementation structure.

When adopting the mixed-precision quantization mentioned in [45], an inverse quan-
tization layer and a quantization layer are added to the existing neural network structure.
Inspired by our previous work [12], this study fuses the inverse dequantization layer with
the BN layer. It simplifies them into one multiplication and addition operation, referred to
as the DQ-BN layer. Similarly, the fusion of the leaky ReLU with the quantization layer is
termed the Q-LReLU layer. The fusion is depicted in Figure 4a.

Based on Equation (1) and Equation (4), Equation (4) can be considered as a simplified
version of Equation (1). Specifically, when S = 1, P = 0, K = 1, and Li = 1 in Equation (1),
Equation (1) reduces to Equation (4). Therefore, the fully connected operation can be
regarded as a specialized variant of the convolution operation. In this specific convolution,
both the length of the fmap and weight kernel are 1 × 1. The number of input nodes in
the fully connected layer is equivalent to the number of input channels in the convolution,
while the number of output nodes corresponds to the number of output channels, as
shown in Figure 4b. Consequently, convolution and fully connected operations can be
implemented using the same structure.

Similarly, the GAP layer and the depth-wise convolutional layer can also be imple-
mented using a unified structure. When the kernel size L of the depth-wise convolution is
the same as the size K of the input fmap, setting the weight 1/L2 leads to the degeneration
of the depth-wise convolution into a GAP layer, as shown in Figure 4c.

By fusing and unifying operations, the variety of model operations is reduced. This
eliminates the necessity of developing separate modules for these operations within the
hardware accelerator, reducing hardware resource consumption and decreasing system
power consumption.
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3.1.2. Depth-First Mapping Technique

As mentioned previously, achieving parallel acceleration of CNN on the FPGA plat-
form entails several challenges, including addressing the limitations of on-chip storage and
implementing convolutions with varying hyperparameters. Referring to Equation (1), the
standard convolution operation primarily consists of six levels of loops, as demonstrated
in Algorithm 1. The key to resolving these challenges lies in determining the optimal tile
and unroll configurations for the convolution loops.

Algorithm 1: Standard convolution loops

for co = 0; co < Co; co ++;do
for y = 0; y < Lo; y ++;do

for x = 0; x < Lo; x ++;do
for ci = 0; ci < Ci; ci ++;do

for v = 0; v < K; v ++;do
for u = 0; u < K; u ++;do
out_fmap[co, x, y] += in_fmap[ci, xS + u, yS + v] * weight[co, ci, u, v]

In this paper, a depth-first mapping technique is proposed to optimize the convolution
operation. This approach enables the tiling of the input fmap and kernel weight, thereby
converting convolutions with different hyperparameters into a unified vector format. The
depth-first mapping technique consists of loop tiling and loop unrolling, which will be
elaborated on as follows:

Loop tiling is a technique employed to address convolutions involving large-scale
input fmaps or weights. It divides the convolutions into multiple smaller steps, enabling the
on-chip storage to accommodate the fmap and weight components of each step. Figure 5a
illustrates the process of loop tiling. Initially, a h × w × Ci input tiled cube is cropped from
the Li × Li × Ci input fmap. Simultaneously, To weight cubes are retrieved from memory,
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with each cube consisting of K × K ×Ci weight data. The input tiled cube is convolved with
these weight cubes each time to produce To output sub-fmaps of size h × w (with paddings).
These To computations are processed in parallel and stored in buffers for subsequent data
rearrangement. Then, new To weight cubes are fetched and convolved with the input tiled
cube, producing additional To channels of output fmaps. This process repeats No = C0/To
times until all Co output channels have been computed. The values of h, w, and To depend
on the storage capacity of the designed buffer, which can be reconfigured to accommodate
convolutions with varying hyperparameters.
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ping technique.

The generation of h×w× To tiled output fmaps is called a tile pass. For the subsequent
computation, the tiled cube is first shifted w pixels toward the end of the input width with
overlapping (for paddings). The new tiled cube is convoluted with the entire weights to
generate a new tiled output fmap. After sliding on the width of input fmaps, the tiled
cube shifts down by h rows. Then, the process mentioned above is repeated. To finish
a tile pass, the entire weights of the convolutional layer are accessed from the memory.
After ⌈W/w⌉ × ⌈H/h⌉ tile passes, the desired output fmap of the convolution is obtained.
Therefore, to complete the calculation of the entire convolutional layer, the weights are read
⌈W/w⌉ × ⌈H/h⌉ times, while the input fmaps need to be read only once.

Loop unrolling optimizes loop operation between the tiled cube and the weight cube.
Figure 5b shows the process of loop unrolling. The K × K × Ci weight cube is split into
K2 weight vectors, each of size 1 × 1 × Ci along the height and width dimensions. The
blue cube within the padded tiled cube represents the corresponding fmaps that will be
computed with the weight vector. The 1 × 1 × Ci sliding vector comprises pixels from
the same position across different Ci channels within the corresponding tiled cube. By
calculating the inner product between the sliding vector and weight vector, a one-pixel
temporary result is generated. The Ci multiply–accumulate operations in the inner product
can be processed in parallel to accelerate the calculations. However, in deep CNN layers,
the number of channels, Ci, can be large, making it challenging to execute large-size inner
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products in parallel. To overcome this issue, the vectors are divided into several parts of
length Ti to perform small inner products. The resulting Ni = Ci/Ti partial outputs are
then accumulated to generate the one-pixel temporary result. The sliding vector slides
along the width and height of the corresponding cube, generating h × w temporary results
that are stored in the buffer. In the subsequent computation, a new weight vector is fetched
and calculated with the corresponding sliding vector. The inner product outputs are
accumulated with the corresponding values from the buffer and saved in the same position
in the buffer. This operation is performed K2 times to generate the final output tiled fmaps.
Notably, for the zero padding operation, a zero vector is used as the sliding vector.

Through loop tiling and loop unrolling based on the depth-first mapping technology,
various hyperparameter convolution operations, such as kernel sizes of 3 × 3, 5 × 5, and
7 × 7, are converted into a unified form for hardware implementation, enhancing the
versatility of the accelerator. Notably, no additional hardware resource overhead is required,
resulting in reduced system power consumption and improved energy efficiency.

3.2. The Proposed Accelerator Architecture

This section presents the overall architecture of the proposed accelerator and pro-
vides detailed descriptions of the neural network processing unit and the multi-level
storage structure.

3.2.1. Overall Architecture of the Proposed Accelerator

Figure 6 illustrates the block diagram of the proposed accelerator’s overall architecture.
The host processor comprises an ARM processor, system memory, and shared memory.
The ARM processor is responsible for controlling the entire system and performing post-
processing tasks. The shared memory stores three types of data: trained CNN models,
input images to be processed, and hardware instructions. A direct memory access (DMA)
unit is employed to facilitate data transfers. At the beginning of the inference process,
the weights and input images are loaded into off-chip memory, and the instructions are
transmitted to the instruction queue via DMA. The controller fetches these instructions
from the instruction queue and generates control signals to manage the Network Processing
Unit (NPU). Once the NPU completes the CNN calculations, the final results are moved to
the host processor for post-processing via DMA.
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The NPU is designed to accelerate CNN calculations and consists of two global buffers
(GBs), a processing engine (PE) array, and a load and store unit (LSU). The GBs are used
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to store the input fmaps and output fmaps, respectively. Implemented with the on-chip
memories, the GBs maximize data reuse and minimize off-chip memory accesses. Each PE
in the PE array consists of multiple local buffers (LBs) and an inner-product unit (IPU). The
LBs serve as storage for weights and temporary results, while the IPU is responsible for
implementing convolution operations. The IPU is optimized using the methods described
in Section 3.1. The inference processes involve substantial amounts of data loading from
and writing back to off-chip memory. To fulfill these requirements, the LSU is designed as
a high-bandwidth data channel. The LSU retrieves input fmaps and weights from off-chip
memory and stores them in buffers. During the calculations performed by the PE array, the
LSU rearranges the data into a suitable format and provides the processed data to the PE
array. After the calculations are finalized, the LSU collects the result of each PE within the
PE array and sends them to the off-chip memory.

3.2.2. Network Processing Unit

The structure of the NPU is illustrated in Figure 7. The NPU consists of a PE array
comprising 32 PEs. Each PE is equipped with a weight buffer (WB) that stores weights
for different output channels and supplies them to the IPU. The input fmaps stored in the
input buffer (IB) are broadcasted to the IPU in each PE. Leveraging the input fmaps and
weights, the PE array simultaneously generates 32-channel output fmaps through parallel
inner-product computations. During this process, the intermediate results are written
into the temporary buffer (TB). To deal with the bias addition in a convolutional layer or
a shortcut in a residual block, a 3-to-1 multiplexer is employed to drive the third input
of the IPU in each PE. The multiplexer selects one among the temporary results, a bias,
and the sum of the bias and the residual connection. Specifically, the output of the TB is
chosen to accumulate the temporary results during the convolution computation, except
for the first calculation. The bias and the sum are selected during the initial calculation of
a convolutional layer and a convolutional layer with a residual connection, respectively.
For the large-scale convolutional layer, the data in the TB is repeatedly read to the IPU
and accumulated with the new inner product result. Once all the required accumulations
by the TB are completed, the 32-bit fixed-point convolutional results are passed to the
floating-point unit (FPU).

The FPU is designed to implement the DQ-BN layer and Q-LReLU layer, as proposed
in Section 3.1. Initially, the 32-bit convolution results are converted into 32-bit floating-
point data. According to the layer fusion equation described in Figure 4a, the DQ-BN
layer involves one floating-point multiplication and addition, while the Q-LReLU layer
requires one gating and one floating-point multiplication. Finally, the FPU converts the
floating-point result to an 8-bit fixed-point result, which is then outputted. The 8-bit final
results are stored in the output buffer (OB) for reordering and subsequently written to
off-chip memory in depth-first order by the LSU. These results are saved as the input fmaps
for the next convolutional layer.

Figure 8a shows the structure of the IPU, which performs the inner product in a
pipeline fashion. Each IPU contains 32 multiply–accumulate (MAC) units to support the
vector inner product with a maximum length of 32. The input and weight vectors are
split into 32 parts and processed by the MAC units. In each MAC unit, the input value is
multiplied by the weight and added to a partial sum. The partial sum is the inner product
of the previous MAC unit, except for the first MAC unit, which receives the output of the
3-to-1 MUX in each PE in Figure 7. Additionally, the 2-to-1 multiplexer in each MAC unit
facilitates zero padding.

To analyze the processing cycle of the IPU, we examine a K × K convolutional layer
with an h × w × Ci input fmap size. The input vectors are continuously fed into the
IPU every cycle, while the weight vector remains unchanged. After generating an h × w
temporary result, a new weight vector is loaded into the IPU, and the same operation is
repeated K × K times. This step represents the basic process of the IPU. When the number
of input channels Ci is less than 32, only one basic process is required for the convolutional
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layer calculation. However, if Ci ≥ 32, the calculation can be divided into ⌈Ci/32⌉ basic
processes using the loop unrolling method described in Section 3.1. Thus, the total number
of clock cycles required to generate an h × w output fmap is h × w × K × K × ⌈Ci/32⌉.
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The IPU also supports depth-wise convolutional layers, with a slight modification in
the process. The IPU needs to be switched to the depth-wise mode, where the result of one
MAC unit is directly output instead of being used as the following input partial sum, as
shown in Figure 8b. In this case, only one MAC unit in the IPU is utilized, as several MUX
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units are consumed to support the two modes. For a depth-wise convolutional layer, the
IPU requires h × w × K × K clock cycles to create an h × w output fmap.

The structure of the LSU is shown in Figure 9a. The configuration register within the
LSU is controlled by the system controller based on instructions. Before calculation, the
LSU sends requests to the memory controller to read data from off-chip memory, with
the address being generated by the address counter. The input fmaps and weights are
read from off-chip memory through the high-bandwidth data channel and written into the
PE’s input buffer and weight buffer through the router. Once the computation is complete,
the LSU retrieves the results from the output buffer and writes them back to the off-chip
memory in the same way. During computing, the LSU dynamically generates the addresses
for the weight buffer and input buffer in real-time using a state machine counter based on
the internal conv-type register. The corresponding data from the input buffer and weight
buffer is then sent to the IPU for vector inner-product operations.
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To illustrate the address generation rule for the input buffer, the example considers
standard convolution with different hyperparameters of stride S and kernel size K. The
address generation process is depicted in Figure 9b, focusing on the two dimensions (H and
W) of the feature map. Each point represents the data of all channels at the same position.
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Before the convolution starts, the state machine generates a base address group based on
the conv-type register, represented by the blue block in the figure. Subsequently, the IB
address generator uses the first base address as the current address and traverses the data
based on the conv-type hyperparameters to generate the IB read address. The black arrows
in Figure 9b indicate the starting and ending positions of each row traversal. When the Co of
the weight exceeds 32, the traversal needs to be repeated ⌈Co/32⌉ times. Once the traversal
of a base address is completed, the generator switches to the following base address until
all base address groups have been processed. It should be noted that the conv-type register
contains not only S and K hyperparameters but also Ci, Co, P, and flags for depth-wise
convolution and shortcuts, ensuring compatibility with various convolution situations.

3.2.3. Multi-Level Storage Structure

The accelerator system is designed with a multi-level storage structure, which includes
shared memory, off-chip memory, two global buffers (input buffer and output buffer),
multiple weight buffers, and temporary buffers.

The shared memory is implemented as an off-chip ROM, which stores the trained CNN
models, the input images, and the hardware instructions. It ensures that the data will not
be lost due to power outages. During the inference process, the weights and input images
are loaded into the off-chip memory, which consists of two independent DDRs (DDRA and
DDRB). To avoid access conflicts while reading the input fmaps and writing the output
fmaps, a ping-pong storage strategy is employed. Specifically, when the neural network’s
inference proceeds to the nth layer, the system reads the results of the previous layer from
DDRA as the input fmap while storing the output fmap in DDRB. This arrangement is
swapped when processing the (n + 1)th layer. Similarly, to enable independent reading of
the input fmaps and weights simultaneously, a hierarchical alternating storage strategy is
adopted for the weights. DDRA stores the weights of the even layers, while DDRB stores
the weights of the odd layers.

In the proposed NPU architecture, the convolution, BN, and activation operations are
pipelined. To execute a CONV-BN-ACTIV pipeline operation, the system requires not only
the convolution kernel weight but also the convolution bias, BN parameters, and activation
parameters. Additionally, it is essential to note that the off-chip utilizes burst transfer mode,
where reading data at consecutive addresses is faster than at non-consecutive addresses.
Therefore, based on the alternating storage weight strategy, the convolution kernel bias,
BN parameters, and activation parameters are inserted into the convolution weight data
at intervals of 32 channels, as shown in Figure 10. This arrangement enables all data read
from the off-chip memory in a pipeline operation to have continuous addresses. Moreover,
storing parameters in units of 32 channels aligns with the parallelism of the NPU, ensuring
efficient pipeline processing of the system.
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A global input buffer and 32 weight buffers store the input fmaps and weights required
for on-chip calculations. According to the depth-first mapping technology described in
Section 3.1.2, each on-chip calculation accesses an h × w × Ci-sized input tiled cube and T0
weight cubes from the off-chip memory. Each weight cube consists of K × K × Ci weight
data. In the designed accelerator architecture, T0 is set to 32. Each weight cube is stored in
the corresponding weight buffer, while the input tiled cube is stored in the global input
buffer. During the calculation process, both the tiled cube and weight cube are divided into
multiple Ci length vectors. These vectors are further segmented into several parts of length
Ti, which are then inputted into the IPU for vector inner product operations. Similarly, Ti
is set to 32. The partial sums of these vector inner products are stored in the respective
temporary buffers within each PE. Once all partial sums in the temporary buffer have been
accumulated, the data is sent to the global output buffer. The global output buffer obtains
the results corresponding to all ⌈Co/To⌉ weight cubes and reintegrates them in a depth-first
order to generate an output cube of h × w × Co size. Finally, the output cube is stored in
the off-chip memory and used as the input fmap for the subsequent convolutional layer.

4. Experiments and Results

This section presents several experiments designed to evaluate the performance of
the proposed hardware accelerator. Experimental details and results are illustrated and
compared with other works, demonstrating the performance of our approach.

4.1. Experimental Settings

To evaluate the proposed hardware accelerator for CNN-based remote sensing image
processing, this study conducted an object detection experiment based on the improved
YOLOv2 network [46] and a scene classification experiment based on the ResNet-34 [47]
and VGG-16 networks [48]. The trained networks were deployed on the VC709 board to
assess the performance of the designed accelerator.

4.1.1. Datasets Description

For remote sensing object detection, this study utilized the DOTA-v1.0 [49] dataset,
a large-scale dataset designed explicitly for object detection in aerial images, to train
the improved YOLOv2 network. The DOTA dataset contains 2806 aerial images with
resolutions ranging from 800 × 800 to 4000 × 4000. It includes 188282 labeled instances
across 15 object categories, such as planes, ships, bridges, and tennis courts. The training set
of the DOTA dataset is used to train the improved YOLOv2 network, while the validation
set was employed for verification. All images were cropped into 1024 × 1024 patches
during the training process using the DOTA development kit. In the testing phase, the
images were cropped with a stride of 512 pixels, and the detection results of each patch
were merged to obtain the final detection results for the original images. Several sample
images of the DOTA dataset are shown in Figure 11a.

For remote sensing scene classification, the NWPU-RESISC45 dataset [50] was used to
train VGG-16 and ResNet-34 networks. The NWPU-RESISC45 dataset consists of 31,500
scene images divided into 45 scene classes, such as forest, agricultural, dense residential,
and storage tanks. Each scene class contains 700 images, and the size of each image
is 256 × 256. In this experiment, 20% of the images were used for training, while the
remaining images were used for validation and testing. Notably, the input image size of
VGG-16 and ResNet-34 images is 224 × 224. For the training set, a 224 × 224 pixel area was
randomly selected from the original images through random cropping. For the validation
and testing sets, a center crop was used, followed by normalization. Several samples of the
NWPU-RESISC45 testing set are shown in Figure 11b.
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4.1.2. Experimental Setup

To evaluate the performance of the proposed hardware accelerator, it is implemented
on the AMD-Xilinx VC709 board, which features an XC7VLX690T FPGA chip and two 4GB
DDR3 SODIMMs. In order to facilitate processing with the VC709 board, the host processor
part of the accelerator architecture was implemented on the AMD-Xilinx Zedboard, which
is equipped with the XC7Z020 SoC chip. This chip integrates an ARM Cortex-A9 processor
and programmable logic. The Zedboard and VC709 are connected physically through the
FMC interface and utilize the Aurora protocol for data exchange. The system structure is
shown in Figure 12. As the system master, the Zedboard is responsible for transmitting
network model parameters, instruction set files, and test images to the hardware accelerator
on the VC709 board before testing. Once the transmission is complete, the accelerator
starts processing and uploads the results to the Zedboard. The project was built with the
SystemVerilog language, and Vivado Design Suite 2019.2 from AMD-Xilinx was used for
synthesis and implementation.
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The trained and quantized models, including improved YOLOv2, VGG-16, and
RenNet-34, were converted into parameter files and instruction set files in advance and
stored in the off-chip ROM of the Zedboard alongside the images to be processed. The Zed-
board can be externally controlled through UART, allowing for the selection of the images,
parameters, and instruction set files to be sent to the VC709 board to control the accelerator
for processing different network models. The images and parameters are transmitted to the
two DDRs of the VC709 board, while the instruction set file is transmitted to the instruction
queue FIFO inside the accelerator.

4.1.3. Evaluation Metrics

In remote sensing scene classification, the overall accuracy (OA) is commonly used
to evaluate the classification performance of the network [51]. The OA is calculated by
dividing the number of correctly classified images r by the total number of test images N,
as shown in Equation (12):

OA =
r
N

× 100% (12)

In remote sensing object detection, Mean Average Precision (mAP) is used to evaluate
the detection performance [52]. The mAP is calculated by plotting a precision–recall curve
for each category and calculating the average precision as the area under the curve, as
shown in Equation (13), where p(r) represents the precision–recall curve. Precision and
recall are defined in Equation (14) and Equation (15), respectively. TP represents the
number of true positive samples, FN represents the number of false negative samples, and
FP represents the number of false positive samples [53]. The mAP is obtained by taking the
mean of the average precision across all categories, and it provides an overall evaluation of
the object detection performance [54].

Average Precision =
∫ 1

0
p(r)dr (13)

Precision =
TP

TP + FP
(14)

Recall =
TP

TP + FN
(15)

For hardware accelerators, throughput, resource utilization, and power consumption
are key performance indicators. During the model inference process, giga operations (GOPs)
are used to measure the number of operations in a network model, which reflects the overall
complexity of the inference operation. In a CNN model, both addition and multiplication
operations are considered as one operation [54]. The throughput of an accelerator measures
the processing speed and computing power and is generally expressed in giga operations
per second (GOPS). Resource utilization encompasses the number of look-up tables (LUT),
flip-flops (FF), block RAM (BRAM), and DSP units in the FPGA chip. Power consumption
is evaluated using the AMD-Xilinx power estimator based on on-chip power information.
The energy efficiency of an accelerator is measured by GOPS/W, derived from the ratio
of throughput to power consumption. It should be noted that the proposed accelerator
is deployed on the VC709 board, and the Zedboard is only responsible for parameter
transmission initially and result reception finally, without participating in the inference
calculations. Therefore, only the VC709 board is considered when determining resource
and power consumption.

4.2. Experimental Result

The experimental results of the hardware accelerator for object detection and scene
classification were analyzed. Optimized by the proposed method, the parameter size of
the improved YOLOv2 network is 49.4 MB. It achieved an mAP of 67.30% on the DOTA
verification set. Some detection results are shown in Figure 13a. The optimized VGG-16
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and ResNet-34 networks have parameter sizes of 14.7 MB and 21.29 MB, respectively. For
scene classification, the overall accuracy of VGG-16 and ResNet-34 on the NWPU-RESISC45
testing set was 91.90% and 92.81%, respectively. Several classification results are shown in
Figure 13b.
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Moreover, the resource utilization of the accelerator is summarized in Table 1. It
includes the network processing unit, MIG, DMA, and others, excluding the host processor.

Table 1. Resource utilization of the accelerator.

Resource LUT FF BRAM DSP

Available in
VC709 433200 866400 1470 3600

Utilization 105509 282807 794 832
Utilization rate 24.36% 32.64% 54.01% 23.11%

As shown in Table 1, the accelerator’s utilization of LUT, FF, BRAM, and DSP were
105509, 282807, 794, and 832, respectively. A significant portion of the BRAM is used to
build large global buffers and weight buffers, reducing the number of fmap tiles. The
utilization rates of LUT, FF, and DSP are all below 33%, demonstrating that the designed
accelerator can effectively adapt to the on-board remote sensing platform with limited
hardware resources.

Furthermore, the improved YOLOv2 network has 379.55 GOPs, the VGG-16 network
has 30.69 GOPs, and the ResNet-34 network has 7.33 GOPs. At a system clock frequency of
200 MHz, the inference time for the improved YOLOv2 network is 981.4ms, for VGG-16 is
89.1ms, and for ResNet-34 is 40.2ms. Consequently, the accelerator achieves a throughput
of 386.74 GOPS for improved YOLOv2, 344.44 GOPS for VGG-16, and 182.34 GOPS for
ResNet-34. The power consumption of the accelerator is 14.97 W at 200 MHz. Consequently,
the energy efficiency of the accelerator for improved YOLOv2, VGG-16, and ResNet-34 is
25.83GOPS/W, 23.01GOPS/W, and 12.18GOPS/W, respectively.
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4.3. Performance Comparison

To demonstrate the advantages of the proposed accelerator, a series of performance
comparison experiments were conducted. The improved YOLOv2, VGG-16, and ResNet-34
networks were deployed on the central processing unit (CPU) and image processing unit
(GPU) for remote sensing object detection and scene classification. The CPU was the Intel
Xeon E5-2697v4 with a main frequency of 2.3 GHz, and the GPU was the NVIDIA TITAN
Xp GPU with a main frequency of 1.6 GHz. Table 2 presents the performance comparison
between the CPU, GPU, and the proposed accelerator.

Table 2. Performance comparison of the CPU, GPU, and the proposed accelerator in processing
different networks.

CPU GPU The Proposed Accelerator

Device Intel Xeon E5-2697v4 1 NVIDIA TITAN Xp 2 AMD-Xilinx XC7VLX690T 3

Technology (nm) 14 16 28
Frequency (MHz) 2300 1582 200

Power (W) 145 250 14.97
Network YOLOv2 4 VGG-16 ResNet-34 YOLOv2 4 VGG-16 ResNet-34 YOLOv2 4 VGG-16 ResNet-34

Network complexity
(GOP) 379.55 30.69 7.33 379.55 30.69 7.33 379.55 30.69 7.33

Accuracy (mAP or
OA) 67.50% 91.93% 92.87% 67.50% 91.93 92.87% 67.30% 91.90% 92.81%

Processing time (ms) 7127.0 143.7 65.3 71.9 5.3 12.0 981.4 89.1 40.2
Throughput (GOPS) 53.26 213.57 112.25 5278.86 5790.57 610.83 386.74 344.44 182.34

Energy efficiency
(GOPS/W) 0.37 1.47 0.77 21.16 23.16 2.45 25.83 23.01 12.18

Relative energy
efficiency 1× 1× 1× 57.19× 15.76× 3.18× 69.81× 15.65× 15.82×

1 Intel Xeon E5-2697v4 (Intel Corporation, Santa Clara, CA, USA). 2 NVIDIA TITAN Xp (NVIDIA Corporation,
Santa Clara, CA, USA). 3 AMD-Xilinx XC7VLX690T (Advanced Micro Devices, Inc., Santa Clara, CA, USA). 4 This
YOLOv2 represents the improved YOLOv2 proposed in [46].

As shown in Table 2, the thermal design power (TDP) of the CPU and GPU used in
the experiments were 145 W and 250 W, respectively. In contrast, the on-chip power of the
proposed hardware accelerator was only 14.97 W. This indicates that our design is more
suitable for application on satellite platforms with limited power. Regardless of the network
being deployed, the throughput of the proposed accelerator is lower than that of the GPU
but higher than that of the CPU. Regarding energy efficiency, the proposed accelerator
exhibits clear advantages over the CPU, achieving power efficiencies of 69.8×, 15.7×,
and 15.8×, respectively, for the improved YOLOv2, VGG-16, and ResNet-34 networks.
Compared to the GPU, despite the proposed FPGA-based accelerator having a main
frequency eight times lower than that of the GPU, our accelerator demonstrates similar
or even higher energy efficiency on these networks. Additionally, the table presents a
comparison of the accuracy of remote sensing object detection and scene classification
among different platforms. Compared to the results obtained from the CPU and GPU,
the mAP of detection decreased by approximately 0.2%, and the overall accuracy (OA) of
classification decreased by about 0.04%. This discrepancy is attributed to the change in the
calculation order of floating-point numbers during the fusion of the BN layer. Nevertheless,
this slight error can be disregarded in practical applications. The data above supports
the conclusion that the proposed accelerator outperforms the CPU and GPU for on-board
remote sensing processing.

Additionally, the performance of our accelerator is compared with related state-of-the-
art work, as shown in Table 3. The studies referenced in [55–57] focused on accelerating
the YOLOv2 network. Yu et al. [55] proposed the OPU, a domain-specific FPGA overlay
processor, implemented on the Xilinx XC7K325T FPGA. They achieved a throughput of
391 GOPS and an energy efficiency of 23.69 GOPS/W for the YOLOv2 network, using a
multiplier scale of 1024, which matches our setup. Although their throughput slightly
surpasses ours, our accelerator exhibits better energy efficiency. Cui et al. [56] utilized
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the Winograd algorithm to accelerate convolution operations and developed a dedicated
accelerator for YOLOv2 using a High-Level Synthesis tool based on OpenCL on the Arria
10 GX platform. Their implementation achieved a throughput of 248.7 GOPS and an energy
efficiency of 9.01 GOPS/W, which are both lower than our design. Zhai et al. [57] utilized
various hardware optimization techniques, including memory interlayer multiplexing and
multichannel transfer, to accelerate the YOLOv3 network for video stream vehicle detection
on the ZYNQ7000 platform. However, their energy efficiency was only 7.40 GOPS/W,
significantly lower than our results.

Table 3. Performance comparison with other accelerators.

[55] [56] [57] Our Work [58] [59] [60] Our Work [61] Our Work

Platform XC7K325t
1

Arria
10 GX 2

ZYNQ
7000 3

XC7VLX
690T VCU118 4 XC

7Z020 5
Alveo-
U200 6

XC7VLX
690T ZCU104 7 XC7VLX

690T
Technology (nm) 28 20 28 28 16 28 16 28 16 28
Frequency (MHz) 200 213 209 200 200 200 73 200 200 200

Network YOLOv2 YOLOv2 YOLOv3 YOLOv2 8 VGG-16 VGG-16 VGG-16 VGG-16 ResNet-50 ResNet-34
Quantization 8-bit 8-bit 16-bit 8-bit 8-bit 8-bit 8-bit 8-bit N/A 8-bit

DSPs 516 N/A 294 832 2286 334 388 832 N/A 832
Power (W) 16.5 27.6 15.64 14.97 >30 3.1 3.26 14.97 14 14.97

Throughput
(GOPS) 391 248.7 115.7 386.74 402 68.66 51.0 344.44 103.2(51.5) 182.34

Energy
efficiency (GOPS/W) 23.69 9.01 7.40 25.83 <13.4 22.15 15.6 23.01 7.37(3.68) 12.18

1 XC7K325t (Advanced Micro Devices, Inc., Santa Clara, CA, USA). 2 Arria 10 GX (Intel Corporation, Santa Clara,
CA, USA). 3 ZYNQ7000 (Advanced Micro Devices, Inc., Santa Clara, CA, USA). 4 VCU118 (Advanced Micro
Devices, Inc., Santa Clara, CA, USA). 5 XC7Z020 (Advanced Micro Devices, Inc., Santa Clara, CA, USA). 6 Alveo
U200(Advanced Micro Devices, Inc., Santa Clara, CA, USA). 7 ZCU104 (Advanced Micro Devices, Inc., Santa
Clara, CA, USA). 8 This YOLOv2 represents the improved YOLOv2 proposed in [46].

References [58–60] introduce the accelerator of the VGG-16 network. Donghyuk et al. [58]
achieved a throughput of 402 GOPS for the VGG-16 network on the VCU118 platform
at the cost of consuming 2.9x the DSP of our proposed accelerator, while the throughput
is only 1.17× ours. It can be reasonably speculated that the power consumption of the
accelerator proposed in [58] would exceed 30 W, resulting in significantly lower energy
efficiency than ours. Mousouliotis et al. [59] proposed an FPGA acceleration architecture
for small ImageNet-like CNN models, achieving a processing delay of 447ms on the VGG-
16 network, equivalent to a throughput rate of 68.66 GOPS and an energy efficiency of
22.15 GOPS/W. Although this architecture offers low power consumption and comparable
efficiency to our work, it is specifically designed to accelerate VGG-like network models
and may not be suitable for other models. Wang et al. [60] proposed a CNN accelerator
System-on-Chip (SoC) architecture embedded in instruction-extended RISC-V to accelerate
high-frequency operations in CNN, which demonstrated good scalability. However, it
exhibited lower efficiency. Despite utilizing a 16nm advanced FPGA platform, it only
achieved an energy efficiency of 15.6 GOPs/W on the VGG16 network, which is lower than
our work. Tong et al. [61] deployed both original and compressed ResNet-50 networks on
the Xilinx-ZCU104 FPGA to implement radio frequency fingerprinting on edge devices,
achieving processing delays of 15.06ms and 1.36ms, respectively. Although their processing
latency is low, the energy efficiency of [61] is only 7.37 and 3.68 GOPS/W, which is lower
than our design.

5. Discussion

The proposed algorithm–hardware co-optimization and deployment method show
excellent results in remote sensing object detection and scene classification tasks. When
deploying the improved YOLOv2, VGG-16, and ResNet-34 networks, the accelerator
demonstrates lower power consumption compared to CPU and GPU implementations.
While the accelerator’s throughput may not match that of GPUs, it achieves comparable or
higher energy efficiency, especially when deploying the improved YOLOv2 and ResNet-34
networks, surpassing the energy efficiency of GPUs.
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When comparing our proposed accelerator with existing related works, it achieves
similar throughput and better energy efficiency on the improved YOLOv2, VGG-16, and
ResNet-34 networks. This suggests that our accelerator is better suited for use in power-
constrained satellite edge devices. Additionally, compared to custom-designed accelerators
such as those proposed in [56,57,59,61], our accelerator can deploy various network archi-
tectures, demonstrating greater versatility and scalability.

The experiments and comparisons mentioned above demonstrate that the proposed
accelerator achieves high energy efficiency for remote sensing image processing tasks,
providing a solution to deploy CNN models on resource and power-constrained satellite
platforms. Additionally, the proposed accelerator is capable of accelerating CNN mod-
els with different structures to perform various remote sensing image processing tasks,
showcasing its versatility.

6. Conclusions

This paper presents an algorithm–hardware co-optimization and deployment method
for FPGA-based CNN remote sensing image processing. Firstly, a series of hardware-centric
techniques for optimizing CNN models is proposed, including operation fusion and depth-
first mapping techniques. The depth-first mapping technology consists of two steps, loop
tiling and loop unrolling, enabling efficient implementation of multiple hyperparameter
convolution operations in a unified manner. Furthermore, a versatile FPGA-based CNN
acceleration architecture is introduced that features a parallel configurable network pro-
cessing unit and a multi-level storage system, capable of executing the optimized CNN
models. To validate the effectiveness of the proposed approach, this study implements the
accelerator architecture on an AMD-Xilinx VC709 board and deploys improved YOLOv2,
VGG-16, and ResNet-34 networks for testing. The experimental results demonstrate that
the accelerator consumes only 14.97 W of power, achieving energy efficiencies of 25.83
GOPS/W, 23.01 GOPS/W, and 12.18 GOPS/W on the tested networks, respectively. Com-
pared to other related works, the proposed accelerator exhibits superior energy efficiency
and can be applicable to various networks. Therefore, it holds significant potential for
on-board remote sensing image processing.

In subsequent research, the proposed accelerator will be implemented on radiation-
hardened FPGAs to assess its robustness and efficacy in challenging environments. Further-
more, our future plans involve developing an ASIC-based solution to investigate optimal
resource utilization for spaceborne remote sensing applications.
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