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Abstract: Oil wells play an important role in the extraction of oil and gas, and their future potential
extends beyond oil and gas exploitation to include the development of geothermal resources for
sustainable power generation. Identifying and detecting oil wells are of paramount importance given
the crucial role of oil well distribution in energy planning. In recent years, significant progress has
been made in detecting single oil well objects, with recognition accuracy exceeding 90%. However,
there are still remaining challenges, particularly with regard to small-scale objects, varying viewing
angles, and complex occlusions within the domain of oil well detection. In this work, we created
our own dataset, which included 722 images containing 3749 oil well objects in Daqing, Huatugou,
Changqing oil field areas in China, and California in the USA. Within this dataset, 2165 objects were
unoccluded, 617 were moderately occluded, and 967 objects were severely occluded. To address
the challenges in detecting oil wells in complex occlusion scenarios, we propose the YOLOv5s-seg
CAM NWD network for object detection and instance segmentation. The experimental results show
that our proposed model outperforms YOLOv5 with F1 improvements of 5.4%, 11.6%, and 23.1%
observed for unoccluded, moderately occluded, and severely occluded scenarios, respectively.

Keywords: oil well; object detection; instance segmentation; remote sensing; occlusion; YOLOv5

1. Introduction
1.1. Background

Oil and gas are linked to the sustainable, stable, and prosperous development of the
national economy and represent a vital component of people’s livelihoods, according to
the BP Statistical Yearbook of World Energy 2022 [1]. At present, in response to industry
challenges brought by energy conservation, emission reduction, and carbon reduction,
it is very important to improve resource utilization efficiency and carry out the overall
allocation of oil and gas resources to cope with emergency situations effectively. Oil wells
serve as an important facility for the extraction of crude oil; the distribution and quantity of
oil wells offer valuable insights into the status of oil and gas resources. By utilizing remote
sensing monitoring, we can capture the dynamics of global oil energy exploitation and
assess the production of oil in various regions.

With the development of deep learning methods and the emergence of high-resolution
satellite remote sensing images, remote sensing object detection and instance segmentation
have become one of the current research hotspots [2–4]. High-resolution remote sensing
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images have richer detailed features of ground objects, spatial structures, and topological
relationships, and are mostly used to detect different types of ground objects, such as
aircraft, ships, roads, and buildings. Yu et al. [5] proposed a rotation-invariant method, a
multi-scale rotation-invariant Hough forest with embedded scale factors, where orientation
information is trained to cast rotation-invariant votes for estimating airplane centroids;
this method is capable of performing well in accurately and correctly detecting arbitrarily
orientated and varying-sized airplanes. In order to solve the limitations of traditional
ship detection, such as complex application scenarios and intensive object detection, Yang
et al. [6] proposed a framework called rotation dense feature pyramid networks (R-DFPNs)
by building high-level semantic feature maps for all scales by means of dense connections,
designing a rotation anchor strategy to predict the minimum circumscribed rectangle of
the object. And they also proposed multi-scale ROI Align, which is more suitable for
ship detection tasks. Zao et al. [7] used a richer U-Net model incorporating the detailed
recovery of decoding networks through an enhanced detail recovery structure (EDRS). The
implementation of the edge-focused loss function, which prioritizes pixels nearer to the
edges, leads to increased precision in road detection outcomes. In view of the small distance
between buildings, strong aggregation, and serious mutual occlusion, Han et al. [8] con-
ducted three types of remote sensing image preprocessing. The training data were refined
through a combination of threshold segmentation and fuzzy clustering techniques, which
involved shadow removal and image enhancement through noise addition and flipping.

High-resolution remote sensing satellites provide the necessary basis for spatial data,
attribute data, remote sensing data, and various other data types. They can be applied to
the production and operation of oil and gas fields and the intelligent monitoring of remote
sensing in oil and gas fields. They can enhance monitoring efficiency, reduce manual
monitoring costs, contribute to environmental protection, and aid in informed decision
making, leading to sustainable development and economic advantages. Currently, research
in the field of oil-related studies utilizing remote sensing methods primarily focuses on oil
spill detection and the identification of objects like oil tanks and well sites. However, there
are very limited studies on oil well detection. Remote sensing images combined with deep
learning can quickly monitor oil wells. However, in remote sensing images, image quality
may be affected by factors such as weather, cloud cover, sensor resolution, shooting angle,
and shadow, which make it difficult to extract features of small-scale objects like oil wells.
In addition, the terrain significantly impacts the accuracy of oil well detection, leading to a
high false-alarm rate. Potential obstructions like buildings and trees surrounding the oil
wells can also lead to instances of missed oil well detection.

While the object interpretation of remote sensing images is becoming more and more
obvious, occlusion detection has always been a difficult point in computer vision. Yu
et al. [9] proposed a real-time face detector based on the one-stage detector YOLOv5,
named YOLO-FaceV2. The attention network SEAM block and repulsion loss were used
to solve the problem of face occlusion. Du et al. [10] proposed the FA-YOLO, which
significantly improved detection efficiency on 318 infrared occluded vehicle images from
the VIVID—infrared dataset. Since the shape and texture information of an object is
seriously affected by occlusion, it is difficult to detect an oil well effectively under occlusion
in an actual real-world scenario. Therefore, enhancing oil well detection in remote sensing
images is important.

This paper studies automatic oil well detection methods based on deep learning in
remote sensing images under occlusion. Currently, mainstream object detection methods
can be divided into two categories, namely two-stage and one-stage detection algorithms.
With the development of deep learning, one-stage methods have gradually become main-
stream as they do not require the generation of proposal boxes and has higher efficiency. In
this work, we adopt the YOLOv5 as the detection model. YOLOv5 provides four model
networks: YOLOv5s, YOLOv5m, YOLOv5l and YOLOv5x. The network YOLOv5s, which
has the smallest depth and the smallest width of feature map, is used. Given the absence of
certain features in occluded objects, object detection algorithms can be affected by these
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missing characteristics. Thus, we employ the YOLOv5s-seg algorithm, which takes into
account pixel-wise classification, for oil well object detection and instance segmentation.
Compared with YOLOv5, the use of the YOLOv5s-seg algorithm results in an increase of
6.6% in average precision (AP) and a 6.23% boost in F1 score. In order to further improve
the detection accuracy of occluded oil wells, YOLOv5s-seg CAM NWD is used in combina-
tion with the CONTEXT_AUGMENTATION_MODULE (CAM) method and normalized
Wasserstein distance (NWD). Compared with that of the YOLOv5 model, the AP and F1
are improved by 11.7% and 10.72%, respectively. In scenarios without occlusion, with
moderate occlusion and under severe occlusion, F1 score shows significant improvements
of 5.4%, 11.6% and 23.1%, respectively.

The main contributions of this paper are as follows:

1. We construct the first segmentation dataset of oil wells in remote sensing images, with
many occluded objects. The dataset can be used as a reference for evaluating remote
sensing image instance segmentation under occlusion.

2. We propose combining the CONTEXT_AUGMENTATION_MODULE and Normal-
ized Weighted Distance methods and demonstrate that it improves the accuracy of oil
well detection under different occlusion scenarios.

1.2. Related Work
1.2.1. Research on Object Detection and Instance Segmentation Algorithms Based on
Deep Learning

Object detection is one of the core tasks of computer vision, whose purpose is to
obtain the location and category of an object. Convolutional neural networks are one of
the most used methods for object detection due to their ability to extract and learn features
from image data effectively. Addressing the difficulty of locating small objects in faster
regions, a convolutional neural network-based method for multi-class objects in remote
sensing images with large scale changes was proposed by Deng et al. [11]. Li et al. [12]
introduced a feature attention object detection framework, which uses channel and pixel
attention to enhance object-related representation and reduce background information
when fusing multi-scale visual features of a backbone network. Xiao et al. [13] proposed a
feature pyramid network, which combines context enhancement and feature refinement to
supplement context information and prevent small objects from being overwhelmed by
conflicting information. Sun et al. [14] propose a part-based convolutional neural network
(PBNet) for the detection of composite objects in remote sensing images, such as sewage
treatment plants, golf courses, airports, and other objects with neither a fixed size nor
fixed shape. Mahmoud et al. [15] used the adaptive mask Region-based Convolutional
Network (mask-RCNN) to detect various classes of objects in remote sensing images and
overcome the problems of object scale change, small size, large density, and small amount
of annotation in remote sensing images.

Instance segmentation is a technology that simultaneously solves the problem of
object detection and semantic segmentation [16], achieves classification at the pixel level,
locates different instances, and can obtain very rich and refined object information. Instance
segmentation methods are divided into two types: two-stage and one-stage. Two-stage
instance segmentation is divided into top–down methods based on object detection and
bottom–up methods based on semantic segmentation. One-stage instance segmentation can
expel the restrictions within the detection frame, which is the future research trend. In order
to solve the challenges of scale changes and low contrast in remote sensing images, Liu Y
et al. [17] proposed a context aggregation network (CATNet) by incorporating the dense
feature pyramid network (DenseFPN) in the feature domain, the Spatial Context Pyramid
(SCP) in the spatial domain and the Hierarchical Region of Interest Extractor (HRoIE) in the
instance domain to aggregate the global visual context, respectively. Lin et al. [18] proposed
a face detection and segmentation method based on improved Mask R-CNN, called G-Mask,
which integrates face detection and segmentation into a framework to obtain more granular
face information, and can segment each face from the background image.
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1.2.2. Research on Oil and Gas and Remote Sensing

Oil plays an important role in advancing modern society. At present, research in
the domain of oil-related studies employing remote sensing techniques predominantly
emphasizes oil spill detection and the identification of objects such as oil tanks and well
sites. Wang et al. [19] proposed a BO-DRNET model for oil spill detection on SAR images,
with ResNet-18 as the backbone network of DeepLabv3+ and Bayesian optimization (BO)
to optimize model hyperparameters. Zhu et al. [20] used the SSD algorithm combined
with the Hough transform to identify the circular features at the top of industrial storage
tanks in order to reduce false alarms for the detection of industrial storage tanks at the
city level. Wu et al. [21] proposed a YOLOX-TR network in order to solve the problem of
dense oil tank detection due to overlapping, contour blurriness and geometric distortion.
A transformer encoder can obtain the area of interest of the oil tank and enhance the
feature representation. RepVGG can reparametrize the multi-branch trunk to improve
the classification accuracy. He et al. [22] proposed oil well site extraction using the OWS
Mask R-CNN model by adding a semantic segmentation branch to Mask R-CNN to make
the whole network focus on the relationship between the route objects near the well sites
and the well sites. Considering that the number and geographical location of oil wells are
important for energy resource planning, Wang et al. [23–25] built the first oil well object
detection dataset and obtained high accuracy using the most advanced deep learning
models. YOLOv4 with sliding slice and discarded edge was proposed by Shi et al. [26],
which effectively solves the problem of repeated detection and inaccurate positioning in
large-scale and high-resolution oil well detection.

1.2.3. Transfer Learning

In deep learning, the method of taking a pre-trained model as the starting point of
a new model from the perspective of similarity is called transfer learning [27]. Yosinski
et al. [28] experimentally quantified the generality versus specificity of neurons in each layer
of a deep convolutional neural network. It was found that even features transferred from
distant tasks are better than random weights and that this is a universally useful technique
for improving the performance of deep neural networks even if significant fine-tuning
is required on a new task. Ruan et al. [29] used the disturbance label information in a
large-scale face database for transfer learning and were able to effectively extract multiple
disturbing factors from facial expression images. Ma et al. [30] introduced the label transfer
learning paradigm to decouple known and unknown features, promote unknown learning,
and adjust the learning process through other strategies to achieve a balance between
unknown learning and known learning. One of the challenges that needs to be considered
when using transfer learning is to avoid negative transfer. It is necessary to pay attention to
whether the relationship between the original task and the target task is close, and whether
the transfer method can make good use of the relationship between the tasks, to achieve
some improvement in the target task. Song and Yang [31] proposed a GSCCTL model based
on clustering and transfer learning, which was tested on UCMerced, AID, and NWPU-
RESISC45 remote sensing datasets. It was found to be suitable for semi-supervised scene
classification. Alem and Kumar [32] proposed the transfer learning (TL) method, which is
widely used for land cover or land use (LCLU) classification in remote sensing images.

2. Methods
2.1. The Network Structure of YOLOv5s-Seg

YOLOv5 is mainly composed of an input terminal, backbone, neck, and prediction
components. An adaptive anchor box calculation and adaptive picture scaling method was
adopted. The preset anchor box scale was inputted into the network, and the obtained
predicted bounding box was compared with the ground truth bounding box to update the
network parameters. Mosaic data enhancement was used to splice images according to
random scaling, random cropping, and random arrangement, which greatly enriched the
background of objects to be detected. The focus structure was used to improve computing
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power without losing information. The backbone was composed of CBL, CSP and SPPF
modules. Some improvements were made to the structure of FPN+PAN, using the CSP2_X
structure to strengthen the capability of network feature fusion. The YOLOv5s-seg model
introduces instance segmentation within object detection. In order to improve the perfor-
mance of the model in the task of oil well object detection, we adopted a model-training
strategy based on transfer learning. We used the officially provided weight file YOLOv5s.pt
pre-trained on the COCO dataset as the starting point for model initialization. The COCO
(Microsoft Common Objects in Context) object detection dataset [33] is a large-scale dataset
with rich context information, multi-tasking, diversity, and high-quality annotations, which
is widely used in various tasks in computer vision research, especially for object detection
and image understanding tasks. In the process of transfer learning, we first loaded the
pre-training weights into the YOLOv5s-seg network. The purpose of this was to use the
general image features learned on the COCO dataset to speed up the model’s learning of
the feature representation related to oil wells. Meanwhile, using the pre-training weights
on the large-scale dataset could help our model resist the overfitting of the network and
improve the generalization of the model. The transfer learning pipeline and the network
structure are shown in Figures 1 and 2, respectively.
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2.2. CONTEXT AUGMENTATION MODULE Structure

Rich semantic information from the surrounding context, such as the environment
around the oil well, plays a significant role in object analysis. It enables the detector to gain
a deeper understanding of the object’s context, thereby enhancing the oil well recognition
capability. The proposed context module by Yu and Koltun [34] proposed a context module,
which is a network module that uses extended convolution to aggregate multi-scale context
information without the loss of resolution and contributes to dense prediction. In order to
avoid the loss of spatial detail and positioning accuracy, a high-resolution network was
introduced by Zhang et al. [35], and local context was aggregated by introducing adaptive
spatial pooling. Compared with the baseline HRNet, the proposed architecture has an
advantage of 0.47% in OA and 0.59% in the average F1 score on the Potsdam dataset and
0.67% in OA and 0.96% in the average F1 score on the Vaihingen dataset. Therefore, in the
task of oil well object detection, which has a rich semantic environment of surrounding
context, the CONTEXT_AUGMENTATION_MODULE [13] enables the detection model
to understand the context of the object more deeply, further improving the ability to
identify partially occluded oil wells. A CAM module is directly connected in series behind
the backbone of the YOLOv5s-seg model. The CAM module uses different expansion
convolution rates of 1, 3 and 5, respectively, to obtain the context information of different
receptor fields, thus achieving the purpose of enriching the context information of FPN.
These spatial features are convolved and fused with three different outward expansions as
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inputs to the neck part of the YOLOv5s-seg network. There are three strategies for feature
fusion, namely weighted fusion, concatenation fusion, and adaptive fusion. Adaptive
fusion is more suitable for large and medium objects, and concatenation fusion has the
greatest advantage for small objects. In this work, concatenation fusion was adopted to
directly add feature maps into space and channel dimensions, therefore enriching the
overall feature representation. The CAM fusion structure is shown in Figure 3.
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2.3. Normalized Weighted Distance

Small objects exist in large numbers in real-world scenarios; in terms of pixel size, the
COCO dataset defines small targets as resolutions less than 32 × 32 pixels. In terms of
relative area, defined as the median ratio of the bounding box area to the image area, it is
between 0.08% and 0.58% [36]. Oil wells, being relatively small objects, provide minimal
information, particularly in cases of occlusion, which poses challenges for the network in
learning distinctive features and can lead to detection errors. As the sensitivity of IoU to
objects of different scales varies greatly, as shown in Figure 4, for oil wells, a small position
deviation will lead to huge changes in IoU. Therefore, Normalized Weighted Distance
(NWD) was used to measure the similarity, and it is worth noting that NWD is not sensitive
to scale [37]. Since there are always some background pixels in the bounding box, the
foreground pixels are concentrated in the middle. When calculating the distance between
the prediction box and the object box, the bounding box was modeled as a 2D Gaussian
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distribution. The similarity between the prediction box and the object box is the scalar
value obtained by the normalization of the weighted summation distance of the Gaussian
distribution, which is used as the loss function of the object detection. The distribution can
be measured regardless of whether there is overlap between the two surrounding boxes.
W2

2 is the distance between two bounding boxes. Suppose the two boundary boxes are
(cxa, cya, wa, ha) and (cxb, cyb, wb, hb), and the formula W2

2 is defined by Equation (1). The
normalized distance formula is defined by Equation (2), Na, Nb is the Gaussian distribution
modeled by bounding boxes A and B, and C is a constant related to the dataset. The loss of
NWD is calculated as per Equation (3):

W2
2 (Na, Nb) =

∥∥∥∥∥
([

cxa, cya,
wa

2
,

ha

2

]T
,
[

cxb, cyb,
wb
2

,
hb
2

]T
)∥∥∥∥∥

2

2

, (1)

NWD(Na, Nb) = exp

−

√
W2

2 (Na, Nb)

C

, (2)

LNWD = 1 − NWD(Na, Nb) (3)
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2.4. Other Modules

The C2f module (Figure 5) in YOLOv8 extracts the features in the image through
multiple convolution layers and pooling layers and uses the upper sampling layer to
increase the resolution of the feature map. This module is used to replace the C3 structure
(Figure 6) in YOLOv5. Due to more residual connections, it has richer gradient flow, thus
improving the accuracy and speed of detection.
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The ConvNeXt V2 model adds a global response normalization layer (GRN) to enhance
the feature competition between channels through global feature aggregation [38], feature
normalization, and feature calibration, increasing the contrast and selectivity between
channels. Compared with a CNN, a transformer has the advantage of being able to capture
context dependencies over long distances with its self-attention mechanism. BiFormer’s
new universal vision network architecture can focus on a small number of relevant markers
in a query-adaptive way without distracting the attention of other irrelevant markers [39]. It
has three attention mechanisms: Bi-Level Routing Attention, Attention and AttentionLePE.
Swin Transformer not only uses a hierarchical structure (pyramid structure) [40] but also
proposes a linear complexity attention calculation, and finally obtains several different
sizes of structures. PoolFormer is a structure that fuses information among multiple tokens
through average pooling [41]. The RFE module takes full advantage of the receptive field in
the feature graph by using extended convolution [9], shared weights across ranches, reduc-
ing the number of parameters and the risk of potential overfitting. The EfficientRepGFPN
module can use different channel numbers for different scale features [42], flexibly control
the expression ability of high-level features and low-level features, and fully exchange
high-level semantic information and low-level spatial information.

3. Experimental Results
3.1. Dataset

In this study, we collected our dataset from various oil fields, each of which holds
unique significance: Changqing oil field, located in the Ordos Basin, has set the highest
annual output of oil and gas in China. The complex terrain such as hills and mountains con-
tributes to the ruggedness of the ground, resulting in changes in the shape, size, direction,



Remote Sens. 2023, 15, 5788 9 of 23

and other features of the oil well. Additionally, this terrain complexity introduces back-
ground noise surrounding the oil wells, further complicating the extraction and recognition
of the oil well features (see Figure 7a). Huatugou, located within the vast Gobi and the
colorful Danxia landform, has the world’s highest elevation oil wells, with unique rocks,
sand, gullies, and other terrain and large changes in lighting conditions; this may cause
some interference to the interpretation and analysis of remote sensing images and reduce
the recognition degree of oil well features. In addition, there are many double donkey head
oil wells, providing the possibility of diversity of oil wells (see Figure 7b). Daqing oil field,
a world-renowned large sandstone oil field, proves that continental strata can generate oil
and form large oil fields. The background here is mainly green space and buildings (see
Figure 7c). California is a large economic region in the United States and also ranks as one
of the nation’s most abundant sources of oil reserves. The oil wells here also have their
own characteristics in the remote sensing image, not only in shape, but also in direction;
many of the oil wells show a distinctive white base (see Figure 7d).
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The dataset was derived from Google Earth Imagery [43], which combines a large
number of high-definition satellite and aerial images to ensure clarity and lack of cloud
cover, but also causes misalignment and distortion due to the variety of image quality.
The dataset contains 376 images of Daqing City with 1744 oil well objects, 125 images of
Changqing oil field with 598 oil well objects, 91 images of Huatugou with 379 oil well
objects, and 130 images of California with 1028 oil well objects, a total of 722 images with
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3749 oil well objects. The images in the dataset are 512 × 512 pixels with 0.48 m spatial
resolution per pixel.

In this paper, occlusion within 30% was considered as moderate occlusion, and occlu-
sion above 30% was considered as severe occlusion. The dataset format is the Pascal VOC
format and YOLO label format. The Pascal VOC format has an image, xml tag, category
image tag, and instance image tag (see Figure 8). The YOLO format has images and txt
labels. As shown in Figure 9, the remote sensing image containing the oil well object
area is divided into 512 × 512-pixel image blocks. The ArcGIS tool was used to mark
the image and convert it into a shpfile format file, and the shpfile file was converted into
xml format through the GDAL library in python. In xml tags, the size tag stores the size
of the image, the object tag stores each object’s information, and the bndbox tag stores
the object location information. X, Y coordinate information in the lower left and upper
right corner of the prior box was used as object attributes, and background and shadow
information were used as object attributes. For example, shadow stores whether the object
has a shadow. The geo_trans tag stores the six-parameter coordinate conversion model in
the GeoTIFF data storage format, including the top-left pixel center X,Y coordinates, pixel
resolution in the X,Y direction, and rotation information for the conversion of pixel coordi-
nates (p_x, p_y) and geographic coordinates (geo_x, geo_y). The equations for calculating
geographic coordinates are as follows (see Equations (4) and (5)).

geo_x = geo_trans[0] + geo_trans[1] ∗ p_x, (4)

geo_y = geo_trans[3] + geo_trans[5] ∗ p_y (5)

Remote Sens. 2023, 15, x FOR PEER REVIEW 11 of 24 
 

 

GeoTIFF data storage format, including the top-left pixel center X,Y coordinates, pixel res-

olution in the X,Y direction, and rotation information for the conversion of pixel coordi-

nates (p_x, p_y) and geographic coordinates (geo_x, geo_y). The equations for calculating 

geographic coordinates are as follows (see Equations (4) and (5)). 

𝑔𝑒𝑜_𝑥 = 𝑔𝑒𝑜_𝑡𝑟𝑎𝑛𝑠[0] + 𝑔𝑒𝑜_𝑡𝑟𝑎𝑛𝑠[1] ∗ 𝑝_𝑥, (4) 

𝑔𝑒𝑜_𝑦 = 𝑔𝑒𝑜_𝑡𝑟𝑎𝑛𝑠[3] + 𝑔𝑒𝑜_𝑡𝑟𝑎𝑛𝑠[5] ∗ 𝑝_𝑦 (5) 

 

   
(a) (b) (c) 

Figure 8. Sample images from our dataset. (a) Image; (b) classification label; (c) instance label. 

 

Figure 9. XML annotation details. (the red box is the object detection bounding box annotation). 

The oil well is a beam pumping unit, which is composed of a donkey head, beam, 

and power equipment. In our dataset, we took the donkey head of the oil well as the di-

rection and divided the angle into eight directions, as seen in Figure 10a,b. Occlusion types 

were divided into six categories, including (1) single well with no occlusion, (2) dense 

wells with no occlusion, (3) dense wells with occlusion, (4) background occlusion, (5) self-

occlusion, and (6) slice occlusion. Single well with no occlusion means that there is no 

possibility of overlapping prediction boxes. Dense wells with no occlusion mean that 

ground truth boxes do not overlap but the prediction boxes may be overlap, or the ground 

truth boxes overlap but the oil wells do not overlap with each other (Figure 10c). Dense 

wells with occlusion mean that the oil wells overlap with each other (Figure 10d). Back-

ground occlusion refers to obstructions caused by the background, while self-occlusion 

Figure 8. Sample images from our dataset. (a) Image; (b) classification label; (c) instance label.

The oil well is a beam pumping unit, which is composed of a donkey head, beam, and
power equipment. In our dataset, we took the donkey head of the oil well as the direction
and divided the angle into eight directions, as seen in Figure 10a,b. Occlusion types were
divided into six categories, including (1) single well with no occlusion, (2) dense wells with
no occlusion, (3) dense wells with occlusion, (4) background occlusion, (5) self-occlusion,
and (6) slice occlusion. Single well with no occlusion means that there is no possibility of
overlapping prediction boxes. Dense wells with no occlusion mean that ground truth boxes
do not overlap but the prediction boxes may be overlap, or the ground truth boxes overlap
but the oil wells do not overlap with each other (Figure 10c). Dense wells with occlusion
mean that the oil wells overlap with each other (Figure 10d). Background occlusion refers
to obstructions caused by the background, while self-occlusion occurs when the oil well’s
head is partially obscured due to angle-related issues. Self-occlusion becomes particularly
evident when prominent features such as the base and floating beam align in a linear
fashion (Figure 10e). When slice occlusion is a necessary step for the small object detection
of large-scale remote sensing images, the object is segmented (Figure 10f). The object
background types were divided into four types, which are lakes, bare land, trees, and
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buildings. The degree of occlusion was divided into unoccluded, moderately occluded, and
severely occluded scenarios (Figure 10g). For moderately occluded scenarios, the degree of
occlusion was less than 30%, and for serious occlusion, it was more than 30%.
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3.2. Model Training and Improvement

In our experimental evaluation, we utilized the Daqing oil field area, Changqing
oil field area, and Huatugou area in China as the training data and validation data, and
California was used as the test data. In this paper, the test set for the model consisted of
California oil wells situated in a region distinct from the training set. As the landform and
obstructed oil well features of this region were not part of the model’s training process, it
served as a robust validation of our model’s capability to detect obstructed oil wells amidst
varying geomorphic backgrounds of different complexities. This test set also evaluated
the generalization performance of our model across diverse geomorphic backgrounds,
offering a preliminary validation for potential extensions of our model to other regions
worldwide in the future. As shown in Figure 11, a total of 1637 objects in the domestic
area were unoccluded, 394 were moderately occluded, and 690 were severely occluded.
In the California dataset, 528 objects were unoccluded, 223 were moderately occluded,
and 277 were severely occluded. As shown in Figure 12, in the training and validation set
of our dataset, that is, the China region, there were a total of 1042 single wells that were
unoccluded, 599 that were dense unoccluded, 474 that were dense occluded, 48 that were
background occluded, 130 that were self-occluded, 90 that were slice occluded, and 338 that
were multi-class occluded, most of which were dense unoccluded and self-occluded. In the
California dataset, 455 single wells were unoccluded, 74 were dense unoccluded, 94 were
dense occluded, 46 were background occluded, 241 were self-occluded, 62 slice were
occluded, and 56 were multi-class occluded.

We conducted experiments using the YOLOv5 model, YOLOv5 instance segmentation
model (YOLOv5s-seg), Faster R-CNN model, Mask R-CNN model, YOLOv7 model, and
YOLOv8 model. In YOLOv5, we utilized the pre-trained model’s weight YOLOv5s.pt,
which was trained on the COCO dataset provided by the official source. For Faster R-CNN,
Mask R-CNN, and other similar models, corresponding pre-trained model weights like
mask_rcnn_coco.pth are available. The control of the number of layers and channels in the
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model was facilitated by utilizing the parameters depth_multiple 0.33 and width_multiple
0.5. The backbone network employs five convolution subsampling processes to extract
images of 512 × 512 size. This process results in three distinct feature map sizes: 16 × 16,
32 × 32, and 64 × 64, respectively. YOLOv5 loss is comprised of three components: BCE
loss to gauge the prediction accuracy for classes and objectness, and CIoU loss for location.
These adjustments aimed to enhance detection performance, especially for occluded and
overlapping objects.
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In the comparison experiment involving the six general models, YOLOv5s-seg was
chosen as the baseline model, and subsequent improvements were implemented. This
involved integrating feature modules. The CAM module demonstrated promising perfor-
mance. Within the YOLOv5s-seg backbone network, a series of five convolutions were
applied, and the resulting multi-scale extended convolution features were fused. These
fused features were then injected into the feature pyramid network from top to bottom,
augmenting context information. Given the heightened sensitivity of occluded oil wells’
small objects to position deviation in the Intersection over Union (IOU)-based measurement,
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the NWD metric was introduced into the loss function calculation. Specifically, NWD was
utilized in the computation of objectness loss and location loss to gauge distance, and an
instance segmentation loss was incorporated. The final loss function was obtained through
the amalgamation of multiple losses, contributing to the model’s improved performance.

3.3. Evaluation Metrics

To evaluate the performance of the model, we selected four metrics in the exper-
iment: precision, recall, F1 score, and average accuracy. These metrics are defined in
Equations (6)–(9) below.

Precision =
TP

TP + FP
(6)

Recall =
TP

TP + FN
(7)

F1 = 2 × Precision × Recall
Precision + Recall

(8)

AP =
∫ 1

0
p(r)dr (9)

3.4. Experimental Results

The experiment was conducted on a server with an Intel i7-11700 CPU (2.50 GHz)
manufactured by Intel Corporation and an NVIDIA GeForce RTX 2060ti GPU (11,264 m)
manufactured by NVIDIA Corporation, Both companies are headquartered in Santa Clara,
California, USA. Figure 13a,b show the box_loss and seg_loss curves of different models
considered in our experimental evaluation. It can be seen that the loss value of the model
using NWD metric was the smallest and the closest to the real value. The model was able
to detect all oil wells to a large extent; however, because the NWD metric is sensitive to
the calculation of similarity between small oil well object boundary boxes under occlusion,
the model may produce a high false-alarm rate when dealing with these objects. The CAM
module can effectively control the false-alarm rate, which can enhance the model’s attention
to the object region and suppress the interference in the background region. By integrating
the CAM module, the model can better focus on the details of the oil well object, thus
reducing the false-alarm rate. The curves in Figure 14a,b intersect, yet when considering
the area under the curves, it is evident that the YOLOv5s-seg CAM NWD model exhibited
superior performance.
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Table 1 shows the precision, recall, and F1 scores achieved by the YOLOv5s-seg,
YOLOv5s-seg CAM, YOLOv5s-seg NWD, and YOLOv5s-seg CAM NWD models across the
entire dataset, which was randomly divided into an 8:1:1 proportion for testing. Notably,
the YOLOv5s-seg CAM NWD model exhibited the best detection accuracy, attaining a
remarkable 93.2% F1 score.

Table 1. Evaluation metrics of randomly divided dataset.

Model P R AP50 F1

YOLOv5s-seg 0.907 0.858 0.923 0.882

CAM 0.922 0.894 0.943 0.908

NWD 0.920 0.895 0.949 0.907

CAM NWD 0.933 0.932 0.965 0.932

To further investigate the generalization ability of the model, we performed an addi-
tional experiment where the Daqing oil field area, Changqing oil field area, and Huatugou
area were used as training sets and verification sets, and California was used as a test set.
Table 2 shows the precision, recall, and F1 scores of the baseline models Faster R-CNN,
Mask R-CNN, YOLOv5, YOLOv7, YOLOv8, and the YOLOv5 instance segmentation and
YOLOv5s-seg. It can be seen that YOLOv5s-seg achieved the best performance. Table 3
shows that the YOLOv5s-seg model, Swin Transformer model, PoolFormer model, con-
vnextv2 model, C2f module, and RFEM model tried to use the backbone. Some attention
mechanisms such as BiLevelRoutingAttention, attention, and AttentionLePE were added
to the neck, EfficientRepGFPN model, and CAM module, and the NWD metric was used as
the comparative experimental result of loss function when calculating loss. Table 4 shows
the precision, recall, and F1 scores of the NWD and CAM models with the highest F1 in the
training, YOLOv5, YOLOv5s-seg, and YOLOv5s-seg CAM NWD models under different
occlusion degrees. Table 5 shows the precision, recall, and F1 scores of each model under
different occlusion types.

The results show that the YOLOv5s-seg CAM NWD model can achieve the best F1
score among all the models. The reason why the F1 of the YOLOv5s-seg CAM NWD
model is poor in the slice occlusion of different occlusion types is that the number of objects
blocked by slice is too small, and when calculating false detection, the falsely detected
objects have no occlusion type, so they were added to each occlusion type, resulting
in errors.
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Table 2. Baseline model evaluation metrics.

Model P R AP50 F1

faster_rcnn 0.873 0.201 0.375 0.327

mask_rcnn 0.538 0.457 0.558 0.494

YOLOv5 0.769 0.487 0.584 0.596

YOLOv7 0.568 0.443 0.461 0.498

YOLOv8 0.635 0.513 0.542 0.567

YOLOv5s-seg 0.741 0.593 0.65 0.659
Bold is the optimal model for each column.

Table 3. Improved model evaluation metrics.

Improvement AP50(Box) F1 AP50(Mask) F1

YOLOv5s-seg 0.65 0.659 0.634 0.61

BiLevelRoutingAttention 0.496 0.533 0.484 0.49

Attention 0.558 0.611 0.54 0.546

AttentionLePE 0.593 0.625 0.583 0.574

C2f 0.499 0.575 0.487 0.506

NWD 0.611 0.652 0.62 0.615

Convnextv2 0.503 0.634 0.504 0.541

SwinTransformer 0.447 0.533 0.433 0.465

PoolFormer 0.462 0.55 0.459 0.503

CAM 0.659 0.69 0.626 0.626

EfficientRepGFPN 0.652 0.613 0.621 0.624

RFEM 0.593 0.623 0.577 0.586

CAM NWD 0.701 0.704 0.686 0.642
Bold is the optimal model for each column.

Table 4. Occlusion degree evaluation metrics.

YOLOv5 YOLOv5s-Seg YOLOv5s-Seg
NWD

YOLOv5s-Seg
CAM

YOLOv5s-Seg
CAM NWD

Unoccluded P 0.822 0.774 0.617 0.812 0.691

Unoccluded R 0.612 0.68 0.803 0.693 0.831

Unoccluded F1 0.701 0.724 0.698 0.748 0.755

Moderately
occluded P 0.698 0.66 0.517 0.769 0.578

Moderately
occluded R 0.395 0.48 0.7 0.493 0.668

Moderately
occluded F1 0.504 0.556 0.594 0.601 0.62

Severely occluded P 0.682 0.731 0.571 0.788 0.645

Severely occluded R 0.325 0.52 0.664 0.534 0.7

Severely occluded F1 0.44 0.608 0.614 0.639 0.671

Bold is the optimal model for each line.
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Table 5. Occlusion type evaluation metrics.

YOLOv5 YOLOv5s-Seg YOLOv5s-Seg
NWD

YOLOv5s-Seg
CAM

YOLOv5s-Seg
CAM NWD

Unoccluded P 0.822 0.783 0.627 0.816 0.703

Unoccluded R 0.637 0.705 0.835 0.712 0.857

Unoccluded F1 0.718 0.742 0.716 0.761 0.772

Dense unoccluded P 0.829 0.704 0.549 0.782 0.617

Dense unoccluded R 0.459 0.514 0.608 0.581 0.676

Dense unoccluded F1 0.591 0.594 0.577 0.667 0.645

Dense occluded P 0.721 0.69 0.559 0.724 0.674

Dense occluded R 0.468 0.521 0.66 0.586 0.681

Dense occluded F1 0.568 0.594 0.605 0.647 0.677

Background occluded P 0.75 0.667 0.525 0.692 0.604

Background occluded R 0.391 0.391 0.696 0.391 0.696

Background occluded F1 0.514 0.493 0.598 0.5 0.646

Self-occluded P 0.64 0.686 0.581 0.855 0.637

Self-occluded R 0.237 0.452 0.656 0.465 0.664

Self-occluded F1 0.345 0.545 0.616 0.602 0.65

Slice occluded P 0.771 0.75 0.45 0.725 0.556

Slice occluded R 0.597 0.726 0.806 0.597 0.806

Slice occluded F1 0.673 0.738 0.578 0.655 0.658

Bold is the optimal model for each line.

The TP, FN, and FP of the four network models under the conditions of unoccluded,
moderately occluded, and severely occluded were counted and are shown in Figure 15.
It can be seen that the accuracy of the YOLOv5s-seg NWD model was improved under
different occlusion degrees, but it also caused some false alarms, and YOLOv5s-seg CAM
could better suppress false alarms.

The TP, FN, and FP of four network models under conditions of single wells with no
occlusion, dense wells with no occlusion, dense wells with occlusion, background occlusion,
self-occlusion, and slice occlusion were calculated and are shown in Figure 16. It can be
seen that the detection accuracy was improved under different occlusion types, and the
false alarm of YOLOv5s-seg NWD was higher.

Below is a sample of the visual test results (see Figure 17). A green box indicates a
correct detection, a blue box indicates a false detection, and a red box indicates a missed
detection. Figure 18 shows the analysis of different occlusion types and different occlusion
degrees under the YOLOv5s-seg CAN NWD model.
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4. Discussions

In this paper, occluded oil well detection in remote sensing images was studied in
depth. Firstly, this paper tried to introduce instance segmentation into object detection,
which made the model provide pixel-level segmentation results, thus significantly improv-
ing the detection accuracy. However, after the introduction of the attention mechanism and
some feature enhancement modules (such as the ConvNeXt V2 model), the experimental
results show that the detection effect in fact decreased, which may be due to the excessive
noise and redundant information learned during the model training process, meaning
that not all the extracted features were beneficial for the object detection task. In contrast,
the CAM modules showed good performance in enhancing features. Moreover, NWD
measurements can better measure the similarity between small oil well object boundary
boxes that are obstructed than CIoU. For various occlusion types, NWD showed significant
recall improvement in handling both self-occlusion and background occlusion, and the
recall rate of self-occlusion achieved 0.419. At the same time, for other types of occlusions,
NWD also showed a good recall rate improvement.

To validate the model generalization, the test set used the oil wells in California that
were not used to train the model. The F1 score on the California dataset achieved 0.704,
which was 0.108 higher than that of the baseline network YOLOv5, which fully verified our
model’s ability to detect occluded oil wells under geomorphic backgrounds of different
complexities and under different target characteristics. This result proves that our model
has high robustness and generalization ability.

5. Conclusions

Considering the characteristics of remote sensing images, oil well detection, especially
occluded oil well detection, is a great challenge. To address this, we constructed our dataset,
considering factors like occlusion degree, occlusion type, background, viewing angle, the
presence of shadows, oil well type, and location within a well site.

Our initial comparison involved assessing two-stage detection models like Faster R-
CNN against one-stage detection models such as YOLOv5, YOLOv7, and YOLOv8 for object
detection. Furthermore, we considered the object detection and instance segmentation
models Mask R-CNN and YOLOv5s-seg and found that YOLOv5s-seg exhibited the best
performance, with an F1 score of 0.6591. Building upon the YOLOv5s-seg model, we
explored the addition of an attention module and replacing the CSP structure with the C2f
module. Ultimately, we achieved an F1 score of 0.704 with the YOLOv5s-seg CAM NWD
model. The experimental results show that the YOLOv5s-seg CAM NWD based on the
optimized YOLOv5 object detection and instance segmentation model can effectively detect
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oil wells for both moderately occluded and severely occluded scenarios. In future work, we
intend to continue to expand our dataset and continue to improve our methods to achieve
better accuracy. In addition, we will study how to combine other data sources (such as
topographic maps, etc.) with remote sensing images to improve the accuracy and reliability
of oil well detection. We will also explore how the proposed method can be applied to
other similar tasks, such as the detection of power lines, pipelines, and other infrastructure.
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Abbreviations

CAM CONTEXT_AUGMENTATION_MODULE
NWD Normalized Weighted Distance
S-well unocc Single wells are unoccluded
D-unocc Dense unoccluded
Dense-occ Dense occluded
Backg-occ Background occluded
Self-occ Self_occluded
Slice-occ Slice occluded
M-cls occ Multi-class occluded
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