
Citation: Li, L.; Zhou, B.; Liu, Y.; Wu,

Y.; Tang, J.; Xu, W.; Wang, L.; Ou, G.

Reduction in Uncertainty in Forest

Aboveground Biomass Estimation

Using Sentinel-2 Images: A Case

Study of Pinus densata Forests in

Shangri-La City, China. Remote Sens.

2023, 15, 559. https://doi.org/

10.3390/rs15030559

Academic Editors: Huaqiang Du,

Wenyi Fan, Weiliang Fan,

Fangjie Mao and Mingshi Li

Received: 27 November 2022

Revised: 10 January 2023

Accepted: 10 January 2023

Published: 17 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

Reduction in Uncertainty in Forest Aboveground Biomass
Estimation Using Sentinel-2 Images: A Case Study of
Pinus densata Forests in Shangri-La City, China
Lu Li 1, Boqi Zhou 1, Yanfeng Liu 1, Yong Wu 1, Jing Tang 1, Weiheng Xu 1,2 , Leiguang Wang 1,2

and Guanglong Ou 1,*

1 Key Laboratory of State Forestry Administration on Biodiversity Conservation in Southwest China,
Southwest Forestry University, Kunming 650224, China

2 Institute of Big Data and Artificial Intelligence, Southwest Forestry University, Kunming 650233, China
* Correspondence: olg2007621@swfu.edu.cn

Abstract: The uncertainty from the under-estimation and over-estimation of forest aboveground
biomass (AGB) is an urgent problem in optical remote sensing estimation. In order to more accurately
estimate the AGB of Pinus densata forests in Shangri-La City, we mainly discuss three non-parametric
models—the artificial neural network (ANN), random forests (RFs), and the quantile regression
neural network (QRNN) based on 146 sample plots and Sentinel-2 images in Shangri-La City, China.
Moreover, we selected the corresponding optical quartile models with the lowest mean error at each
AGB segment to combine as the best QRNN (QRNNb). The results showed that: (1) for the whole
biomass segment, the QRNNb has the best fitting performance compared with the ANN and RFs, the
ANN has the lowest R2 (0.602) and the highest RMSE (48.180 Mg/ha), and the difference between the
QRNNb and RFs is not apparent. (2) For the different biomass segments, the QRNNb has a better
performance. Especially when AGB is lower than 40 Mg/ha, the QRNNb has the highest R2 of 0.961
and the lowest RMSE of 1.733 (Mg/ha). Meanwhile, when AGB is larger than 160 Mg/ha, the QRNNb
has the highest R2 of 0.867 and the lowest RMSE of 18.203 Mg/ha. This indicates that the QRNNb
is more robust and can improve the over-estimation and under-estimation in AGB estimation. This
means that the QRNNb combined with the optimal quantile model of each biomass segment provides
a method with more potential for reducing the uncertainties in AGB estimation using optical remote
sensing images.

Keywords: Sentinel-2 images; artificial neural network; random forests; quantile regression neural
network; Pinus densata forests

1. Introduction

Forest biomass is a crucial factor in carbon storage in terrestrial ecosystems and plays
an essential role in protecting the ecological environment and biodiversity [1]. The biomass
harvesting method is time-consuming and labor-intensive; thus, it is not available for
large-scale data acquisition [2]. Along with the development of remote sensing technology,
more and more researchers are using remote sensing data combined with ground survey
data to estimate large-scale forest biomass [3,4].

Three types of remote sensing data are available for biomass estimation: optical images,
active sensor radar data, and light detection and ranging (LiDAR) data [5,6]. The main
LiDAR technology used in forest biomass estimation is backpack LiDAR and airborne
LiDAR. Backpack LiDAR is hard to use for large-area assessment because the terrain and
forestland accessibility easily influence it. Although airborne LiDAR is not limited by
the terrain and can capture three-dimensional structure information; thus, it has a better
performance for forest biomass estimation by improving the saturation problem in biomass
estimation using optical remote sensing data [7,8]. However, it still needs to be more
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suitable for large-area forest biomass estimation due to the limitation of the battery capacity
and the increased imaging cost, etc. Moreover, LiDAR has no infrared signals, a limiting
factor for vegetation analysis [9]. Radar has an intense penetration in vegetation, but the
data processing is quite complicated, and the forest AGB has a different sensitivity to its
wavelength [10,11]. The most accurate radar systems operate with short wavelengths (i.e.,
X- and C-bands). However, the radar signal does not reach the ground because it is mainly
backscattered by the canopy of the upper layer [12–14]. Using long radar wavelengths
(mainly L- and P-bands), the radar signal can penetrate the different layers from the top of
the canopy to the ground. However, P-band radar imagery is expected to be available with
the ESA BIOMASS mission to be launched in 2024 [15,16]. High- and medium-resolution
optical remote sensing are used for AGB estimation commonly. Generally, high-resolution
optical images are too expensive, and the images are quite hard to obtain even though they
have more accurate results of AGB estimation than medium-resolution optical images [17].
Therefore, the medium-resolution satellite images (e.g., Landsat and Sentinel-2) are a better
choice for forest biomass evaluation by different spatial scales due to their free accessibility
and high suitability to landscape scale analysis [18]. However, reducing the uncertainties is
still a significant difficulty for AGB estimation using optical remote sensing data, especially
when the study area has a high canopy [19,20]. The European Space Agency launched a
high-resolution and multi-spectral imaging satellite, Sentinel-2A, in 2015 and Sentinel-2B in
2017. In addition, the spatial resolutions are 10 m, 20 m, and 60 m, respectively. Sentinel-2
can revisit an area in 5 days by two satellites and it has a wide swath at 290 km with
13 multi-spectral bands, including four additional spectral bands strategically positioned
in the red-edge region, which is a more sensitive band to vegetation [21,22]. It is expected
to improve the uncertainties of AGB estimation [22–24].

To reduce the saturation impact on forest biomass estimation, vegetation indices (VI)
have been employed in lots of research [25–27]. The VI has been shown to be related to
photosynthesis to some extent and directly proportional to biomass or yield [28]. The
normalized difference vegetation index (NDVI), atmospherically resistant vegetation index
(ARVI), difference vegetation index (DVI), simple ratio index (RVI), etc., were extracted
from images, which were used in AGB assessment [1,28,29]. With the development of the
research, the researchers found that the vegetation index changed little after the biomass
reached a specific value [17,18]; in particular, tropical and subtropical woodlands with high
coverage and structural complexity are more likely to lead to insensitivity [30]. Moreover,
the researchers found that the texture features are more sensitive to the horizontal structure
of the canopy and the shadow, which may be suitable for improving the prediction precision
of forest AGB biomass estimation. Some studies have been found to apply textures in forest
biomass assessment [31,32], and the image texture has excellent potential to enhance the
accuracy of AGB estimation [33–35]. Therefore, variables screening is vital for reducing the
impact on the multi-collinearity and increasing the accuracy in the AGB remote sensing
estimation [36–38].

The accuracy of forest AGB estimation is not only affected by the survey data but
also impacts the methodology of the assessment model [39,40]. Two kinds of algorithms
were applied for forest AGB estimation, including parametric and non-parametric algo-
rithms [41]. The parametric method can quantitatively describe the relationship between
AGB and the variables, in which h contains linear, logarithm, exponential, and other
functions [42]. In contrast, the artificial neural network (ANN), K-nearest neighbor (KNN),
support vector machine (SVM), random forests (RF), etc., were counted into a not-parametric
model [43–46]. The relationship between AGB and variables cannot easily be analyzed by
fixed quantity due to the complex relationship between AGB and forest construction. A lot
of research has been conducted to compare the accuracy of parametric and non-parametric
algorithms, and the result have shown that non-parametric algorithms exhibited excellent
performance [46]. The artificial neural network (ANN) is a supervised learning algorithm
in machine learning which has adaptability and improves the precision of updated data. It
has been used widely to demonstrate the complex relationships between independent and
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dependent variables [47]. The ANN frequently uses AGB estimation due to the parallelism,
fault tolerance, generalization capability, and multiple input multiple output architecture.
Then, it can reveal a solid ability to fit data [44]. Moreover, ANN was applied to predict the
AGB in natural forest ecosystems, with it showing that it offered a higher accuracy result
than traditional protocols [48–50].

The quantile regression neural network (QRNN) is a non-parametric, nonlinear model
that is combined with a neural network (NN) and quantile regression (QR) approach, which
was introduced by Taylor [51]. It centralizes the advantages of both the ANN and the QR.
The QR was created by Koenker [52], and it can more accurately describe the influence of
independent variables on the range of dependent variables and the shape of the conditional
distribution. It is not impacted by abnormal data such as sharp peaks, discrete values, and
heavy-tailed allocations [53,54]. When independent variables have different effects on the
distribution of dependent variables in different parts, such as skewness on the left or right,
it can describe the characteristics of the distribution more comprehensively [53,54]. The
QRNN is a suitable methodology for predicting mixed discrete–continuous variables. It
has already been applied in ecological environments [55–57]. Rarely have studies been
found using the QRNN in forest AGB estimation.

In general, the forest resources of Shangri-La City are characterized by extensive
forestry land and are identified as one of the species genetic pools [58,59]. Meanwhile,
Yunnan is known as the kingdom of plants and animals; thus, the forest resources status of
Yunnan in China or around the world is self-evident [60,61]. Given this, it is significant to
emphasize the precision of forest AGB assessment in Shangri-La City to protect forest re-
sources and improve the ecological environment. In this study, we will estimate forest AGB
by combining the measured sample data, Sentinel-2 images, vegetation index, and texture
value extracted from the images. We screened the correlation variables with AGB using RF,
then RF, the ANN, and the QRNN were selected to compare the fitting performance. The
significant contributions of this work are:

(1) To compare different biomass estimation models—the ANN, RF, and the QRNN for
estimating the biomass of Pinus densata forests using Sentinel-2 images in Shangri-
La City.

(2) To explore the optimal quantile model on each biomass segment to improve the AGB
estimation accuracy, and then provide a method to reduce the uncertainties from
over-estimation and under-estimation of forest AGB estimation.

2. Materials and Methods
2.1. Study Site

The study area is located in Shangri-La City, northwestern Yunnan, China. The co-
ordinates of Shangri-La City are: latitude 26◦52′~28◦52′N and longitude 99◦20′~100◦29′E
(Figure 1). The elevation range is from 3350 to 3696 m above sea level, the annual mean tem-
perature is 4.7–16.5 ◦C, and the extreme maximum and minimum temperature are 25.1 and
−20.1 ◦C, respectively. The dry and wet seasons are distinct, and the four seasons are not
apparent in Shangri-La City. For the rainfall time concentrates from June to September, the
mean annual precipitation is 607 mm and the average annual evaporation is 1643.6 mm [62].
The particular geographical environment and complex ecological conditions have created
a unique natural landscape and rich natural resources. The original forest area with the
sub-alpine coniferous forest is the main forest area that is well preserved in China.
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Figure 1. (a) Location of Shangri-La City in China; (b) The Sentinel-2 images of the study area; (c) the
spatial distribution of Pinus densata forests according to the forest management inventory (FMI) data
in 2016 and the sample plots investigated in 2016; (d) the typical stand structure of Pinus densata
forests in the study area; and (e) the field investigation of AGB.

Pinus densata, one of the barren tolerance pioneer tree species of sub-alpine coniferous,
is light-loving and cold-resistant in Shangri-La City. Pinus densata forests are single-storied
stands with even age in common, and most of the study areas were conducted in pure
Pinus densata forests [60,61,63] (Figure 1).

2.2. Flow Chart

In Figure 2, the methodological framework of this study was described in the following
steps: (1) collecting the sample plots and tree biomass data and the Sentinel images data;
(2) calculating the plot AGB; (3) pre-processing of the Sentinel images; (4) correlation
between spectral variables and AGB; (5) developing the model: the artificial neural network
(ANN), random forests (RF), and the quantile regression neural network(QRNN); and
(6) assessing the models.
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Figure 2. The methodological framework of estimating the forest above-ground biomass (AGB). RF
is the random forests, ANN is the artificial neural network, QRNN is the quantiles regression neural
network, and QRNNb is the quantile regression neural network with the best fitting performance in
each biomass segment.

2.3. Field Data Collection and Aboveground Biomass Calculation

Field data collection work was conducted in August 2016, and in situ data from over
146 sample plots were collected. The plot size was 30 m × 30 m. A GPS was used to
measure and record the coordinates and elevation. All of the trees of each plot with a
diameter at breast height 1.3 m above ground (DBH) >5 cm were measured. The trees on
the south and west boundary of the sample plot were recorded. Three to five trees with a
similar average stand DBH were chosen, and the height of the selected trees was measured
to calculate the average height of the stand in each plot. The other information in the plot
needed to be recorded, such as forest site conditions, origin, age, soil, and the trees’ health
situation, etc.



Remote Sens. 2023, 15, 559 6 of 20

The process of investigation, sampling, determination, and individual tree biomass
construction has been detailed in the literature [63]. The equation for the tree AGB was
as below:

AGBi = 0.073·DBH1.739·H0.880 (1)

where DBH is the tree diameter at the breast height >5 cm, H is the tree height, and AGBi is
the AGB of the individual tree in the plot (kg).

Equation (2), as below, was the sample plot AGB (Mg/ha). To ensure enough compara-
ble sample plot datasets at each biomass segment for the fitting test and validation test, the
sample numbers of the two datasets were the same; then, 146 sample plots were randomly
divided into a fitting dataset of 73 plots and a test dataset of 73 plots, and the statistical
information is listed in Table 1. In addition, there were no significant statistical differences
in the mean and standard deviation values between the fitted and the test datasets.

AGBs =
∑n

i=1 AGBi

900
·10, 000/1000 (2)

where AGBs is the AGB of a plot, AGBi is the AGB of individual trees, and n is the number
of trees within each plot.

Table 1. The statistical parameters of sample plot datasets. H is the average tree height, Dg is the
average diameter at breast height (1.3 m), and AGB the is above-ground biomass.

Variables Fitting Data
(n = 73)

Test Data
(n = 73)

All Data
(n = 146)

Minimum
H (m) 2.2 2.9 2.2

Dg (cm) 2.9 4.9 2.9
AGB (Mg/ha) 2.1 11.1 2.1

Maximum
H (m) 24.3 19.5 24.3

Dg (cm) 41.3 24.7 41.3
AGB (Mg/ha) 335.9 344.4 344.4

Mean
H (m) 10.0 10.3 10.1

Dg (cm) 14.6 15.0 14.8
AGB (Mg/ha) 120.7 122.2 121.5

Standard
deviation

H (m) 3.8 3.7 3.7
Dg (cm) 6.3 4.5 5.5

AGB (Mg/ha) 67.5 79.9 73.7

2.4. Remote Sensing Data and Variables
2.4.1. Pre-Processing of Sentinel-2 Images

Five Sentinel-2 images obtained from the European Space Agency (ESA) were used
in this study (Table 2). Since there were no level-2A products before May 2017, level-1C
products with UTM/WGS 84 ortho-images were downloaded, and they were orthorectified
top-of-atmosphere reflectance products. Bottom-of-atmosphere reflectance product L2A
needed to be obtained by atmospheric correction. Thereby, the Sen2Cor (version 02.05)
plugin under the toolbox in SNAP was installed to create L2A products, and the open-
access software of SNAP was downloaded from http://step.esa.int/main/download/
snap-download/ and accessed on 10 October 2022. Then, we resampled all of the bands
with a 10 m resolution under cubic convolution interpolation by using the resample tool in
SNAP. Finally, we resampled all of the bands with a 30 m resolution to meet the plot size of
the field AGB survey, and the images were cropped and spliced in ENVI.

http://step.esa.int/main/download/snap-download/
http://step.esa.int/main/download/snap-download/
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Table 2. The parameters of five Sentinel-2 images.

Image ID Acquisition Date
Central

Longitude
(Degree)

Central Latitude
(Degree) Solar Elevation Solar Azimuth Mean Cloud

Amount (%)

S2A_MSIL1C_
20161124T040102_

N0204_R004_
T47RNK_

20161124T040118

24 November
2016 99.5513 26.6257 1.0249 162.1176 12.6

S2A_MSIL1C_
20161124T040102_

N0204_R004_
T47RNL_

20161124T040118

24 November
2016 99.5557 27.5287 1.0249 162.2853 25.6

S2A_MSIL1C_
20161124T040102_

N0204_R004_
T47RNM_

20161124T040118

24 November
2016 99.5604 28.4315 1.0249 162.4446 41.7

S2A_MSIL1C_
20161124T040102_

N0204_R004_
T47RPL_

20161124T040118

24 November
2016 100.5684 27.5209 1.0249 163.4582 15.1

S2A_MSIL1C_
20161124T040102_

N0204_R004_
T47RPL_

20161124T040118

24 November
2016 100.5815 28.4235 1.0249 163.6144 38.5

2.4.2. Extraction Feature Variables from Remote Sensing

The vegetation index and conversion factor have been widely used to estimate forest
AGB [27,28]. The texture feature is an essential feature of remote sensing images, and it
reflects the properties of the object itself and helps to distinguish two different objects [28].
First and foremost, texture features have been proven to have essential contributions
to increasing the accuracy of AGB estimation because they can describe complex forest
structures with high accuracy [17,28,31]. Therefore, this study extracted 134 remote sensing
variables, including 11 spectral bands, 21 vegetation indices, 6 image conversion algorithms,
and 96 texture measurements (Table 3).

Table 3. Spectral variables derived from Sentinel-2 images.

Data Sources SV Definitions of SV Number of SV

Sentinel-2

Original band
b2—blue, b3—green, b4—red, b5—vegetation red edge, b6—vegetation

red edge, b7—vegetation red edge, b8—NIR, b9—water vapor,
b10—SWIR-cirrus, b11—SWIR, b12—SWIR

11

Vegetation indices

Normalized difference vegetation index (NDVI), atmospherically
resistant vegetation index (ARVI), difference vegetation index (DVI), ratio
vegetation index (RVI), vegetation index of soil adjustment ratio (SARV),

oil adjusted vegetation index (SAVI), modified soil vegetation index
(MSAVI), short infrared temperature vegetation index (MVI5),

mid-infrared temperature vegetation index (MVI7), transformation
vegetation index (TVI), nonlinear vegetation index (NLI), perpendicular

vegetation Index (PVI), infrared vegetation index (II), optimization
simple ratio index (MSR), simple vegetation index (SR), brightness
vegetation index (B), temperature vegetation index (W), greenness

vegetation index (G), normalized difference vegetation index using R and
G bands (ND43), normalized difference vegetation index using band 6

and band 7 (ND67), normalized difference vegetation index using band 5,
band 6, and band 3 (ND563)

21

Image transformations
The first three components from the tasseled cap transform (K T
transform) and the first three principal components of principal

component analysis (PCA)
6

Texture measures

Grey-level co-occurrence matrix-based texture measures including the
mean, angular second moment, contrast, correlation, dissimilarity,

entropy, homogeneity, and variance using moving window sizes of 3 × 3,
5 × 5, and 7 × 7 pixels

96
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2.4.3. Variables Screening

A total of 134 variables were extracted, but not all of them were sensitive to AGB.
Random forests (RF) technology was chosen to analyze the correlation between derived
variables and the field-based AGB data to gain a set of parsimonious and valid variables
for the AGB model. Then, the final vital performed variables were selected for building the
regression model. RFs is an ensemble machine-learning algorithm that was first proposed
by Breiman [36]. The keys to an RF construction include the random selection of the
decision tree and features (subset). Two thirds of variables are randomly selected from
the original dataset by the bootstrap sampling method to avoid over-fitting so that the
training dataset of the decision tree and the data amount of all training datasets is consistent
with the amount of original data [64]. The features (the other 1/3 of the original data)
are selected as the nodes of each decision tree and they were also chosen randomly. The
features are split based on the Gini criterion. The remaining features are the out-of-bag
(OOB) data used as validation samples. OOB data can be used to calculate the unbiased
estimate of prediction error by comparing the dataset with the out-of-bag data. Meanwhile,
they can also be applied to determine the importance of the variables. The optimal solution
is obtained by voting according to the principle that the minority is subordinate to the
majority. Moreover, the quality of the RFs model is related to the mean square errors (MSE)
between the decision tree and the features, and the smaller the MSE is, the better [36]. In
this study, 80% of the original data was used as the training dataset, and the left data were
the test dataset. Random forest recursive feature elimination (RF-RFE) was used to remove
variables that did not contribute significantly to model accuracy. This experiment was
conducted in the sklearn.assembly module of Python 3.7, used the RandomizedSearchCV
and GridSearchCV functions to optimize the model parameters and variables screening.

2.5. Modeling Methods
2.5.1. Random Forests Modeling (RF)

Random forests (RF) are an accurate methodology for classification and a validation
way to predict the AGB [65]. The two parameters that must be set are the number of
trees for growing (ntree) and the split variables for selecting randomly. Balancing the
two parameters is the most critical work for avoiding the lowest generalization error [36].
Different numbers for the ntree and minimum sample split (mtry) and the other factors,
such as the max-depth (the sample depth that contains the minimum sample) and min-
sample-leaf (the minimum number of samples at the leaf node), were chosen to compare
the R2 in Python. The highest R2 was finally obtained. The parameters were set as follows:
the maximum number of iterations was 200, the max-depth was 10, the min-samples-leaf
was 1, and the min-samples-split was 2. In this study, 80% of the original data was used
as the training dataset, and the other 20% was the test dataset. Ten-fold cross-validation
was applied to prevent over-fitting and to prevent it affecting the accuracy and stability of
the model.

2.5.2. Artificial Neural Networks Model (ANN)

The artificial neural network (ANN) is a mathematical model for information process-
ing using similar structures to the synaptic connections in the brain [66]. It consists of a
large number of nodes (or neurons) that are connected. Each node represents a specific
output function called the activation function. Each connection between two nodes repre-
sents the weighted value of the signal passing through the link. The training of the neural
network model is the process of modifying the connection weight between the neuron
and the neuron deviation according to the training data. ANN comprises three essential
elements: the processing unit, network topology, and training rules. The processing unit is
the basic unit of artificial neural network operation. A processing unit has multiple input
and output paths. The network topology determines the information transmission between
each processing unit and each layer, generally composed of an input layer, a hidden layer,
and an output layer [44]. The number of hidden layer nodes has been paid a lot attention to
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because the network cannot have the necessary learning ability and information prediction
ability if the number of hidden layer nodes is too small. On the contrary, it will increase
the complexity of the network structure and make the network fall into a partial minimum
or lead to overfitting [67]. Training rules are trained and adjusted repeatedly to achieve
the required accuracy. It mainly uses the transformation function to weigh and sum the
processed data and trains the network system to carry on the pattern recognition.

The back propagation neural network (BPNN), one of the most widely used neural
network algorithms, was applied in this study. The BP neural network model was con-
structed by using the R language package. Firstly, the initially hidden node was set to 4. It
was found that the average error decreased at the beginning and then increased with the
number of hidden nodes increasing. When the number of hidden nodes was 7, the average
error was minimum. Ten-fold cross-validation was used to test the accuracy; 80% of the
modeling samples was used as a training set, and 20% was used as a test set. Each test data
will yield a corresponding rate of accuracy (or error rate). The average of the accuracy (or
the error rate) of the ten modeling results was used as an estimate of the accuracy of the
algorithm [68,69].

2.5.3. Quantile Regression Neural Network (QRNN)

The nonlinear relationship between a dependent and independent variable is very
complex and challenging to describe. Taylor used neural network structure to establish
neural network quantile regression (QRNN) [51]. The model combines the nonparametric,
nonlinear quantile regression method and achieves a nonlinear mapping of conditional
quantiles from dependent variables to independent variables. As the artificial neural
networks, the number of hidden layer nodes has an essential effect on the complexity of
the model. The number of hidden layer nodes should be manageable because it would
cause the fitting time to be too long, which may add non-regular content and this leads to
over-fitting [55].

QRNN was constructed with the QRNN function package in R software. Three hidden
layers and seven hidden nodes were used that were the same as the ANN. At the same
time, 10-fold cross-validation was also carried out to prevent over-fitting or reduce errors
from affecting the accuracy and stability of the model. The scale of the training and test
dataset was the same as in the ANN.

Moreover, the corresponding optical quartile models with the lowest mean error at
each AGB segment were combined as the best QRNN (QRNNb). In addition, the AGB
segments were 0–40 Mg/ha, 40–80 Mg/ha, 80–120 Mg/ha, 120–160 Mg/ha, and greater
than 160 Mg/ha. Therefore, the QRNNb represents a complete biomass estimation model
formed by selecting the highest precision of the five quantitative models corresponding to
the QRNN on each of the five biomass segments.

2.6. Assessment and Validation of the Models

It is critical to obtain the AGB model and the assessment values during the process of
AGB model building. Coefficient determination (R2) and mean square root error (RMSE)
were used to estimate the AGB prediction model and assessment value. R2 and RMSE were
applied to compare the accuracy of prediction values from different estimate models based
on fitting plots data in Table 1.

Linear regression between AGB predicted values of different biomass segments and
the observed data was used to assess models’ performance using 73 test plots. In ad-
dition, except for R2 and RMSE, the mean absolute error (MAE) and mean error (ME)
were added to test the validation of each model by using the test dataset. The AGB seg-
ments were 0–40 Mg/ha, 40–80 Mg/ha, 80–120 Mg/ha, 120–160 Mg/ha, and greater than
160 Mg/ha [41].

R2 = 1−
∑n

i=1

(∧
yi − yi

)2

∑n
i=1(yi − y)2 (3)
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RMSE =

√√√√∑n
i=1

(
yi −

∧
yi

)2

n
(4)

MAE =
∑n

i=1|yi − ŷi|
n

(5)

ME =
∑n

i=1(yi − ŷi)

n
(6)

where ŷi and yi are the predicted AGB and the corresponding AGB in the sample plot, y is
the mean AGB of the sample plots, and n is the number of sample plots.

3. Results
3.1. Results of Spectral Variables Screening

The prediction accuracy would decrease if all of the biomass prediction variables
extracted from the images were applied to build the AGB estimation model, and informa-
tion redundancy would also occur. The function of AGB assessment would be reduced as
some variables may have a weak association with biomass. Thus, screening suitable and
strong correlation variables was the critical step. In this study, RFs was used to screen the
characteristic variables according to the sort of variable importance. In addition, the first ten
important variables were VA3_2, VA5_12, CO7_8, DI5_8, VA5_2, HO5_3, VA3_12, VA7_12,
ME5_12, and SE5_3. To prevent the selected variables from displaying multi-collinearity
and thus reducing the accuracy of biomass estimation, we performed collinearity tests
on selected variables using the Kappa functions in R software. The results indicated less
collinearity between the variables as the Kappa coefficient value was 11.72709, which
was less than 100. The correlation between forest AGB and the characteristic variables of
Pinus densata forests is shown in Figure 3.
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Figure 3. The correlation between AGB and the characteristic variables of Pinus densata forests. Corr
is the correlation coefficient between the characteristic variables and AGB. VA3_2 is the variance on
band 2 with the window size 3 × 3, VA5_12 is the variance on band 12 with the window size 5 × 5,
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CO7_8 is the correlation on band 8 with the window size 7 × 7, DI5_8 is the dissimilarity on band 8
with the window size 5 × 5, VA5_2 is the variance on band 2 with the window size 5 × 5, HO5_3
is the third homogeneity on band 3 with the window size 5 × 5, VA3_12 is the variance on band 12
with the window size 3 × 3, VA7_12 is the variance on band 12 with the window size 7 × 7, ME5_12
is the mean on band 12 with the window size 5 × 5, and SE5_3 is the second moment on band 5 with
the window size 3 × 3.

3.2. Model Comparison of the Model
3.2.1. Model Fitting

Scatter plots of AGB and predicted biomass based on the ANN and QRNN models
based on ten variables are shown in Figure 4. It was shown that the ANN’s fitting perfor-
mance was not significantly different from that of QRNN at 0.1, 0.25, and 0.5 percentiles.
However, when the optimal quantile model for each biomass segment was integrated
into a complete QRNNb (Figure 4c), the fitting accuracy of the QRNNb was significantly
improved. The R2 and RMSE of the ANN were 0.722 and 31.0689, respectively. In addition,
the R2 and RMSE of the QRNNb were 0.962 and 13.9326, respectively. The results also
demonstrated that the fitting performance of RFs (R2 = 0.934, RMSE = 11.3305) was quite
similar to that of the QRNNb. RFs and the QRNNb had a better fitting performance than
the ANN and the QRNN, which means both RFs and the QRNNb had a higher accuracy
than the ANN and the QRNN.
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Figure 4. Scatter plots of the ground-observed and estimated biomass values for the (a) artificial
neural network model (ANN); (b) the random forests model (RF); (c) the quantile regression neural
network model (QRNN), and the quartiles groups are 0.1, 0.25, 0.5, 0.75, and 0.9; and (d) the quantile
regression neural network with the best fitting performance in each biomass segment (QRNNb).

Compared to the scatter plots of the ANN, RFs, and the QRNN at each quantile, the
scatter plot of the QRNNb was narrower and looked more similar to the line of y = x. The
ranked absolute intercept value of each model was: RFs (41.7317) > QRNN0.9 (36.2482)
> ANN (29.4950) > QRNN0.75 (27.5457) > QRNN0.5 (10.5952) > QRNN0.1 (8.6326) >
QRNN0.25 (4.2639) > QRNNb (1.0624). The larger the intercept, the greater the angle with
y = x, indicating the greater the degree of deviation. Figure 4a shows that the ANN had an



Remote Sens. 2023, 15, 559 12 of 20

excellent fitting performance at the middle biomass level. Still, it would overestimate the
lower biomass value and underestimate the higher one as it had a greater intercept value.
Similarly, RFs (Figure 4b) and the QRNN (Figure 4d) at each quantile showed the same
phenomenon. Figure 4c indicates that the QRNNb had an excellent accuracy because it had
a smaller intercept.

3.2.2. Method Validation

The biomass prediction accuracy of each model for each biomass segment was further
validated by comparing the R2 and RMSE (Table 4). These results indicated that QRNNb
has a higher R2 (0.943) and a higher RMSE (18.203) in the three models, especially as the
AGB segment was 0–40 Mg/ha and >160 Mg/ha.

Table 4. Summary of R2, RMSE, ME, and MAE at the different AGB segments based on the test
dataset. ANN is the artificial neural network, RFs is the random forests, and QRNNb is the best
quantile regression neural network in each biomass segment.

Indices
Models

ANN RFs QRNNb

R2

0–40 0.105 0.402 0.961
40–80 0.043 0.094 0.757
80–120 0.167 0.598 0.430

120–160 0.277 0.385 0.671
>160 0.480 0.857 0.867
Total 0.602 0.936 0.943

RMSE (Mg/ha)

0–40 8.341 6.818 1.733
40–80 11.948 11.624 6.019
80–120 10.421 7.242 9.851

120–160 11.915 10.987 8.034
>160 43.555 23.215 22.052
Total 48.180 19.396 18.203

ME (Mg/ha)

0–40 −44.364 −30.845 1.035
40–80 −33.623 −19.38 7.029
80–120 −0.338 2.093 2.683

120–160 13.741 8.230 −6.861
>160 44.386 34.321 −11.617
Total −1.507 1.927 −1.419

MAE (Mg/ha)

0–40 48.400 30.846 1.035
40–80 36.041 19.438 7.090
80–120 11.213 5.720 5.926

120–160 18.874 18.482 9.202
>160 47.465 34.321 11.618
Total 32.066 21.271 8.357

For the ME values, there were significant differences among the three models in
different biomass segments, and QRNNb had no significant difference from zero at each
biomass segment. The ANN and RFs showed negative mean errors in the 0–40 Mg/ha
biomass segment. They were significantly different from zero at the significance level of
0.01, which means significant overestimation in the AGB segment. The ANN and RFs had a
positive mean error as the segment was at 80–120 Mg/ha and >160 Mg/ha, demonstrating
a significantly different value from zero, which would give a lower estimate at a higher
biomass value, especially as the AGB was greater than 160 Mg/ha.

The MAE values showed that QRNNb was not significantly different from zero, and
the MAE value was 8.359. QRNNb had a small MAE at the lower and higher biomass
segments, which means the prediction values at these two segments were close to the
observed value. The MAE showed that the prediction value from RFs and the ANN models
at 80–120 Mg/ha had a minor error compared with the other biomass segments, while
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the MAE for the RFs and ANN models at 0–40 Mg/ha and >160 Mg/ha showed that the
prediction value had a substantial deviation from zero. The bias of the ANN and RFs models
for all of the biomass segments except for the 80–120 Mg/ha segment was relatively high.
The highest MAE of ANN and RFs was 48.400 Mg/ha and 30.846 Mg/ha at the biomass
segment of 0–40 Mg/ha, and 47.465 Mg/ha and 34.321 Mg/ha at the AGB >160 Mg/ha,
respectively. In addition, RFs and the ANN showed significant deviations from zero.

In sum, QRNNb was more accurate than the ANN and RFs in biomass estimation,
especially in the low-biomass segment and the high-biomass segments. QRNNb can
improve the problem of low-value overestimation and high-value underestimation and it
has a very stable prediction effect.

The AGB maps of the Pinus densata forests are shown in Figure 5, which was inverted
by using three models. The high heterogeneity of the AGB distribution can be seen using
the model of QRNNb, which means the model of QRNNb has an excellent prediction
of AGB biomass value at each of the AGB segments. On the contrary, the ANN had a
higher count at the segment with 120–160 Mg/ha and 40–80 Mg/ha, which means that the
ANN cannot capture the AGB at the lower biomass segment, which would lead to an over-
estimation of the low AGB biomass. Meanwhile, some of the higher AGB biomass values
(>160 Mg/ha) may be counted into 120–160 Mg/ha, leading to an under-estimation of the
high AGB biomass. The prediction AGB biomass values of RFs were more concentrated at
40–80 Mg/ha and 80–120 Mg/ha than the ANN. This proved that the high precision of RFs
was at the cost of discarding high accuracy.
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Figure 5. The spatial distributions of the predicted aboveground biomass (AGB) values of the
Pinus densata forests using four models. ANN is the artificial neural network, RF is the random forests,
and QRNNb is the best quantile regression neural network in each biomass segment.
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4. Discussion
4.1. Accuracy Comparison

Shettles et al. [69] found that model uncertainty is the main element affecting the
accuracy of AGB estimation, and model uncertainty accounts for 55% of total uncertainty.
Thus, improving model accuracy is still the main challenge for AGB estimation using
optical remote sensing data. This research attempted to promote the accuracy of biomass
assessment by comparing three non-parametric model regression models. The results have
shown that the ranked fitting performance for the three models was the QRNNb > RFs >
the ANN. From the values of R2 and RMSE in the fitting model using the observed and
predicted values, the accuracy for the RFs was slightly better than the QRNNb. Still, the
intercept for the QRNNb was 1.0624 Mg/ha, which means the prediction value was much
closer to the observed value. In contrast, RFs had apparent phenomena of under-estimation
at higher biomass segments and over-estimation at lower biomass segments with a high
intercept. The value reached 41.7317 Mg/ha, affecting the entire forest AGB assessment
value. Thus, the QRNNb has the best performance among the three models. Moreover, RFs
has a higher R2 value and a lower RMSE in this study. Many studies have shown that RFs
exhibited excellent performance [70,71]. Then, RFs was the most optimal model with the
highest accuracy under the premise of considering only the overall situation.

Furthermore, for the different biomass segments, the results showed RFs at the lower
and higher biomass segment was significantly worse than the QRNNb, the R2 values for
RFs at AGB < 40 Mg/ha and >160 Mg/ha were lower than for the QRNNb, and the RMSE
values at both biomass segments for RFs were extremely larger than the QRNNb. This
reveals that the QRNNb could promote biomass estimation accuracy, especially at the
lower and higher biomass segments. The QRNNb could describe the complete conditional
distribution of biomass with more stability and it is not easily affected by the extreme value.
Then, the QRNNb would be an excellent method to reduce the uncertainties from over-
estimation and under-estimation in the AGB estimation using optical remote sensing data.

In addition, the Sentinel-2 images were resampled with 30 m × 30 m corresponding
with the plot size of the field survey in this study. The mismatch between the former image
spatial resolution and field size would affect the AGB estimation accuracy. We performed
AGB estimation using the resampled Sentinel-2 image product with a spatial resolution
of 10 m. Similar fitting and validation results for the three models were obtained, and the
QRNNb was more accurate than the ANN and RFs in biomass estimation, especially in
the low-biomass segments and the high-biomass segments (see Appendices A and B). This
further illustrates the availability of the proposed method for reducing the uncertainties of
AGB estimation using optical remote sensing.

4.2. Data Resource and Variables

The information extracted from optical remote sensing is the radiation information
of the canopy surface, which is easily affected by the complexity of forest crown layers.
Therefore, the precision problem is the biggest challenge of optical remote sensing in current
remote sensing biomass estimation [19,20]. Using high-resolution and hyperspectral remote
sensing images will enhance biomass estimation accuracy, but the high price limits such
data being widely utilized [17,72]. Researchers prefer to choose free, open-source data, such
as Landsat or Sentinel-2. Even though those two are both optical remote sensing, Sentinel-2
has a double-satellite orbit and has four more bands than Landsat. It is the unique one
with three bands of data in the red edge range, which can efficiently obtain more rich
geographical information [21]. Studies have shown that Sentinel-2 is more suitable than
Landsat for improving estimation accuracy [73]. Although the vegetation index will bring
a saturation problem, the vegetation index extracted from near-infrared and red edge can
strengthen the estimation accuracy [74]. This study found that band 2 (blue), band 3 (green),
band 5 (vegetation red edge), band 8 (NIR), and band 12 (SWIR) of Sentinel-2 had a strong
correlation with biomass. Because the vegetation index is affected by the saturation value in
biomass estimation, the texture feature has been introduced as a variable. Then, the biomass



Remote Sens. 2023, 15, 559 15 of 20

value is more sensitive to the texture feature [75,76]. This study also extracted the textural
features of different window sizes (3 × 3, 5 × 5, and 7 × 7) to model. After screening and
analysis, it was found that the texture information of entropy and the correlation with
various window sizes and bands (VA5_2 and VA7_12) strongly correlated with biomass.

Moreover, Shangri-La City has a cold-temperate monsoon climate with altitudes
ranging from 3350 to 3696 m above sea level. The cloud and snow significantly affect the
spectral bands of optical remote sensing [77]. Lacking high-quality images with a lower
cover of cloud and snow corresponding to the field investigation date, we only obtained
five Sentinel-2 images from the ESA. The image acquisition date is 24 November 2016. The
time difference between the survey data (August) and the remote sensing data (November)
is about three months. To avoid or reduce the impact of the time mismatch between image
acquisition and the field survey, we obtained the bottom-of-atmosphere reflectance product
by atmospheric correction to normalize as a common reference [78]. Furthermore, Pinus
densata is an evergreen coniferous tree distributed in the alpine and sub-alpine areas in
China, and it grows slowly within one to two years [79]. Therefore, the tree growth and
forest structure are almost unchanged; then, the change of image reflectance caused by
forest growth in the three months will have a negligible impact on the AGB estimation in
this study.

4.3. Limitation and Future Research

Although QRNNb obtained a high-accuracy estimation in the different biomass seg-
ments, this study still has some limitations. Firstly, Sentinel-2 can yield an accurate biomass
estimation [23]. Still, some studies have shown that mixed remote sensing data are more
precise than single-source data, especially in tropical and subtropical regions where the
stand structures and tree species are complex [80–82]. Secondly, the accuracy of AGB
estimation is highly dependent on prediction methods [83]. Therefore, other models for
biomass estimation in subsequent studies should be considered to improve the precision
of biomass estimation, for instance, combining quantile regression and random forests
to form quantile random forests (QRF), the convolutional neural networks (CNN), the
gradient boost regression tree (GBRT) [84–86], etc. Thirdly, the best combination of different
vegetation indices is expected to predict the AGB of vegetation at different stages [87].

Moreover, we only selected Pinus densata forests as the research area. They are mainly
distributed over the subalpine and alpine areas in southern Qinghai, western Sichuan,
northwestern Yunnan, and southeastern Tibet in China. In addition, Pinus densata forests
are single-storied stands with even age in common [60,61]. Therefore, the proposed method
can be applied to improve the forest AGB estimation for even-aged or single-storied forests.
The applicability in the multi-storied stands or the uneven-aged forests with complex stand
structures would be further explored.

5. Conclusions

To reduce uncertainties from under-estimation and over-estimation, optical remote
sensing was applied to assess forest AGB. In this study, Sentinel-2 was used to explore the
potential and capability of three non-parametric models of the ANN, RF, and the QRNN for
Pinus densata in Shangri-La City. In addition, the biomass was segmented, and the quantile
regression neural network with the best fitting performance in each biomass segment was
selected to combine an integrity model named QRNNb. The results showed: (1) from
the whole biomass data, the performance of QRNNb and RFs was a priority over the
ANN. The corresponding R2 and RMSE were QRNNb: 0.943, 18.203 Mg/ha; RF: 0.936,
19.396 Mg/ha; ANN: 0.602, 48.180 Mg/ha. (2) The prediction accuracy of QRNNb at
different biomass segments was higher than the ANN and RF. It had the highest R2 and
the smallest RMSE when AGB < 40 Mg/ha and AGB > 160 Mg/ha. The R2 at values those
two biomass segments were 0.961 and 0.867, and the RMSE values for those two were
1.733 Mg/ha and 22.052 Mg/ha. This demonstrated that QRNNb could efficiently improve
the under-estimation at higher biomass values and the over-estimation at lower biomass
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values compared with the ANN and RF. QRNNb was sensitive to extreme values and could
express low biomass values and high biomass values wholly and effectively. This means
that QRNNb combined with the optimal quantile model of each biomass segment provides
a more suitable method for estimating AGB for even-aged or single-storied forests.
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Figure A1. Scatter plots of the ground-observed and estimated biomass values using the resampled
Sentinel-2 image product with a spatial resolution of 10 m. (a) The artificial neural network model
(ANN); (b) the random forests model (RF); (c) the quantile regression neural network model (QRNN),
and the quartiles groups are 0.1, 0.25, 0.5, 0.75, and 0.9, respectively; (d) and the quantile regression
neural network with the best fitting performance in each biomass segment (QRNNb).
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Appendix B

Table A1. Summary of R2, RMSE, ME, and MAE at the different AGB segments based on the test
dataset using the resampled Sentinel-2 image product with a spatial resolution of 10 m. ANN is the
artificial neural network, RFs is the random forests, and QRNNb is the best quantile regression neural
network in each biomass segment.

Indices
Models

ANN RFs QRNNb

R2

0–40 0.384 0.076 0.958
40–80 0.022 0.200 0.889
80–120 0.050 0.241 0.430

120–160 0.031 0.302 0.234
>160 0.257 0.861 0.968
Total 0.549 0.932 0.956

RMSE (Mg/ha)

0–40 6.919 8.474 1.799
40–80 12.075 10.926 4.068
80–120 11.050 9.952 8.621

120–160 13.586 11,708 12.258
>160 52.062 22.510 2.774
Total 51.310 19.960 16.063

ME (Mg/ha)

0–40 −58.615 −31.676 −0.597
40–80 −37.525 −18.002 1.489
80–120 −7.131 −1.365 −7.131

120–160 10.183 7.239 −4.231
>160 60.937 42.327 0.200
Total −0.454 2.275 −1.211

MAE (Mg/ha)

0–40 61.077 31.676 0.601
40–80 39.856 18.243 0.941
80–120 20.327 6.905 1.455

120–160 25.946 10.825 5.084
>160 65.955 42.327 0.308
Total 42.060 22.555 2.396
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