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Abstract: Ship detection from synthetic aperture radar (SAR) images has become a major research
field in recent years. It plays a major role in monitoring the ocean, marine rescue activities, and
marine safety warnings. However, there are still some factors that restrict further improvements in
detecting performance, e.g., multi-scale ship transformation and unfocused images caused by motion.
In order to resolve these issues, in this paper, a doppler feature matrix fused with a multi-layer feature
pyramid network (D-MFPN) is proposed for SAR ship detection. The D-MFPN takes single-look
complex image data as input and consists of two branches: the image branch designs a multi-layer
feature pyramid network to enhance the positioning capacity for large ships combined with an
attention module to refine the feature map’s expressiveness, and the doppler branch aims to build a
feature matrix that characterizes the ship’s motion state by estimating the doppler center frequency
and frequency modulation rate offset. To confirm the validity of each branch, individual ablation
experiments are conducted. The experimental results on the Gaofen-3 satellite ship dataset illustrate
the D-MFPN’s optimal performance in defocused ship detection tasks compared with six other
competitive convolutional neural network (CNN)-based SAR ship detectors. Its satisfactory results
demonstrate the application value of the deep-learning model fused with doppler features in the
field of SAR ship detection.

Keywords: ship detection; synthetic aperture radar (SAR)

1. Introduction

As a high-resolution microwave imaging radar, synthetic aperture radar (SAR) has
unique strengths in various planetary observation tasks, such as its excellent all-day and
all-weather working capacity, especially in marine observation [1]. As a part of marine
missions, SAR ship detection is of great value in marine monitoring [2–6]. Thus, the
detection basis of ships using SAR has become a focus of marine research.

The pixel intensity information of an SAR image is related to the target’s scattering
cross-section. Oceans often appear dark black in images, while ships are bright white.
However, offshore islands and background noise will also appear in a similar bright white,
and the defocusing produced by a ship moving at speed when an SAR image is taken
will also cause serious geometric distortion, showing an irregular shape. Therefore, it is a
challenging task to accurately distinguish and precisely locate ships from other targets in
SAR images under real conditions. Traditional SAR ship target detection methods such as
CFAR [7,8], and template matching-based methods [9,10] are generally divided into three
steps: preprocessing, manual feature extraction, and setting thresholds or classifiers for
detection to obtain the final result [11–13]. CFAR establishes the best decision by estimating
the noise threshold and information, such as the statistical characteristics of signal and
noise. However, the probability of a false alarm in the clutter edge area is higher than the
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center area. The algorithm based on template matching distinguishes ships according to
the size, area, and texture features, which need to be matched according to the template
library established by experts. Template matching algorithms will always be affected by
the background statistical area. In general, traditional SAR ship detectors generally use
complex algorithms, have weak transfer ability, and have cumbersome manual features. In
addition, due to the backscatter imaging mechanism, the traditional algorithm is highly
sensitive to the geometric features of the target extracted from the SAR image, and the
defocusing caused by the motion of the ship relative to the radar platform will dramatically
reduce the performance of the algorithm.

At present, with the continuous development of neural network theory [14], SAR ship
detection based on deep-learning models has become a current mainstream method [15–18].
For instance, Li et al. [19] proposed a new dataset and four strategies to improve detection
performance based on the Faster RCNN [20] algorithm. Lin et al. [21] designed a squeeze
and excitation rank mechanism to improve detection performance. Based on You Only
Look Once v4 (YOLOv4) [22], Jiang et al. [23] integrated a multi-channel-fusion SAR
image processing method that makes full use of image information and the network’s
ability to extract features and refined the network for three-channel images to compensate
for the loss of accuracy. Based on the Swin Transformer [24], Li et al. [25] adopted a
feature enhancement Swin transformer (FESwin) and an adjacent feature fusion (AFF)
module to boost performance. Based on RetinaNet [26], Gao et al. [27] proposed a
polarization-feature-driven neural network for compact polarimetric (CP) SAR data. Based
on FCOS [28], Zhu et al. [29] redesigned the feature extraction module.

CNN-based algorithms have better feature extraction and generalization capabilities
than traditional detectors. However, due to the differences in scale between ships, small
targets lack detailed information on a scaled feature map and cause false alarms. Therefore,
designing a detection model for small targets that adapt to multi-scale and complex
backgrounds has become the main research direction in the field of SAR ship detection
in recent years. The feature pyramid network (FPN) [30] has been the best method to
solve multi-objective problems since it was proposed by Lin et al. For different incident
angles, resolutions, satellites, etc., SAR ships possess various sizes. FPN uses feature
maps of different scales to extract information at different levels of the picture and uses
multi-scale feature information fusion to enhance the expression ability of ship targets,
which enables better performance. For the ship detection problem, many scholars have
made improvements on the basis of FPN. Zhu et al. [31] combined DB-FPN with YOLO
to improve overall detection capability. Cui et al. [15] adopted an attention-guided
balanced feature pyramid network (A-BFPN) to better exploit semantic and multi-level
complementary features.

Compared to ordinary optical images, SAR echo signals contain complex features.
Deep-learning SAR ship inspection models mostly use the amplitude information of SAR
image as input, and the underutilization of complex information restricts the upper limits
of these models. In order to further improve the utilization of the characteristics of SAR
data, Xiang et al. [32] proposed a ship detection method in range-compressed SAR data that
employs complex signal kurtosis (CSK) to prescreen potential ship areas and then apply a
convolutional neural network (CNN) based discrimination to obtain potential ship areas.
The results show that the algorithm works well on range-compressed SAR data. Zhang
et al. [33] proposed a Polarization Fusion Network with Geometric Feature Embedding
(PFGFE-NET) to comprehensively scan SAR ships using VV and VH polarized pictures and
proposed a method to describe SAR ships between different polarization modes. Zhang et
al. [34] designed a complex-valued CNN network (CV-CNN) specially used for SAR image
interpretation using the amplitude and phase information of SLC data. All elements in the
CNN, including input and output layers, volume convolution layers, activation functions,
and pooling layers, are all extended to the complex domain, but these methods are only
applicable to PolSAR images. In order to utilize the target feature information contained
in the monopolar SAR phase, Huang et al. [35] introduced a deep-learning framework
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dedicated to complex-valued radar images. Using CNN to extract spatial features from
intensity images and ResNet-18 as the pre-training model, they generated feature maps
with scales of 64, 128, 256, and 512 to learn hierarchical features at different scales. The
joint time-frequency analysis method was used to learn the physical characteristics of the
target in the frequency domain, reveal the relationship between the backscatter diversity
of the ground target and the range and azimuth frequency, and align the target for a final
prediction along with spatial texture features.

At present, complex value-based networks are mostly used in the classification task
of open-source ship datasets, such as Opensarship. The selected ship slices often have
obvious geometric characteristics, and the position of the ship slices can be distinguished
easily. However, for the ship detection task, ships moving at high speeds are more likely to
lose geometric features in the SAR imaging process, so it is therefore necessary to employ
more abundant auxiliary features to help with target recognition. So far, few works have
attempted to solve the moving ship detection task using doppler features. Therefore, a
novel doppler feature matrix fused with a multi-layer feature pyramid network is proposed
in this paper. Our work focuses on three areas. The first is the establishment of the dataset.
To extract doppler features, we detail a single-look complex image ship dataset composed
of Gaofen-3 satellite image ship slices. Secondly, we propose a detection framework that
fuses doppler features. We extract the doppler center frequency and frequency modulation
rate offset to characterize the ship’s motion state from the doppler domain, and construct
the doppler characteristic matrix. We then fuse it with spatial features to carry out a ship
inspection. Finally, there is an improvement in the network structure for the image branch,
and a bottom-up pyramid structure is designed to transmit the position information for
large ships. This combines external attention (EA) and coordinate attention (CA) modules
to solve the multi-scale moving ship detection problem.

Based on the above three points, we propose an SAR ship detection pipeline and
conduct an experiment on the complex SAR ship dataset. The experimental results show
that, compared with other deep-learning target detection algorithms, the D-MFPN can
obtain the best performance in both inshore and offshore scenarios.

The main contributions of this paper are as follows:

• An SAR single-look complex ship dataset is constructed.
• We design a network structure based on FPN, using a bottom-up pyramid to transfer

position information and refining features by combining CA and EA modules.
• An SAR ship detection framework that integrates doppler features and spatial features

is proposed, combining them to improve the performance of the model.

The rest of the paper is organized as follows: Section 2 presents the entire detection
model. Section 3 presents the the dataset used, experiments, and results.

2. D-MFPN

The D-MFPN consists of two branches. The image branch designs a multi-layer feature
pyramid network to enhance the positioning capacity for large ships. The doppler branch
aims to build a feature matrix that characterizes a ship’s motion state by estimating the
doppler center frequency and the frequency modulation rate offset. The overall structure
of the D-MFPN is shown in Figure 1.

In this section, the implementation steps of the D-MFPN for SAR ship detection are
described. Firstly, the motivation and overall structure of the multi-layer feature pyramid,
which is designed for magnitude images is described. The method of using the complex
matrix to obtain the doppler feature matrix is also given. At the end of this section, the
method of combining the two is introduced in detail.
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Figure 1. The architecture of the D-MFPN.

2.1. Multi-Layer Feature Pyramid Network

For the SAR ship detection task, small-scale targets, multi-scale feature imbalance, and
complex background interference are all important factors that hinder the accuracy of the
model. The CNN-based convolutional neural network is a composite structure composed
of multiple convolutional layers. With the continuous increase in the network depth,
high-level feature representations can be learned, but the small ship characteristics will be
weakened with the increasing receptive field, leading to missed detections. In addition,
the deep network structure will generate multiple nonlinear activation function partial
derivatives or continuous multiplication of weight parameters during back propagation,
which can easily cause gradient disappearance or gradient explosion. For small objects,
the pyramid structure adopted by the FPN uses feature maps of different scales to be
sent to the detection head, which alleviates the multi-scale problem to a certain extent,
although its feature weakening remains unresolved. The top-down structure causes the
direction of semantic information of the top layer to flow downward.However, the position
information of the bottom layer is not propagated to the top layer, which also leads to
inaccurate positioning of large ships.

To solve the above problems, the D-MFPN uses resnet-50 as a backbone. The CNN
structure independently extracts the features of the labeled data, effectively avoiding the
traditional complex feature design. The residual block module also prevents overfitting
and vanishing gradient problems, greatly increasing the network depth. The residual
structure of resnet50 consists of multiple structures called a “bottlenet” (as shown in
Figure 2), and finally, five feature maps of different scales (conv1, conv2, conv3, conv4,
conv5) are obtained.

Figure 2. The architecture of a residual bottlenet.
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With the continuous increase in the convolution stride and the number of residual
network layers, the spatial resolution of the feature map gradually decreases, and the
number of channels increases accordingly. The underlying feature maps contain accurate
strong location information but lack semantic information. Therefore, the FPN uses the
information to obtain the final combined features from different layers in the CNN network.
As shown in Figure 3, the FPN adopts horizontal connections and adds top-down paths to
improve the expressiveness of the entire pyramid. However, low-level location information
from the bottom of the pyramid is not transferred to the top. This directly leads to the
wrong localization of the bounding boxes of large ships, thus degrading the performance.
To solve this problem, the D-MFPN designs a bottom-up pyramid structure to enhance
information flow. The location information of the bottom layer is passed upwards using a
bottom-up pyramid structure. In addition to strengthening the positioning effect of large
ships, in order to further improve the expression ability of feature maps of each layer, we
also use two attention modules to enhance the association between each pixel and channel.

Figure 3. The structure of the feature pyramid network (FPN).

The attention methods are inspired by the human visual attention mechanism, the
essence of which is to let the model ignore irrelevant information through a series of related
calculations, pay more attention to the key information we want it to focus on, and obtain
long-distance correlations between pixels. Usually, the way to obtain the attention weight
is to imagine the constituent elements in the source as a series of key and value data pairs,
and for an element query in the target, calculate the similarity between the query and each
key or correlation, obtain the weight coefficient of the value corresponding to each key, and
then weight and sum the value to obtain the final attention value. In the ship detection task,
the background of the far sea is relatively monotonous. Different port backgrounds near
the coast can also have a certain degree of similarity. Therefore, if an attention mechanism
can be found to learn the implicit relationship between different samples, it will greatly
improve the detection performance. Considering the above perspectives, we use the EA
module, which uses two linear layers to replace the inputs that make the network learnable
from the obtained keys and values. A normalization layer is used to obtain the similarity
matrix between query and key. A learnable weight matrix is used to replace the key
and value obtained by linear transformation according to the input itself so that the EA
module can update the parameters according to the entire training set to better fit the data
characteristics. At the same time, EA has linear complexity, which implicitly considers the
relationship between different samples.

Figure 4 shows the implementation process of EA. In order to also make the attention
mechanism consider the influence from other samples, EA designs two feature layers
shared by all samples, Mk and Mv. First, in the same way as the self-attention mechanism,
the input feature map F is flattened as a query and then multiplied with the Wk matrix using
softmax normalization to obtain the correlation matrix between query and key. Finally, the
same operation is performed with Mv to obtain the output. The formula for this process is
as follows:

A = (α)i,j = Norm(FMT
k ) (1)
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Fout = AMv (2)

Figure 4. External attention. F represents the feature map flattened by the input, and A represents
the attention feature map obtained from prior knowledge.

As shown in Figure 5, the location information of the bottom of the pyramid is
transferred to the top (B5→B4→B3→B2→B1). In this way, the high-level feature map will
contain more location information, which will improve the feature expression ability of
large ships to a certain extent. In addition, before downsampling, the low-level feature
maps are refined by EA, which improves the effect of upsampling.

Figure 5. Structure of multi-layer feature pyramid.

After the feature map is obtained, it is fused with the underlying information. In
order to further refine the location features of each layer in the feature pyramid and
solve the problem of the low recognition rate of overlapping ships of different scales, the
D-MFPN adds the CA module at this step. Research on attention mechanisms shows that
inter-channel attention has a significant effect on improving model performance, but it
often ignores the location information between pixels. As shown in Figure 6. CA encodes
the relationship between channels and long-range location information, and the overall
structure is divided into two steps: coordinated information embedding and coordinated
attention generation.
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Figure 6. The structure of coordinate attention.

Channel attention often uses global pooling to encode spatial attention information,
but it is often difficult to preserve the position information between pixels. The location
information is crucial for the detection task to capture the local spatial structure. Therefore,
coordinate information embedding decomposes the global pooling into average pooling
along the direction of height H and width W of the input feature map. Encoded along the
horizontal and vertical coordinates, it can be expressed as:

zh
c (h) =

1
W ∑

0≤i<W
xc(h, i)

zw
c (w) =

1
H ∑

0≤j<H
xc(j, w)

(3)

The difference between aggregating features along the horizontal and vertical directions
separately and using global pooling directly is that these two transformations can help
to obtain distance dependencies along one direction at the same time. Along the other
direction, accurate location information can be preserved.

In order to make full use of the positional features obtained by coordinate information
embedding, the coordinated attention generation step concatenates the two and then passes
the 1 × 1 convolution function F

f = δ(F([zh, zw])) (4)

where [·, ·] represents the concatenation along spatial dimension; δ denotes the h_swish
activation function; the shape of output f is (C/r,(H + W)); and r is the reduction ratio for
controlling the block size as in the SE block. Then, we decompose f into components in the
h and w directions and go through another 1 × 1 convolutional layer to turn it into a tensor
with the same number of channels as the input X:

gh = σ(Fh( f h))

gw = σ(Fw( f w))
(5)
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where Fh and Fw are tensors with the same channels obtained with the decomposed vector
after 1 × 1 convolution, σ is the sigmoid function, and gw and gh are the final attention
weights. The output of the CA module can be expressed as:

yc(i, j) = xc(i, j)× gh
c (i, j)× gw

c (i, j) (6)

2.2. Doppler Domain Feature Estimation

In the process of processing SAR detection echo data, due to the movement of the
target, the doppler modulation frequency rate and center frequency of the signal will shift,
and the deviation of the modulation frequency will result in a defocused image. Conversely,
the feature matrix composed of offsets can be used to describe the motion characteristics
of the target. Therefore, by estimating the doppler feature offset of the echo signal, the
information that characterizes the motion state of the target can be obtained.

The geometric relationship between the satellite and target moving in the direction of
Vm is shown in Figure 7, where T represents the target point. According to the spaceborne
SAR echo theory, the distance history of the stationary target T can be obtained as:

R(t) = R +
Vst·R

R
t +

1
2

[
Vst·Vst

R
+

Ast·R
R
− (Vst·R)2

R3

]
t2 (7)

In which

R = Rs −Rt

Vst = Vs −Vt

Ast = As −At

(8)

where Rs, Vs, and As represent the satellite position, velocity, and acceleration vectors at
the beam center time, respectively; Rt, Vt, and At represent the beam center time target
position, velocity, and acceleration vectors, respectively; and R, Vst, and Ast represent the
relative satellite position, velocity, and acceleration vector, respectively. If target T moves in
a straight line at a uniform speed along the vector Vm, the distance between the moving
target and the radar is:

R′(η) = R +
(Vst + Vm)·R

R
η +

1
2

[
(Vst + Vm)·(Vst + Vm)

R
+

Ast·R
R
− ((Vst + Vm)·R)2

R

]
η2 (9)

The instantaneous slant range error caused by the moving target is:

4R(η) = R′(η)− R(η)≈|Vy|sinγ·η

+
1
2

[
2|Vst||Vx|+ |Vx|2 + |Vy|2cos2γ

R

]
·η2 (10)

where γ is the incident angle, and the phase error changes the doppler information of
the azimuth signal. According to the expression of the slant range error, the error of the
azimuth doppler frequency can be described as:

4 fd =
2
λ

d4R(η)
dη

=
2
λ

(
|Vy|sinγ +

[
2|Vst||Vx|+ |Vx|2 + |Vy|2cos2γ

R

]
·η
)

(11)
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From the above formula, the changes in the doppler center frequency and doppler modulation
frequency rate can be shown as:

4 fdc =
2sinγ

λ
|Vy|

4 fγ =
2

λR

(
2|Vst||Vx|+ |Vx|2 + |Vy|2cos2γ

) (12)

Figure 7. Schematic diagram of the geometric relationship between the satellite and the Earth.

From Equation (12), it can be seen that the doppler-center shift in the azimuth direction
is related to the radial velocity of the target. In the D-MFPN, the processing flow of doppler
migration for a complex image matrix is as follows. First, slice the data and perform the
azimuth Fourier transform. Then, obtain the azimuth spectrum through fftshift. Since
the characteristics represented by a single spectrum are not obvious, we adopt the range
block method to incoherently stack the azimuth spectrum. The fitted parameters are given
in Section 3. In order to eliminate the influence of outliers, a high-order fitting on the
spectral features is conducted to obtain the doppler center shift features and finally make
the doppler feature matrix the same size as the original image. In the D-MFPN, the input
doppler center frequency shift matrix will first undergo a normalization process to map the
eigenvalues between 0 and 1.

The shift in doppler center frequency can be used to describe the radial velocity of
the ship relative to the radar platform, while the frequency shift due to the lateral velocity
resulting in defocusing can be estimated using the mapdrift algorithm. Suppose the ideal
azimuth signal is:

sa(η) = exp(jπKaη2) + j2π fdcη),−Ts

2
≤ η ≤ Ts

2
(13)

where η denotes the azimuth time, Ka denotes the doppler modulation frequency, fdc
denotes the doppler center, and Ts denotes the synthetic aperture time. The azimuth signal
with quadratic phase error is:

ga(η) = sa(η)·exp(jKeη2) (14)
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The mapdrift algorithm divides the entire synthetic aperture time into two sub-apertures
that do not coincide with each other, as follows:

ga1(η) = ga(η −
Ts

4
) = sa(η −

Ts

4
)·exp(j(Keη2 − 1

2
KsTsη +

1
16

KeT2
s ))

ga2(η) = sa(η +
Ts

4
)·exp(j(Keη2 +

1
2

KsTsη +
1

16
KeT2

s ))

(15)

In the above formula, − Ts
4 ≤ η ≤ Ts

4 . Neglecting constant quantities that are
insignificant to focus quality, the second-order components of the quadratic phase error
within the two sub-apertures are exactly the same, and the first-order components are
the same in magnitude but opposite in sign. Among them, the effect of the second-order
component on the matched filter is defocusing, and the effect of the first-order component
on the matched filter is to change the peak position. When pulse-compressing both
sub-apertures with the same matched filter, the signals of both sub-apertures are defocused,
but the peaks are shifted at different positions. The deviation in the two peak positions
can be calculated by cross-correlating the amplitudes of the compressed signals of the two
sub-apertures.

The quadratic phase error of the chirp signal is the main cause of defocusing, which
is mapped to the motion relationship and corresponds to the lateral motion of the target
relative to the radar platform. However, the moving direction of the sea surface target is
not completely perpendicular to the radar platform, and there are often both radial and
lateral components. Therefore, the D-MFPN simultaneously estimates the offset of both as
a feature to characterize the motion state.

2.3. Feature Fusion

Feature maps will take on multi-scale shapes after feature extraction from the magnitude
image. Each point in the feature map maps the receptive field of different regions in the
original image. After obtaining the doppler domain feature, they need to be spatially
aligned with the points in the feature map. The magnitude image needs to transfer the
convolutional and pooled spatial transformation information to the doppler domain, and
average pooling can then be performed on the resulting doppler information matrix to
ensure it has the same receptive field as the feature map. In order to preserve the ship’s
motion state information contained in the doppler matrix, during the feature fusion process,
the D-MFPN does not perform additional convolution operations on the doppler branch
after spatial alignment but directly concatenates space and doppler features as the input
of the detection head. The entire feature fusion and spatial alignment module process is
shown in Figure 8:

Figure 8. Feature fuse.

The fusion module firstly aligns the doppler domain feature matrix and its channel
number with the last pyramid channel number using a 1 × 1 convolution. Then, for
different feature map sizes of each layer, average pooling is used to spatially align them.
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2.4. Loss Function

The D-MFPN is based on the Faster RCNN, so the loss function is similar to most
two-stage object detection models. It is divided into classification loss and regression loss
for optimization:

L(pi, ti) =
1

Ncls
∑

i
Lcls(pi, p∗i ) + λ

1
Nreg

∑
i

p∗i Lreg(ti, t∗i ) (16)

where pi indicates the probability that the i-th anchor is predicted to be the true label,
p∗i is 1 for positive samples and 0 for negative samples, ti represents the parameter of
the ith regression box, t∗i represents the GT box of ith anchor, Ncls denotes the number
of mini-batches, Nreg denotes the number of anchor positions, and Lcls represents the
cross-entropy (CE) loss

Lcls = −
1
N

N

∑
i=1

pilog(p∗i ) + (1− pi)log(1− p∗i ) (17)

using smooth L1 as regression loss Lreg. Compared with L1 loss, smooth L1 loss improves
the problem of zero-point unsmoothing. Compared with L2 loss, it is not as sensitive
to outliers when the value is large. The gradient changes are relatively smaller, and the
training process is more stable.

Lreg(ti, t∗i ) = smoothL1(ti − t∗i )

smoothL1(x) ={ 0.5x2 i f |x| < 1
|x| − 0.5 otherwise

(18)

3. Results
3.1. DATASET

Ship detection in synthetic aperture radar images has become a research hotspot
for scholars, and many SAR ship datasets have been published in recent years, such as
SSDD [19], LS-SSDD [36], AIR-SARShip1.0, HRSID, etc. However, the images of these
datasets are often processed into jpg or png formats when they are published, which makes
the model unable to fully utilize their doppler features. Therefore, in this paper, an SAR
single-look complex image moving ship dataset is proposed by using Gaofen-3 satellite
data to explore the problem of moving ship detection in the ocean (shown in Figure 9). The
dataset consists of 31 large-scale images of 150,000 × 30,000 pixels. We selected 943 ship
slices with a scale of 512 × 1024. The imaging modes consist of Strip-Map (UFS) and Fine
Strip-Map1 (FSI), and the corresponding resolutions are 3 m and 10 m. All slices in the
dataset are processed to mat format.

Defocusing in images of ships can severely distort the ship’s geometry, making it
easy to be mistaken for islands or background noise. In this case, it is difficult to make
correct annotations, and the essence of defocusing is that for the chirp signal emitted by the
SAR, a one-order shift is generated in the frequency domain, resulting in blurring during
imaging. Therefore, in order to obtain slices of moving ships while ensuring the accuracy
of annotation, the ship targets with obvious geometric features are first annotated. Due to
the radial movement of the target along the radar platform, the doppler center frequency
will be shifted, which will not cause defocusing. Lateral movement will cause deviations in
the frequency modulation rate, resulting in defocusing. Most targets have both radial and
lateral motion components. Therefore, as shown in Figure 10, we first perform a Fourier
transform along the azimuthal direction and then add random primary and secondary
phase offsets. Finally, we perform an inverse Fourier transform to obtain defocused image
samples, which ensures the accuracy of the labeling.
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(a) (b)

(c) (d)

Figure 9. Complex dataset ship slices: (a,c) inshore ship slices; (b,d) offshore ship slices.

(a) (b)

(c) (d)

Figure 10. Defocused ship slices: (a,c) normal ship slices; (b,d) defocused ship slices.

After obtaining the defocused ship slices, the doppler matrix describing the motion
state of the target can be calculated by estimating the offset of the doppler center frequency
and modulation frequency rate. It can be used as a feature, which helps improve the
model’s ability to identify defocused ships.

3.2. Dataset Description and Settings

The complex ship dataset contains 943 SAR images of 1724 ships with an average
image size of 512× 1024 from the Gaofen-3 satellite, and, on average, each image contained
1.83 ship targets. SAR ships in this dataset are provided with multiple resolutions from 3 m
to 10 m and multiple polarizations (VV, VH, HH, HV). We set the ratio of the training set to
the test set to 9:1.

Our experiments are carried out under the framework of PyTorch1.1.0, and network
training is carried out on computers using Ubuntu16.04 and Cuda10.2. Due to the limitation
of the GPU’s computing capacity, the maximum number of iterations (epoch) is 12 with
a batch size of 4. In addition, ResNet50 pre-trained on ImageNet is adopted as the
initialization model. The optimizer uses a stochastic gradient descent (SGD) with a learning
rate of 0.25, a momentum of 0.9, and a weight decay of 0.0001. The learning rate drops
10 times at the 8th and 10th epochs to make the model converge. The distribution of
Height-width ratios in the dataset is shown in Figure 11.
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Figure 11. Height–width distribution of the bounding box.

3.3. Evaluation Metrics

Several metrics are used to evaluate the performance of different ship detection models
on the dataset, including recall rate (R), precision rate (P), F1-score, and mean average
precision (mAP):

Recall =
TP

TP + FN
(19)

Precision =
TP

TP + FP
(20)

F1− score = 2× Precision·Recall
Precision + Recall

(21)

mAP =
∫ 1

0
P(R)dR (22)

where TP denotes the number of positive samples that are correctly identified, FP denotes
the number of false positive negative samples, and FN denotes the number of false positive
samples. In this paper, we use the mAP and F1-score as final measures because they take
into account both precision and recall.

3.4. Ablation Study

In this section, we verify the designed network model and the effect of fusing doppler
features on the results. We conduct ablation experiments on different modules, and the
results obtained are shown in Table 1. It can be seen that due to the influence of the complex
background near the coast and the ship image quality, the precision rate of FPN can only
reach 86.3%, which will cause a high false alarm rate and further increase the working
costs of the sea surface monitoring task. Strengthening the fusion of features and feature
map information through the attention mechanism can significantly improve detection
performance. As shown in Table 1, after adding the bottom-up feature pyramid, CA, and
EA modules, the precision and mAP are improved by 1.4% and 1.6%, respectively. After
adding the doppler feature, the mAP of the model is further improved, reaching 96.8%.

Due to the influence of image quality and the sea surface background, the effect of
FPN on complex datasets has a greater decline compared to other ship datasets. The
defocused ship slices degrade the ability of the network to distinguish targets during the
training process, resulting in false detections of defocused noise areas or islands. After
refining the features through the attention module and multi-layer pyramids, the model
can better distinguish the ship area. Finally, the addition of the doppler center frequency
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and modulated frequency rate shift features provide the model with defocusing reference
information so that it can distinguish the motion state of the ship. It further improves the
accuracy of and reduces the occurrence of false alarms.

Table 1. The results of ablation studies.

Method Doppler Attention mAP P R F1-Score

FPN × × 0.924 0.863 0.937 0.898
FPN with
Attention × X 0.940 0.877 0.942 0.908

FPN with
Doppler X × 0.943 0.892 0.931 0.911

D-MFPN X X 0.968 0.919 0.963 0.940

The inference speed for different models is shown in Table 2, and FPS represents the
number of frames of detected pictures per second. It can be seen that compared with the
FPN, the D-MFPN only brings a very small inference burden. This is because the CA and
EA modules do not use the global attention calculation, and the lightweight design will not
affect the overall speed.

Table 2. Detection speeds.

Method Times FPS

FPN 0.123 8.13
FPN with Attention 0.128 7.81
FPN with Doppler 0.131 7.63

D-MFPN 0.133 7.52

Different Range Block Method Factors

In the process of obtaining the doppler domain matrix, we use a block method to
slice the spectrum along the distance direction. The specific process can be described
as follows: according to the preset block length and the preset overlap ratio, a sliding
window is performed on the azimuth spectrum along the range direction, then the azimuth
spectrum is divided into different blocks, and the incoherent superposition of each block is
performed. It can be expressed as:

n =
d

r×(1− overlap)
− 1 (23)

In the formula, d represents the distance length, which is 512 in this dataset; overlap
refers to the preset overlap ratio, and the value range is (0,1), which is 0.5 in the experiment;
r is the preset slice length, and n denotes the number of slice images.

Table 3 shows the ablation study results for preset slice length factor n in the range
block module. It can be seen from Table 3 that slices of different lengths of the doppler
matrix have a significant impact on the detection accuracy. This is because if the slice length
is too short, it will not completely envelop the area where the ship is located, and it is easy
to generate continuous outliers. If the slice is too long, the target area will be weakened by
sea surface features, and no obvious center frequency shift feature will be obtained. Finally,
in the D-MFPN, in order to obtain the best detection accuracy, r is set to the best value of 64.
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Table 3. Different preset slice length factor.

n r Overlap P R mAP F1-Score

127 8 0.5 0.874 0.923 0.928 0.897
63 16 0.5 0.885 0.937 0.932 0.910
31 32 0.5 0.893 0.912 0.937 0.902
15 64 0.5 0.919 0.963 0.968 0.940
7 128 0.5 0.872 0.963 0.915 0.915

3.5. Results on the Dataset

As shown in Table 4, we provide statistical comparison effects of the D-MFPN with two
baseline models. It can be seen that in the moving ship dataset, the D-MFPN’s map, recall,
and precision significantly outperform the other two algorithms. It is thus proven that the
M-DFPN has a good effect on improving the detection performance of ship movement
scenarios.

Table 4. Comparison results of the D-MFPN and baseline models.

Method mAP P R F1-Score

Faster RCNN 0.873 0.834 0.928 0.878
FPN 0.924 0.863 0.937 0.898

Proposed method 0.968 0.919 0.963 0.940

4. Discussion

The detection performance of the D-MFPN is compared with five algorithms, such as
the FPN, Cascade RCNN, DCN, PAFPN, and Guide Anchoring. The visualization results of
various detection models in offshore and onshore scenarios are shown in Figures 12 and 13,
and the index results on the dataset are shown in Table 5.

As can be seen in Figure 12, after adding a large number of defocused ship slices with
insignificant geometric features, other detection models become unusually sensitive to
ship-like noise and island regions. In Figure 12b–e, the other four algorithms mistakenly
detect the noise and island parts in the background as targets, and the overall network has a
low degree of discrimination for the ship area. The loss of accuracy caused numerous false
alarms, while on the other hand, the D-MFPN successfully detected almost all pictures,
even in the case of strong noise interference or low signal-to-noise ratio, which shows
that the D-MFPN is very suitable for the ship area and has sharp judgment and robust
noise reduction performance. In Figure 12f, compared with other methods, the D-MFPN
strengthens the feature structure and can effectively distinguish dense ship features. After
adding the doppler domain features, an enhanced judgment ability of defocused pixel
blocks is obtained that is less sensitive to defocusing-like areas. Based on the above, the
D-MFPN achieves the best performance among all algorithms in the marine background.

The detection results of various methods in nearshore scenarios are shown in Figure 13.
Figure 13a shows the corresponding ground truth. As scenarios become more complex, the
number of false positives and false positives from other detection algorithms increases. Due
to the similarity between ports, land buildings, and ship targets, the redundant box problem
becomes more obvious, which further restricts the improvement of model precision. As an
important indicator to measure the SAR ship detection algorithm, the false alarm rate may
directly affect the actual effect of the detection algorithm. In this scenario, the D-MFPN can
still distinguish between complex backgrounds and objects with excellent performance.
As can be seen from Figure 13d, when the ship is in the nearshore scene, there are only a
few redundant detection boxes. This is because, for the different blocks along the distance,
the doppler domain matrix can effectively distinguish the area where the ship is located,
and, for the ships and background pixels in the same block, the attention module and the
multi-layer pyramid refinement feature also provide a guarantee of the correct distinction
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of ships. It can be proven that the proposed method has good performance in both sea and
land scenarios.

(a)

(b)

(c)

(d)

(e)

(f)

Figure 12. Detection results of different methods on offshore images. (a) Ground truth; (b) Cascade
RCNN; (c) DCN; (d) Guide anchoring; (e) PAFPN; (f) D-MFPN.
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 13. Detection results of different methods on inshore images. (a) Ground truth; (b) Cascade
RCNN; (c) DCN; (d) Guide anchoring; (e) PAFPN; (f) D-MFPN.

The comparison results of different models are shown in Table 5. The D-MFPN
achieves the highest detection accuracy on the dataset, with huge advantages. In particular,
the mAP reaches 96.8%, which is 3.2% higher than the second-best CASCADE RCNN. The
recall rate reaches 96.3%, which is also the best indicator among all the models. As the
network gradually comes to understand the doppler features and accurately expresses



Remote Sens. 2023, 15, 626 18 of 20

amplitude features during the training process, the D-MFPN not only highlights the features
of the target ship area but also suppresses noise and other influences. The proposed method
also has good discrimination ability for similar defocused areas. Thus, robust detection
performance for moving ships in SAR images is obtained.

Table 5. Comparison results of the other state-of-the-art CNN-based methods.

Method mAP P R F1-Score

Faster RCNN 0.873 0.834 0.928 0.878
FPN 0.924 0.863 0.937 0.898

DCN [37] 0.907 0.822 0.954 0.883
GUIDE ANCHORING [38] 0.884 0.798 0.914 0.852

CASCADE RCNN 0.936 0.823 0.958 0.885
PAFPN 0.905 0.785 0.955 0.862

Proposed method 0.968 0.919 0.963 0.940

5. Conclusions

Aiming to address the defocusing phenomenon caused by moving ships, this paper
proposes a novel doppler feature matrix fused with a multi-layer feature pyramid network
for SAR ship detection. The D-MFPN consists of two branches in the magnitude image. We
design an additional bottom-up branch to transfer the underlying location information and
combine the CA and EA modules to enhance features and reduce background interference,
respectively. In another branch, the doppler feature matrix describing the ship’s motion
state is obtained by estimating the doppler center frequency and modulation frequency rate
offset, which helps to improve the model’s ability to distinguish between the foreground
and background. After passing through the feature fusion module, the data are sent to
prediction. In the experimental section, this paper conducts a detailed ablation study to
verify the effectiveness of the two branches. The experimental results on the first proposed
Gaofen-3 complex ship dataset show that compared with the other five detection models,
the D-MFPN has the best detection ability for moving ships. It also greatly suppresses the
generation of false alarms.

Our future work is as follows:

1. We will consider how to add more learnable parameters to the doppler branch in the
future.

2. In the future, we will consider continuing to improve the network structure.
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