Monitoring Cropland Abandonment in Southern China from 1992 to 2020 Based on the Combination of Phenological and Time-Series Algorithm Using Landsat Imagery and Google Earth Engine
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.2.1. Landsat 4/5/7/8 Imagery and Pre-Processing
2.2.2. CNLUCC
2.2.3. Field Surveys
2.2.4. The Regions of Interests (ROIs) for Approach Training and Validation from Field Survey and CNLUCC Data
2.3. Algorithm
2.3.1. Algorithm for Annual Land Cover Classification
2.3.2. Algorithm for Mapping Cropland Abandonment
2.4. Accuracy Assessment for Cropland Abandonment Maps
3. Results
3.1. Accuracy Assessment of Annual Land Cover Classification Model
3.2. Accuracy Assessment of Cropland Abandonment Maps
3.3. Spatial-Temporal Patterns of Cropland Abandonment
3.4. Extent of Cropland Abandonment during the Last 30 Years
4. Discussion
4.1. Reliability of the Cropland Abandonment Mapping Algorithm
4.2. Potential Sources of Uncertainty
4.3. Implications of This Study and Future Work
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pointereau, P.; Coulon, F.; Girard, P.; Lambotte, M.; Stuczynski, T.; Ortega, V.S.; Del Rio, A. Analysis of Farmland Abandonment and the Extent and Location of Agricultural Areas That Are Actually Abandoned or Are in Risk to Be Abandoned; European Commission Joint Research Centre: Brussels, Belgium; Institute for Environment and Sustainability: Ispra, Italy, 2008; Available online: https://publications.jrc.ec.europa.eu/repository/handle/JRC46185 (accessed on 15 July 2008).
- Yin, H.; Brandão, A., Jr.; Buchner, J.; Helmers, D.; Iuliano, B.G.; Kimambo, N.E.; Lewińska, K.E.; Razenkova, E.; Rizayeva, A.; Rogova, N.; et al. Monitoring cropland abandonment with Landsat time series. Remote Sens. Environ. 2020, 246, 111873. [Google Scholar] [CrossRef]
- Cramer, A.V.A.; Hobbs, R.J.; Standish, R.J. What’s new about old fields? Land abandonment and ecosystem assembly. Trends Ecol. Evol. 2008, 23, 104–112. [Google Scholar] [CrossRef]
- Keenleyside, C.; Tucker, G.; McConville, A. Farmland Abandonment in the EU: An Assessment of Trends and Prospects; Institute for European Environmental Policy: London, UK, 2010. [Google Scholar]
- Li, S.; Li, X.; Sun, L.; Cao, G.; Fischer, G.; Tramberend, S. An estimation of the extent of cropland abandonment in mountainous regions of China. Land Degrad. Dev. 2018, 29, 1327–1342. [Google Scholar] [CrossRef]
- Baldock, D. Farming at the Margins; IEEP and LEI-DLO: Brussels, Belgium, 1996. [Google Scholar]
- Meyfroidt, P.; Schierhorn, F.; Prishchepov, A.V.; Müller, D.; Kuemmerle, T. Drivers, constraints and trade-offs associated with recultivating abandoned cropland in Russia, Ukraine and Kazakhstan. Glob. Environ. Chang. Hum. Policy Dimens. 2016, 37, 1–15. [Google Scholar] [CrossRef]
- Mather, A. Deforestation to Reforestation in Europe. Agric. Technol. Trop. Defor. 2001, 49. [Google Scholar] [CrossRef]
- Brown, D.G.; Johnson, K.M.; Loveland, T.R.; Theobald, D.M. Rural land-use trends in the conterminous United States, 1950–2000. Ecol. Appl. 2005, 15, 1851–1863. [Google Scholar] [CrossRef] [Green Version]
- Ustaoglu, E.; Collier, M. Farmland abandonment in Europe: An overview of drivers, consequences, and assessment of the sustainability implications. Environ. Rev. 2018, 26, 396–416. [Google Scholar] [CrossRef]
- Liu, C.; Li, X. Regional disparity in the changes of agricultural land use intensity in China during 1980–2002. J. Geogr. Sci. 2006, 16, 286–292. [Google Scholar] [CrossRef]
- Wang, C.; Gao, Q.; Wang, X.; Yu, M. Decadal Trend in Agricultural Abandonment and Woodland Expansion in an Agro-Pastoral Transition Band in Northern China. PLoS ONE 2015, 10, e0142113. [Google Scholar] [CrossRef] [Green Version]
- Kurganova, I.; De Gerenyu, V.L.; Six, J.; Kuzyakov, Y. Carbon cost of collective farming collapse in Russia. Glob. Chang. Biol. 2014, 20, 938–947. [Google Scholar] [CrossRef]
- Brinkert, A.; Hölzel, N.; Sidorova, T.V.; Kamp, J. Spontaneous steppe restoration on abandoned cropland in Kazakhstan: Grazing affects successional pathways. Biodivers. Conserv. 2016, 25, 2543–2561. [Google Scholar] [CrossRef]
- Isbell, F.; Tilman, D.; Reich, P.B.; Clark, A.T. Deficits of biodiversity and productivity linger a century after agricultural abandonment. Nat. Ecol. Evol. 2019, 3, 1533–1538. [Google Scholar] [CrossRef] [PubMed]
- Wertebach, T.; Hölzel, N.; Kämpf, I.; Yurtaev, A.; Tupitsin, S.; Kiehl, K.; Kamp, J.; Kleinebecker, T. Soil carbon sequestration due to post-Soviet cropland abandonment: Estimates from a large-scale soil organic carbon field inventory. Glob. Chang. Biol. 2017, 23, 3729–3741. [Google Scholar] [CrossRef]
- Baba, Y.G.; Tanaka, K.; Kusumoto, Y. Changes in spider diversity and community structure along abandonment and vegetation succession in rice paddy ecosystems. Ecol. Eng. 2019, 127, 235–244. [Google Scholar] [CrossRef]
- Cerdà, A.; Ackermann, O.; Terol, E.; Rodrigo-Comino, J. Impact of farmland abandonment on water resources and soil conservation in citrus plantations in eastern Spain. Water 2019, 11, 824. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Li, X. Global understanding of farmland abandonment: A review and prospects. J. Geogr. Sci. 2017, 27, 1123–1150. [Google Scholar] [CrossRef]
- Weiss, M.; Jacob, F.; Duveiller, G. Remote sensing for agricultural applications: A meta-review. Remote Sens. Environ. 2020, 236, 111402. [Google Scholar] [CrossRef]
- Li, L.; Pan, Y.; Zheng, R.; Liu, X. Understanding the spatiotemporal patterns of seasonal, annual, and consecutive farmland abandonment in China with time-series MODIS images during the period 2005–2019. Land Degrad. Dev. 2022, 33, 1608–1625. [Google Scholar] [CrossRef]
- Liang, X.; Li, Y.; Zhou, Y. Study on the abandonment of sloping farmland in Fengjie County, Three Gorges Reservoir Area, a mountainous area in China. Land Use Policy 2020, 97, 104760. [Google Scholar] [CrossRef]
- Dara, A.; Baumann, M.; Kuemmerle, T.; Pflugmacher, D.; Rabe, A.; Griffiths, P.; Hölzel, N.; Kamp, J.; Freitag, M.; Hostert, P. Mapping the timing of cropland abandonment and recultivation in northern Kazakhstan using annual Landsat time series. Remote Sens. Environ. 2018, 213, 49–60. [Google Scholar] [CrossRef]
- Tong, X.; Brandt, M.; Hiernaux, P.; Herrmann, S.; Rasmussen, L.V.; Rasmussen, K.; Tian, F.; Tagesson, T.; Zhang, W.; Fensholt, R. The forgotten land use class: Mapping of fallow fields across the Sahel using Sentinel-2. Remote Sens. Environ. 2020, 239, 111598. [Google Scholar] [CrossRef]
- Löw, F.; Prishchepov, A.V.; Waldner, F.; Dubovyk, O.; Akramkhanov, A.; Biradar, C.; Lamers, J.P.A. Mapping Cropland Abandonment in the Aral Sea Basin with MODIS Time Series. Remote Sens. 2018, 10, 159. [Google Scholar] [CrossRef] [Green Version]
- Kuemmerle, T.; Hostert, P.; Radeloff, V.C.; van der Linden, S.; Perzanowski, K.; Kruhlov, I. Cross-border comparison of post-socialist farmland abandonment in the Carpathians. Ecosystems 2008, 11, 614–628. [Google Scholar] [CrossRef]
- Alcantara, C.; Kuemmerle, T.; Baumann, M.; Bragina, E.V.; Griffiths, P.; Hostert, P.; Knorn, J.; Müller, D.; Prishchepov, A.; Schierhorn, F.; et al. Mapping the extent of abandoned farmland in Central and Eastern Europe using MODIS time series satellite data. Environ. Res. Lett. 2013, 8, 035035. [Google Scholar] [CrossRef]
- Yin, H.; Pflugmacher, D.; Kennedy, R.E.; Sulla-Menashe, D.; Hostert, P. Mapping Annual Land Use and Land Cover Changes Using MODIS Time Series. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 3421–3427. [Google Scholar] [CrossRef]
- Estel, S.; Kuemmerle, T.; Alcántara, C.; Levers, C.; Prishchepov, A.; Hostert, P. Mapping farmland abandonment and recultivation across Europe using MODIS NDVI time series. Remote Sens. Environ. 2015, 163, 312–325. [Google Scholar] [CrossRef]
- Liu, L.; Xiao, X.; Qin, Y.; Wang, J.; Xu, X.; Hu, Y.; Qiao, Z. Mapping cropping intensity in China using time series Landsat and Sentinel-2 images and Google Earth Engine. Remote Sens. Environ. 2020, 239, 111624. [Google Scholar] [CrossRef]
- Defourny, P.; Bontemps, S.; Bellemans, N.; Cara, C.; Dedieu, G.; Guzzonato, E.; Hagolle, O.; Inglada, J.; Nicola, L.; Rabaute, T.; et al. Near real-time agriculture monitoring at national scale at parcel resolution: Performance assessment of the Sen2-Agri automated system in various cropping systems around the world. Remote Sens. Environ. 2019, 221, 551–568. [Google Scholar] [CrossRef]
- Thenkabail, P.S.; Knox, J.W.; Ozdogan, M.; Gumma, M.K.; Congalton, R.G.; Wu, Z.T.; Milesi, C.; Finkral, A.; Marshall, M.; Mariotto, I.; et al. Assessing future risks to agricultural productivity, water resources and food security: How can remote sensing help? Photogramm. Eng. Remote Sens. 2012, 78, 773–782. [Google Scholar]
- Yin, H.; Pflugmacher, D.; Li, A.; Li, Z.; Hostert, P. Land use and land cover change in Inner Mongolia—Understanding the effects of China’s re-vegetation programs. Remote Sens. Environ. 2018, 204, 918–930. [Google Scholar] [CrossRef]
- Vogelmann, J.; Tolk, B.; Zhu, Z. Monitoring forest changes in the southwestern United States using multitemporal Landsat data. Remote Sens. Environ. 2009, 113, 1739–1748. [Google Scholar] [CrossRef]
- Zhu, Z. Change detection using landsat time series: A review of frequencies, preprocessing, algorithms, and applications. ISPRS J. Photogramm. Remote Sens. 2017, 130, 370–384. [Google Scholar] [CrossRef]
- Xu, H.; Xiao, X.; Qin, Y.; Qiao, Z.; Long, S.; Tang, X.; Liu, L. Annual Maps of Built-Up Land in Guangdong from 1991 to 2020 Based on Landsat Images, Phenology, Deep Learning Algorithms, and Google Earth Engine. Remote Sens. 2022, 14, 3562. [Google Scholar] [CrossRef]
- Zhu, Z.; Woodcock, C.E. Object-based cloud and cloud shadow detection in Landsat imagery. Remote Sens. Environ. 2012, 118, 83–94. [Google Scholar] [CrossRef]
- Forkel, M.; Wutzler, T. Greenbrown—Land Surface Phenology and Trend Analysis. A Package for the R Software Version. 2015; Volume 2, p. 15. Available online: http://greenbrown.r-forge.r-project.org/ (accessed on 17 November 2016).
- Kennedy, R.E.; Yang, Z.; Cohen, W.B. Detecting trends in forest disturbance and recovery using yearly Landsat time series: 1. LandTrendr—Temporal segmentation algorithms. Remote Sens. Environ. 2010, 114, 2897–2910. [Google Scholar] [CrossRef]
- Verbesselt, J.; Hyndman, R.; Zeileis, A.; Culvenor, D. Phenological change detection while accounting for abrupt and gradual trends in satellite image time series. Remote Sens. Environ. 2010, 114, 2970–2980. [Google Scholar] [CrossRef] [Green Version]
- Zhu, X.; Xiao, G.; Zhang, D.; Guo, L. Mapping abandoned farmland in China using time series MODIS NDVI. Sci. Total Environ. 2021, 755, 142651. [Google Scholar] [CrossRef]
- Scaramuzza, P.; Barsi, J. Landsat 7 scan line corrector-off gap-filled product development. In Proceedings of the Pecora, Sioux Falls, SD, USA, 23–27 October 2005; pp. 23–27. [Google Scholar]
- Foga, S.; Scaramuzza, P.L.; Guo, S.; Zhu, Z.; Dilley, R.D.; Beckmann, T.; Schmidt, G.L.; Dwyer, J.L.; Hughes, M.J.; Laue, B. Cloud detection algorithm comparison and validation for operational Landsat data products. Remote Sens. Environ. 2017, 194, 379–390. [Google Scholar] [CrossRef] [Green Version]
- Tucker, C.J. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 1979, 8, 127–150. [Google Scholar] [CrossRef] [Green Version]
- Deng, Y.; Wu, C.; Li, M.; Chen, R. RNDSI: A ratio normalized difference soil index for remote sensing of urban/suburban environments. Int. J. Appl. Earth Obs. Geoinf. 2015, 39, 40–48. [Google Scholar] [CrossRef]
- Forkuor, G.; Dimobe, K.; Serme, I.; Tondoh, J.E. Landsat-8 vs. Sentinel-2: Examining the added value of sentinel-2’s red-edge bands to land-use and land-cover mapping in Burkina Faso. GISci. Remote Sens. 2018, 55, 331–354. [Google Scholar] [CrossRef]
- Houborg, R.; McCabe, M.F. A hybrid training approach for leaf area index estimation via Cubist and random forests machine-learning. ISPRS J. Photogramm. Remote Sens. 2018, 135, 173–188. [Google Scholar] [CrossRef]
- Lillesaeter, O. Spectral reflectance of partly transmitting leaves: Laboratory measurements and mathematical modeling. Remote Sens. Environ. 1982, 12, 247–254. [Google Scholar] [CrossRef]
- Huete, A.R.; Liu, H.Q.; Batchily, K.V.; van Leeuwen, W. A comparison of vegetation indices over a global set of TM images for EOS-MODIS. Remote Sens. Environ. 1997, 59, 440–451. [Google Scholar] [CrossRef]
- Chandrasekar, K.; Sesha Sai, M.V.R.; Roy, P.S.; Dwevedi, R.S. Land Surface Water Index (LSWI) response to rainfall and NDVI using the MODIS Vegetation Index product. Int. J. Remote Sens. 2010, 31, 3987–4005. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Gebeyehu, D.T.; East, L.; Wark, S.; Islam, S. Impact of COVID-19 on the food security and identifying the compromised food security dimension: A systematic review protocol. PLoS ONE 2022, 17, e0272859. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, X.; Song, W. Determinants of cropland abandonment at the parcel, household and village levels in mountain areas of China: A multi-level analysis. Land Use Policy 2014, 41, 186–192. [Google Scholar] [CrossRef]
Land Cover Types | 1995 | 2000 | 2005 | 2010 | 2015 | 2020 |
---|---|---|---|---|---|---|
AC | 75 | 75 | 75 | 75 | 75 | 75 |
CC | 99 | 102 | 104 | 75 | 75 | 75 |
OLC | 363 | 357 | 356 | 399 | 395 | 388 |
Total | 573 | 563 | 568 | 549 | 545 | 538 |
Land Cover Types | Field Surveys Data | User’s Accuracy | Producer’sAccuracy | ||||||
---|---|---|---|---|---|---|---|---|---|
Uncultivated Field | Cultivated Field | Woody Vegetation | Water | Other Land-Cover | Total | ||||
Map | Uncultivated field | 23 | 1 | 3 | 0 | 2 | 29 | 0.79 | 0.77 |
Cultivated field | 3 | 27 | 1 | 0 | 1 | 32 | 0.84 | 0.90 | |
Woody vegetation | 4 | 2 | 26 | 0 | 0 | 32 | 0.81 | 0.87 | |
Water | 0 | 0 | 0 | 28 | 1 | 29 | 0.97 | 0.93 | |
Other land-cover | 0 | 0 | 0 | 2 | 26 | 28 | 0.93 | 0.87 | |
Total | 30 | 30 | 30 | 30 | 30 | 150 | OA = 0.87 |
Year | Land Cover Types | Reference | User’s | Producer’s | ||||
---|---|---|---|---|---|---|---|---|
AC | CC | OLC | Total | Accuracy | Accuracy | |||
1995 | Map | AC | 56 | 4 | 15 | 75 | 0.75 | 0.90 |
CC | 3 | 85 | 11 | 99 | 0.86 | 0.90 | ||
OLC | 3 | 5 | 355 | 363 | 0.98 | 0.93 | ||
Total | 62 | 94 | 381 | 537 | OA = 0.92 | Kappa = 0.85 | ||
2000 | Map | AC | 55 | 2 | 18 | 75 | 0.73 | 0.92 |
CC | 2 | 90 | 10 | 102 | 0.88 | 0.96 | ||
OLC | 3 | 2 | 352 | 357 | 0.99 | 0.93 | ||
Total | 60 | 94 | 380 | 534 | OA = 0.93 | Kappa = 0.88 | ||
2005 | Map | AC | 60 | 4 | 11 | 60 | 0.80 | 0.91 |
CC | 3 | 90 | 11 | 3 | 0.87 | 0.89 | ||
OLC | 3 | 7 | 346 | 3 | 0.97 | 0.94 | ||
Total | 66 | 101 | 368 | 66 | OA = 0.93 | Kappa = 0.85 | ||
2010 | Map | AC | 55 | 2 | 18 | 75 | 0.73 | 0.93 |
CC | 1 | 62 | 12 | 75 | 0.83 | 0.86 | ||
OLC | 3 | 8 | 388 | 399 | 0.97 | 0.93 | ||
Total | 59 | 72 | 418 | 549 | OA = 0.92 | Kappa = 0.81 | ||
2015 | Map | AC | 65 | 0 | 10 | 75 | 0.87 | 0.96 |
CC | 3 | 64 | 8 | 75 | 0.85 | 0.94 | ||
OLC | 0 | 4 | 391 | 395 | 0.99 | 0.95 | ||
Total | 68 | 68 | 409 | 545 | OA = 0.95 | Kappa = 0.88 | ||
2020 | Map | AC | 63 | 3 | 9 | 75 | 0.84 | 0.90 |
CC | 4 | 63 | 8 | 75 | 0.84 | 0.85 | ||
OLC | 3 | 8 | 377 | 388 | 0.97 | 0.96 | ||
Total | 70 | 74 | 394 | 538 | OA = 0.93 | Kappa = 0.82 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Su, Y.; Wu, S.; Kang, S.; Xu, H.; Liu, G.; Qiao, Z.; Liu, L. Monitoring Cropland Abandonment in Southern China from 1992 to 2020 Based on the Combination of Phenological and Time-Series Algorithm Using Landsat Imagery and Google Earth Engine. Remote Sens. 2023, 15, 669. https://doi.org/10.3390/rs15030669
Su Y, Wu S, Kang S, Xu H, Liu G, Qiao Z, Liu L. Monitoring Cropland Abandonment in Southern China from 1992 to 2020 Based on the Combination of Phenological and Time-Series Algorithm Using Landsat Imagery and Google Earth Engine. Remote Sensing. 2023; 15(3):669. https://doi.org/10.3390/rs15030669
Chicago/Turabian StyleSu, Yingyue, Shikun Wu, Shanggui Kang, Han Xu, Guangsheng Liu, Zhi Qiao, and Luo Liu. 2023. "Monitoring Cropland Abandonment in Southern China from 1992 to 2020 Based on the Combination of Phenological and Time-Series Algorithm Using Landsat Imagery and Google Earth Engine" Remote Sensing 15, no. 3: 669. https://doi.org/10.3390/rs15030669
APA StyleSu, Y., Wu, S., Kang, S., Xu, H., Liu, G., Qiao, Z., & Liu, L. (2023). Monitoring Cropland Abandonment in Southern China from 1992 to 2020 Based on the Combination of Phenological and Time-Series Algorithm Using Landsat Imagery and Google Earth Engine. Remote Sensing, 15(3), 669. https://doi.org/10.3390/rs15030669