A Spectral–Spatial Method for Mapping Fire Severity Using Morphological Attribute Profiles
Abstract
:1. Introduction
2. Study Area and Data Description
2.1. Study Area
2.2. Fire Severity Data
2.3. Remote Sensing Data
3. Methodology
3.1. Burn Attribute Profiles
3.2. Extremely Randomized Trees Classification
3.3. Experimental Setup
4. Results
4.1. European Mediterranean Region
4.2. Northwestern Continental United States Region
5. Discussion
5.1. Performance of the BAP Method
5.2. Comparison of BAP and SI Methods
5.3. Salt-and-Pepper Problem
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Seidl, R.; Schelhaas, M.-J.; Rammer, W.; Verkerk, P.J. Increasing forest disturbances in Europe and their impact on carbon storage. Nat. Clim. Chang. 2014, 4, 806–810. [Google Scholar] [CrossRef] [Green Version]
- Seidl, R.; Thom, D.; Kautz, M.; Martin-Benito, D.; Peltoniemi, M.; Vacchiano, G.; Wild, J.; Ascoli, D.; Petr, M.; Honkaniemi, J.; et al. Forest disturbances under climate change. Nat. Clim. Chang. 2017, 7, 395–402. [Google Scholar] [CrossRef] [Green Version]
- Barbosa, P.M.; Grégoire, J.-M.; Pereira, J.M.C. An algorithm for extracting burned areas from time series of AVHRR GAC data applied at a continental scale. Remote Sens. Environ. 1999, 69, 253–263. [Google Scholar] [CrossRef]
- van der Werf, G.R.; Randerson, J.T.; Giglio, L.; Collatz, G.J.; Kasibhatla, P.S.; Arellano, A.F., Jr. Interannual variability in global biomass burning emissions from 1997 to 2004. Atmos. Chem. Phys. 2006, 6, 3423–3441. [Google Scholar] [CrossRef] [Green Version]
- Burrows, N.D. Linking fire ecology and fire management in south-west Australian forest landscapes. For. Ecol. Manag. 2008, 255, 2394–2406. [Google Scholar] [CrossRef]
- Keeley, J.E. Fire intensity, fire severity and burn severity: A brief review and suggested usage. Int. J. Wildland Fire 2009, 18, 116–126. [Google Scholar] [CrossRef]
- Lentile, L.B.; Holden, Z.A.; Smith, A.M.S.; Falkowski, M.J.; Hudak, A.T.; Morgan, P.; Lewis, S.A.; Gessler, P.E.; Benson, N.C. Remote sensing techniques to assess active fire characteristics and post-fire effects. Int. J. Wildland Fire 2006, 15, 319–345. [Google Scholar] [CrossRef]
- Price, O.F.; Bradstock, R.A. The efficacy of fuel treatment in mitigating property loss during wildfires: Insights from analysis of the severity of the catastrophic fires in 2009 in victoria, Australia. J. Environ. Manag. 2012, 113, 146–157. [Google Scholar] [CrossRef]
- Bennett, L.T.; Bruce, M.J.; MacHunter, J.; Kohout, M.; Tanase, M.A.; Aponte, C. Mortality and recruitment of fire-tolerant eucalypts as influenced by wildfire severity and recent prescribed fire. For. Ecol. Manag. 2016, 380, 107–117. [Google Scholar] [CrossRef]
- White, J.D.; Ryan, K.C.; Key, C.C.; Running, S.W. Remote sensing of forest fire severity and vegetation recovery. Int. J. Wildland Fire 1996, 6, 125–136. [Google Scholar] [CrossRef] [Green Version]
- Epting, J.; Verbyla, D.; Sorbel, B. Evaluation of remotely sensed indices for assessing burn severity in interior Alaska using Landsat TM and etm+. Remote Sens. Environ. 2005, 96, 328–339. [Google Scholar] [CrossRef]
- Garcia-Llamas, P.; Suarez-Seoane, S.; Fernandez-Guisuraga, J.M.; Fernandez-Garcia, V.; Fernandez-Manso, A.; Quintano, C.; Taboada, A.; Marcos, E.; Calvo, L. Evaluation and comparison of Landsat 8, sentinel-2 and Deimos-1 remote sensing indices for assessing burn severity in Mediterranean fire-prone ecosystems. Int. J. Appl. Earth Obs. Geoinf. 2019, 80, 137–144. [Google Scholar] [CrossRef]
- Veraverbeke, S.; Hook, S.; Hulley, G. An alternative spectral index for rapid fire severity assessments. Remote Sens. Environ. 2012, 123, 72–80. [Google Scholar] [CrossRef]
- Saulino, L.; Rita, A.; Migliozzi, A.; Maffei, C.; Allevato, E.; Garonna, A.P.; Saracino, A. Detecting burn severity across Mediterranean forest types by coupling medium-spatial resolution satellite imagery and field data. Remote Sens. 2020, 12, 741. [Google Scholar] [CrossRef] [Green Version]
- Tucker, C.J. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 1979, 8, 127–150. [Google Scholar] [CrossRef] [Green Version]
- Lutes, D.C.; Keane, R.E.; Caratti, J.F.; Key, C.H.; Benson, N.C.; Sutherland, S.; Gangi, L.J. FIREMON: Fire effects monitoring and inventory system. In General Technical Report. RMRS-GTR-164-CD; Department of Agriculture, Forest Service, Rocky Mountain Research Station: Fort Collins, CO, USA, 2006; Volume 164, p. LA-1-55. [Google Scholar]
- Escuin, S.; Navarro, R.; Fernandez, P. Fire severity assessment by using NBR (normalized burn ratio) and NDVI (normalized difference vegetation index) derived from Landsat TM/ETM images. Int. J. Remote Sens. 2008, 29, 1053–1073. [Google Scholar] [CrossRef]
- Morgan, P.; Keane, R.E.; Dillon, G.K.; Jain, T.B.; Hudak, A.T.; Karau, E.C.; Sikkink, P.G.; Holden, Z.A.; Strand, E.K. Challenges of assessing fire and burn severity using field measures, remote sensing and modelling. Int. J. Wildland Fire 2014, 23, 1045. [Google Scholar] [CrossRef] [Green Version]
- Yin, C.M.; He, B.B.; Yebra, M.; Quan, X.W.; Edwards, A.C.; Liu, X.Z.; Liao, Z.M. Improving burn severity retrieval by integrating tree canopy cover into radiative transfer model simulation. Remote Sens. Environ. 2020, 236, 16. [Google Scholar] [CrossRef]
- Robichaud, P.R.; Lewis, S.A.; Laes, D.Y.M.; Hudak, A.T.; Kokaly, R.F.; Zamudio, J.A. Postfire soil burn severity mapping with hyperspectral image unmixing. Remote Sens. Environ. 2007, 108, 467–480. [Google Scholar] [CrossRef] [Green Version]
- Quintano, C.; Fernandez-Manso, A.; Roberts, D.A. Enhanced burn severity estimation using fine resolution ET and MESMA fraction images with machine learning algorithm. Remote Sens. Environ. 2020, 244, 16. [Google Scholar] [CrossRef]
- Dixon, D.J.; Callow, J.N.; Duncan, J.M.; Setterfield, S.A.; Pauli, N. Regional-scale fire severity mapping of eucalyptus forests with the Landsat archive. Remote Sens. Environ. 2022, 270, 112863. [Google Scholar] [CrossRef]
- Collins, L.; Mc Carthy, G.; Mellor, A.; Newell, G.; Smith, L. Training data requirements for fire severity mapping using Landsat imagery and random forest. Remote Sens. Environ. 2020, 245, 14. [Google Scholar] [CrossRef]
- Belgiu, M.; Dragut, L. Random forest in remote sensing: A review of applications and future directions. ISPRS J. Photogramm. Remote Sens. 2016, 114, 24–31. [Google Scholar] [CrossRef]
- Collins, L.; Griffioen, P.; Newell, G.; Mellor, A. The utility of random forests for wildfire severity mapping. Remote Sens. Environ. 2018, 216, 374–384. [Google Scholar] [CrossRef]
- Tran, N.B.; Tanase, M.A.; Bennett, L.T.; Aponte, C. Fire-severity classification across temperate Australian forests: Random forests versus spectral index thresholding. In Proceedings of the Conference on Remote Sensing for Agriculture, Ecosystems, and Hydrology XXI held at SPIE Remote Sensing, Strasbourg, France, 9–11 September 2019. [Google Scholar]
- Cutler, D.R.; Edwards Jr, T.C.; Beard, K.H.; Cutler, A.; Hess, K.T.; Gibson, J.; Lawler, J.J. Random forests for classification in ecology. Ecology 2007, 88, 2783–2792. [Google Scholar] [CrossRef] [PubMed]
- Syifa, M.; Panahi, M.; Lee, C.W. Mapping of post-wildfire burned area using a hybrid algorithm and satellite data: The case of the camp fire wildfire in California, USA. Remote Sens. 2020, 12, 623. [Google Scholar] [CrossRef] [Green Version]
- Yu, Q.; Gong, P.; Clinton, N.; Biging, G.; Kelly, M.; Schirokauer, D. Object-based detailed vegetation classification. With airborne high spatial resolution remote sensing imagery. Photogramm. Eng. Remote Sens. 2006, 72, 799–811. [Google Scholar] [CrossRef] [Green Version]
- Amos, C.; Petropoulos, G.P.; Ferentinos, K.P. Determining the use of Sentinel-2a MSI for wildfire burning & severity detection. Int. J. Remote Sens. 2019, 40, 905–930. [Google Scholar] [CrossRef]
- Wu, J. Effects of changing scale on landscape pattern analysis: Scaling relations. Landsc. Ecol. 2004, 19, 125–138. [Google Scholar] [CrossRef]
- Hu, X.; Xu, H. A new remote sensing index for assessing the spatial heterogeneity in urban ecological quality: A case from Fuzhou city, china. Ecol. Indic. 2018, 89, 11–21. [Google Scholar] [CrossRef]
- Fauvel, M.; Benediktsson, J.A.; Chanussot, J.; Sveinsson, J.R. Spectral and spatial classification of hyperspectral data using SVMs and morphological profiles. IEEE Trans. Geosci. Remote Sens. 2008, 46, 3804–3814. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Bioucas-Dias, J.M.; Plaza, A. Spectral-spatial hyperspectral image segmentation using subspace multinomial logistic regression and Markov random fields. IEEE Trans. Geosci. Remote Sens. 2012, 50, 809–823. [Google Scholar] [CrossRef]
- Wang, P.; Wang, L.G.; Leung, H.; Zhang, G. Super-resolution mapping based on spatial-spectral correlation for spectral imagery. IEEE Trans. Geosci. Remote Sens. 2021, 59, 2256–2268. [Google Scholar] [CrossRef]
- Ghamisi, P.; Dalla Mura, M.; Benediktsson, J.A. A survey on spectral-spatial classification techniques based on attribute profiles. IEEE Trans. Geosci. Remote Sens. 2015, 53, 2335–2353. [Google Scholar] [CrossRef]
- Dalla Mura, M.; Benediktsson, J.A.; Waske, B.; Bruzzone, L. Morphological attribute profiles for the analysis of very high resolution images. IEEE Trans. Geosci. Remote Sens. 2010, 48, 3747–3762. [Google Scholar] [CrossRef]
- Pedergnana, M.; Marpu, P.R.; Mura, M.D.; Benediktsson, J.A.; Bruzzone, L. Classification of remote sensing optical and LiDAR data using extended attribute profiles. IEEE J. Sel. Top. Signal Process. 2012, 6, 856–865. [Google Scholar] [CrossRef]
- Shang, X.D.; Song, M.P.; Wang, Y.L.; Yu, C.Y.; Yu, H.Y.; Li, F.; Chang, C.I. Target-constrained interference-minimized band selection for hyperspectral target detection. IEEE Trans. Geosci. Remote Sens. 2021, 59, 6044–6064. [Google Scholar] [CrossRef]
- Dalla Mura, M.; Benediktsson, J.A.; Waske, B.; Bruzzone, L. Extended profiles with morphological attribute filters for the analysis of hyperspectral data. Int. J. Remote Sens. 2010, 31, 5975–5991. [Google Scholar] [CrossRef]
- Licciardi, G.A.; Villa, A.; Dalla Mura, M.; Bruzzone, L.; Chanussot, J.; Benediktsson, J.A. Retrieval of the height of buildings from Worldview-2 multi-angular imagery using attribute filters and geometric invariant moments. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2012, 5, 71–79. [Google Scholar] [CrossRef] [Green Version]
- Falco, N.; Dalla Mura, M.; Bovolo, F.; Benediktsson, J.A.; Bruzzone, L. Change detection in VHR images based on morphological attribute profiles. IEEE Geosci. Remote Sens. Lett. 2013, 10, 636–640. [Google Scholar] [CrossRef]
- Ghamisi, P.; Maggiori, E.; Li, S.T.; Souza, R.; Tarabalka, Y.; Moser, G.; De Giorgi, A.; Fang, L.Y.; Chen, Y.S.; Chi, M.M.; et al. New frontiers in spectral-spatial hyperspectral image classification: The latest advances based on mathematical morphology, Markov random fields, segmentation, sparse representation, and deep learning. IEEE Geosci. Remote Sens. Mag. 2018, 6, 10–43. [Google Scholar] [CrossRef]
- Marpu, P.R.; Pedergnana, M.; Dalla Mura, M.; Benediktsson, J.A.; Bruzzone, L. Automatic generation of standard deviation attribute profiles for spectral-spatial classification of remote sensing data. IEEE Geosci. Remote Sens. Lett. 2013, 10, 293–297. [Google Scholar] [CrossRef]
- Ghamisi, P.; Benediktsson, J.A.; Cavallaro, G.; Plaza, A. Automatic framework for spectral-spatial classification based on supervised feature extraction and morphological attribute profiles. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 2147–2160. [Google Scholar] [CrossRef]
- Kolden, C.A.; Smith, A.M.S.; Abatzoglou, J.T. Limitations and utilisation of monitoring trends in burn severity products for assessing wildfire severity in the USA. Int. J. Wildland Fire 2015, 24, 1023–1028. [Google Scholar] [CrossRef]
- Dalla Mura, M.; Villa, A.; Benediktsson, J.A.; Chanussot, J.; Bruzzone, L. Classification of hyperspectral images by using extended morphological attribute profiles and independent component analysis. IEEE Geosci. Remote Sens. Lett. 2011, 8, 542–546. [Google Scholar] [CrossRef] [Green Version]
- Huang, X.; Guan, X.H.; Benediktsson, J.A.; Zhang, L.P.; Li, J.; Plaza, A.; Dalla Mura, M. Multiple morphological profiles from multicomponent-base images for hyperspectral image classification. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 4653–4669. [Google Scholar] [CrossRef]
- Geurts, P.; Ernst, D.; Wehenkel, L. Extremely randomized trees. Mach. Learn. 2006, 63, 3–42. [Google Scholar] [CrossRef] [Green Version]
- Bunting, P.; Rosenqvist, A.; Lucas, R.M.; Rebelo, L.M.; Hilarides, L.; Thomas, N.; Hardy, A.; Itoh, T.; Shimada, M.; Finlayson, C.M. The global mangrove watch: A new 2010 global baseline of mangrove extent. Remote Sens. 2018, 10, 1669. [Google Scholar] [CrossRef] [Green Version]
- Soltaninejad, M.; Yang, G.; Lambrou, T.; Allinson, N.; Jones, T.L.; Barrick, T.R.; Howe, F.A.; Ye, X.J. Automated brain tumour detection and segmentation using superpixel-based extremely randomized trees in FLAIR MRI. Int. J. Comput. Assist. Radiol. Surg. 2017, 12, 183–203. [Google Scholar] [CrossRef] [Green Version]
- Gao, B.C. NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sens. Environ. 1996, 58, 257–266. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Kaufman, Y.J.; Stark, R.; Rundquist, D. Novel algorithms for remote estimation of vegetation fraction. Remote Sens. Environ. 2002, 80, 76–87. [Google Scholar] [CrossRef] [Green Version]
- Chuvieco, E.; Martin, M.P.; Palacios, A. Assessment of different spectral indices in the red-near-infrared spectral domain for burned land discrimination. Int. J. Remote Sens. 2002, 23, 5103–5110. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Gritz, Y.; Merzlyak, M.N. Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves. J. Plant Physiol. 2003, 160, 271–282. [Google Scholar] [CrossRef] [PubMed]
- Gitelson, A.; Merzlyak, M.N. Spectral reflectance changes associated with autumn senescence of Aesculus-hippocastanum L. and Acer-platanoides L. leaves-spectral features and relation to chlorophyll estimation. J. Plant Physiol. 1994, 143, 286–292. [Google Scholar] [CrossRef]
- Fernández-Manso, A.; Fernández-Manso, O.; Quintano, C. Sentinel-2a red-edge spectral indices suitability for discriminating burn severity. Int. J. Appl. Earth Obs. Geoinf. 2016, 50, 170–175. [Google Scholar] [CrossRef]
- Chen, J.M. Evaluation of vegetation indices and a modified simple ratio for boreal applications. Can. J. Remote Sens. 1996, 22, 229–242. [Google Scholar] [CrossRef]
- Gibson, R.; Danaher, T.; Hehir, W.; Collins, L. A remote sensing approach to mapping fire severity in south-eastern Australia using Sentinel 2 and random forest. Remote Sens. Environ. 2020, 240, 13. [Google Scholar] [CrossRef]
- Franco, M.G.; Mundo, I.A.; Veblen, T.T. Field-validated burn-severity mapping in north Patagonian forests. Remote Sens. 2020, 12, 214. [Google Scholar] [CrossRef] [Green Version]
- Quintano, C.; Fernández-Manso, A.; Fernández-Manso, O. Combination of Landsat and Sentinel-2 MSI data for initial assessing of burn severity. Int. J. Appl. Earth Obs. Geoinf. 2018, 64, 221–225. [Google Scholar] [CrossRef]
- Van Gerrevink, M.J.; Veraverbeke, S. Evaluating the hyperspectral sensitivity of the differenced normalized burn ratio for assessing fire severity. Remote Sens. 2021, 13, 4611. [Google Scholar] [CrossRef]
Fire | Start Time | Post-Fire Image Time | Sample Points for Fire Severity Classes | ||||
---|---|---|---|---|---|---|---|
ND | MD | HD | CD | Total | |||
European Mediterranean | |||||||
EMSR132 | 6 August 2015 –11 August 2015 | 11 August 2015 | 20,707 | 40,918 | 141,066 | 506,953 | 709,644 |
EMSR169 | 16 June 2016 –2 July 2016 | 12 July 2016 | 59,806 | 65,921 | 70,536 | 147,988 | 344,251 |
EMSR171 | 4 July 2016 –26 July 2016 | 28 July 2016 | 4585 | 63,834 | 27,697 | 31,999 | 128,115 |
EMSR213_A | 11 July 2017 –29 August 2017 | 13 September 2017 | 680 | 3960 | 2654 | 8449 | 15,743 |
EMSR213_P | 11 July 2017 –9 August 2017 | 11 August 2017 | 6525 | 23,645 | 47,141 | 59,481 | 136,792 |
EMSR213_S | 11 July 2017 –31 August 2017 | 2 September 2017 | 821 | 1770 | 1041 | 8182 | 11,814 |
EMSR216 | 27 July 2017 –4 August 2017 | 7 August 2017 | 1957 | 3091 | 1581 | 767 | 7396 |
Northwestern Continental United States | |||||||
U | L | M | H | Total | |||
BA | 2 August 2014 | 20 July 2015 | 2561 | 3717 | 1137 | 1152 | 8567 |
BO | 11 August 2015 | 24 July 2016 | 1309 | 1322 | 3724 | 7428 | 13,783 |
EL | 14 August 2015 | 21 August 2015 | 4275 | 54,971 | 7074 | 1361 | 67,681 |
GR | 14 August 2015 | 27 June 2016 | 3814 | 13,802 | 3952 | 1585 | 23,153 |
HU | 10 August 2016 | 22 July 2017 | 2745 | 1704 | 896 | 2739 | 8084 |
TW | 19 August 2015 | 4 September 2015 | 2421 | 24,412 | 6332 | 1370 | 34,535 |
WE | 14 August 2015 | 24 July 2016 | 4253 | 7727 | 5817 | 22,721 | 40,518 |
Index | Equation | Reference | Indices Considered |
---|---|---|---|
NBR | [16] | ||
NDVI | [15] | ||
NDWI | [52] | ||
VARI | [53] | ||
BAI | [54] | ||
CIre | [55] | ||
NDVIre1 | [56] | ||
NDVIre2 | [57] | ||
MSRre | [58] | ||
MSRren | [57] |
Indicators | Class | EMSR132 | EMSR171 | EMSR169 | EMSR213_A | EMSR213_P | EMSR213_S | EMSR216 | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
BAP | SI | BAP | SI | BAP | SI | BAP | SI | BAP | SI | BAP | SI | BAP | SI | ||
Recall | ND | 0.885 | 0.830 | 0.897 | 0.813 | 0.802 | 0.683 | 0.929 | 0.911 | 0.580 | 0.506 | 0.963 | 0.919 | 0.994 | 0.996 |
MD | 0.732 | 0.588 | 0.718 | 0.621 | 0.681 | 0.528 | 0.947 | 0.920 | 0.497 | 0.466 | 0.915 | 0.908 | 0.993 | 0.987 | |
HD | 0.666 | 0.554 | 0.709 | 0.584 | 0.652 | 0.448 | 0.925 | 0.892 | 0.470 | 0.384 | 0.894 | 0.896 | 0.996 | 0.990 | |
CD | 0.854 | 0.834 | 0.800 | 0.690 | 0.837 | 0.716 | 0.968 | 0.969 | 0.737 | 0.704 | 0.944 | 0.947 | 0.999 | 0.995 | |
Precision | ND | 0.565 | 0.395 | 0.333 | 0.231 | 0.666 | 0.553 | 0.593 | 0.584 | 0.182 | 0.140 | 0.881 | 0.843 | 0.993 | 0.992 |
MD | 0.396 | 0.312 | 0.885 | 0.849 | 0.649 | 0.506 | 0.972 | 0.954 | 0.455 | 0.395 | 0.962 | 0.961 | 0.995 | 0.996 | |
HD | 0.592 | 0.523 | 0.602 | 0.505 | 0.655 | 0.403 | 0.886 | 0.840 | 0.596 | 0.547 | 0.566 | 0.569 | 0.995 | 0.980 | |
CD | 0.978 | 0.962 | 0.808 | 0.652 | 0.933 | 0.862 | 0.996 | 0.996 | 0.820 | 0.791 | 0.996 | 0.996 | 0.995 | 0.983 | |
F1 | ND | 0.689 | 0.535 | 0.485 | 0.360 | 0.727 | 0.611 | 0.723 | 0.711 | 0.277 | 0.220 | 0.920 | 0.879 | 0.993 | 0.994 |
MD | 0.514 | 0.408 | 0.793 | 0.717 | 0.664 | 0.516 | 0.959 | 0.936 | 0.475 | 0.427 | 0.938 | 0.934 | 0.994 | 0.991 | |
HD | 0.626 | 0.537 | 0.651 | 0.541 | 0.653 | 0.424 | 0.905 | 0.865 | 0.525 | 0.451 | 0.693 | 0.696 | 0.995 | 0.985 | |
CD | 0.911 | 0.893 | 0.804 | 0.670 | 0.882 | 0.782 | 0.982 | 0.982 | 0.776 | 0.745 | 0.969 | 0.971 | 0.997 | 0.989 | |
Kappa | 0.622 | 0.535 | 0.620 | 0.475 | 0.670 | 0.475 | 0.926 | 0.905 | 0.419 | 0.352 | 0.861 | 0.858 | 0.992 | 0.986 | |
OA | 0.810 | 0.764 | 0.743 | 0.637 | 0.763 | 0.620 | 0.955 | 0.943 | 0.596 | 0.544 | 0.938 | 0.936 | 0.994 | 0.991 |
Indicators | Class | BA | BO | EL | GR | HU | TW | WE | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
BAP | SI | BAP | SI | BAP | SI | BAP | SI | BAP | SI | BAP | SI | BAP | SI | ||
Recall | U | 0.778 | 0.686 | 0.748 | 0.639 | 0.819 | 0.779 | 0.761 | 0.745 | 0.733 | 0.624 | 0.814 | 0.762 | 0.724 | 0.675 |
L | 0.855 | 0.703 | 0.833 | 0.738 | 0.844 | 0.842 | 0.841 | 0.745 | 0.846 | 0.704 | 0.748 | 0.750 | 0.835 | 0.751 | |
M | 0.940 | 0.838 | 0.906 | 0.876 | 0.935 | 0.933 | 0.945 | 0.844 | 0.928 | 0.806 | 0.920 | 0.902 | 0.909 | 0.879 | |
H | 0.804 | 0.739 | 0.826 | 0.801 | 0.551 | 0.443 | 0.585 | 0.618 | 0.899 | 0.860 | 0.607 | 0.453 | 0.732 | 0.727 | |
Precision | U | 0.875 | 0.809 | 0.577 | 0.447 | 0.985 | 0.979 | 0.931 | 0.912 | 0.714 | 0.606 | 0.950 | 0.948 | 0.827 | 0.769 |
L | 0.669 | 0.498 | 0.800 | 0.720 | 0.530 | 0.474 | 0.705 | 0.609 | 0.602 | 0.378 | 0.588 | 0.571 | 0.608 | 0.523 | |
M | 0.944 | 0.873 | 0.976 | 0.955 | 0.316 | 0.392 | 0.846 | 0.725 | 0.986 | 0.960 | 0.606 | 0.566 | 0.982 | 0.976 | |
H | 0.830 | 0.771 | 0.850 | 0.826 | 0.702 | 0.600 | 0.693 | 0.723 | 0.874 | 0.829 | 0.741 | 0.606 | 0.778 | 0.786 | |
F1 | U | 0.824 | 0.742 | 0.651 | 0.526 | 0.894 | 0.868 | 0.837 | 0.820 | 0.723 | 0.614 | 0.876 | 0.845 | 0.772 | 0.719 |
L | 0.750 | 0.583 | 0.816 | 0.729 | 0.651 | 0.606 | 0.767 | 0.670 | 0.703 | 0.492 | 0.658 | 0.648 | 0.703 | 0.616 | |
M | 0.942 | 0.855 | 0.940 | 0.914 | 0.472 | 0.551 | 0.893 | 0.779 | 0.956 | 0.876 | 0.730 | 0.695 | 0.944 | 0.925 | |
H | 0.830 | 0.743 | 0.871 | 0.817 | 0.832 | 0.797 | 0.799 | 0.771 | 0.853 | 0.758 | 0.814 | 0.774 | 0.855 | 0.820 | |
Kappa | 0.857 | 0.807 | 0.877 | 0.853 | 0.971 | 0.933 | 0.851 | 0.871 | 0.850 | 0.801 | 0.955 | 0.918 | 0.830 | 0.857 | |
OA | 0.749 | 0.623 | 0.789 | 0.702 | 0.595 | 0.534 | 0.675 | 0.628 | 0.793 | 0.664 | 0.630 | 0.572 | 0.770 | 0.717 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ren, X.; Yu, X.; Wang, Y. A Spectral–Spatial Method for Mapping Fire Severity Using Morphological Attribute Profiles. Remote Sens. 2023, 15, 699. https://doi.org/10.3390/rs15030699
Ren X, Yu X, Wang Y. A Spectral–Spatial Method for Mapping Fire Severity Using Morphological Attribute Profiles. Remote Sensing. 2023; 15(3):699. https://doi.org/10.3390/rs15030699
Chicago/Turabian StyleRen, Xiaoyang, Xin Yu, and Yi Wang. 2023. "A Spectral–Spatial Method for Mapping Fire Severity Using Morphological Attribute Profiles" Remote Sensing 15, no. 3: 699. https://doi.org/10.3390/rs15030699
APA StyleRen, X., Yu, X., & Wang, Y. (2023). A Spectral–Spatial Method for Mapping Fire Severity Using Morphological Attribute Profiles. Remote Sensing, 15(3), 699. https://doi.org/10.3390/rs15030699