
Citation: Dong, J.; Zhang, J. A

Multi-Level Distributed Computing

Approach to XDraw Viewshed

Analysis Using Apache Spark.

Remote Sens. 2023, 15, 761. https://

doi.org/10.3390/rs15030761

Academic Editor: Chiman Kwan

Received: 7 November 2022

Revised: 17 January 2023

Accepted: 25 January 2023

Published: 28 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing

Article

A Multi-Level Distributed Computing Approach to XDraw
Viewshed Analysis Using Apache Spark
Junduo Dong and Jianbo Zhang *

School of Geography Information Engineering, China University of Geoscienes, Wuhan 430074, China
* Correspondence: zhangjb@cug.edu.cn

Abstract: Viewshed analysis is a terrain visibility computation method based on the digital eleva-
tion model (DEM). With the rapid growth of remote sensing and data collection technologies, the
volume of large-scale raster DEM data has reached a great size (ZB). However, the data storage
and GIS analysis based on such large-scale digital data volume become extra difficult. The usually
distributed approaches based on Apache Hadoop and Spark can efficiently handle the viewshed
analysis computation of large-scale DEM data, but there are still bottleneck and precision problems.
In this article, we present a multi-level distributed XDraw (ML-XDraw) algorithm with Apache
Spark to handle the viewshed analysis of large DEM data. The ML-XDraw algorithm mainly consists
of 3 parts: (1) designing the XDraw algorithm into a multi-level distributed computing process,
(2) introducing a multi-level data decomposition strategy to solve the calculating bottleneck problem
of the cluster’s executor, and (3) proposing a boundary approximate calculation strategy to solve
the precision loss problem in calculation near the boundary. Experiments show that the ML-XDraw
algorithm adequately addresses the above problems and achieves better speed-up and accuracy as
the volume of raster DEM data increases drastically.

Keywords: viewshed analysis; XDraw; Spark; distributed computing

1. Introduction

The viewshed analysis is a spatial approach to obtaining the visible area of one or
more specified viewpoints on the terrain. It is a typical situation of spatial analytics based
on digital elevation models (DEMs). The viewshed analysis has been used extensively in
military decision-making [1], optimal location selection [2], oceanic blue space [3], optimal
path planning [4], security monitoring [5,6], and other fields.

As the technology of remote sensing and sensor improves by leaps and bounds, the
digital terrain data’s volume of the global earth has reached a great size (ZB) [7]. The
application of these large-scale earth observation data to geospatial research has been
widely and effectively used in global climate change, earthquake disaster prediction and
greenhouse effect analysis [8]. However, the data storage and GIS analysis based on such
large-scale digital data volume become extra difficult [7,9]. As a typical GIS analysis case,
viewshed analysis with large terrain data also faces huge challenges. On the one hand,
traditional GIS software is unable to handle viewshed analysis computation of such large-
scale terrain data. On the other hand, the approaches of high-performance computing
(HPC) are widely used to accelerate GIS computation-intensive algorithms [10]. It shows
great potential to advance parallel spatial analysis [11–13].

Viewshed analysis computes all points’ visibility on the terrain [14] with the given
observation point. Typically, the line-of-sight (LoS) algorithm judges whether a specific
point on terrain is visible by calculating if the straight ray between it and the observa-
tion is obscured. According to different model types of terrain, viewshed algorithms are
mainly divided into TIN (triangular irregular network)-based algorithms and grid-based

Remote Sens. 2023, 15, 761. https://doi.org/10.3390/rs15030761 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs15030761
https://doi.org/10.3390/rs15030761
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0002-4231-5049
https://orcid.org/0000-0001-5381-1024
https://doi.org/10.3390/rs15030761
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs15030761?type=check_update&version=2

Remote Sens. 2023, 15, 761 2 of 21

algorithms [15]. The representative TIN-based viewshed algorithms are the hidden sur-
face removal algorithm[16] and Whitted-Style ray tracing-based algorithm [17]. These
algorithms assume that the targets are ordered by depth from the viewpoint, and their
TIN-based computations have higher accuracy but higher computational complexity. The
representative grid-based viewshed algorithms are the R3, R2, and XDraw algorithms [18].
These algorithms’ time and space complexities are given in Table 1, where n is the number
of points in the DEM. The R2 and XDraw algorithms are slightly less accurate, as they
include approximation processing to speed up the total computation.

Table 1. The time and space complexities of three grid-based viewshed algorithms.

Algorithm Time Complexity Space Complexity

R3 O(n3) O(n)
R2 O(n2) O(n2)

XDraw O(n2) O(n)

The R3 algorithm calculates the LoS of every point on the grid from the viewpoint.
It is relatively accurate but the steep time cost [19,20]. The R2 algorithm calculates inner
points’ visibility approximately during the points’ LoS computing on boundary [15], so that
all points’ visibility on the grid is solved after computing all the boundary points’ visibility.
The XDraw algorithm calculates from the observation point to the outer ones [21], reusing
the inner points’ LoS computing results. The XDraw algorithm spends less time cost than
the R3 and uses fewer memory spaces than the R2 according to Table 1. More significantly,
its spatial independence makes it possible to optimize the algorithm to attain a high level
of parallelization. Hence, the XDraw algorithm is a better choice for the viewshed analysis.

The viewshed algorithms are usually optimized by multi-core parallel computing with
a single machine. For the R3 and R2 algorithms, most research tries to accelerate their LoS
calculation by graphics processing units (GPU) [22] and partition-based approach [23]. The
I/O efficiency of the R3 and R2 algorithm can be improved by two-layered computing [24],
two-level data decomposition [25] and tile-based storage [26] under the GPU’s memory
limit. The data management can be improved by managing variant memory types (constant,
texture, local) in GPU [27]. The data transfer overhead between CPU and GPU can be
optimized by multiple command queues [28]. For the XDraw algorithm, its iterative
computation-intensive steps can be accelerated by GPU [29] and SIMD [30]. The I/O
efficiency of the XDraw algorithm can be optimized by the decomposition of the DEM grid
and indexing data with Morton order [30]. The DEM data’s management of the XDraw
algorithm can be improved in database storage cases [21].

Meanwhile, other research focuses on optimizing viewshed algorithms based on the
distributed cluster with multiple machines. The distributed algorithms are usually imple-
mented by multiple machines’ collaborative computing, which can process larger terrain
data that a single machine cannot process. Compared with the R3 and R2 algorithms, the
XDraw algorithm’s distributed improvement has been studied more. The improved dis-
tributed XDraw algorithm covers 3 parts: the data decomposition strategy, the distributed
schedule strategy, and the distributed storage strategy. The data decomposition strategy of
the XDraw algorithm splits the data for multiple machines to read and compute. Its usual
implementations are equal angle decomposition strategy [18] and its varieties [31,32] with
higher accuracy, and equal area decomposition strategy [33] with fast computing speed.
The distributed schedule strategy of the XDraw algorithm schedules the total computing
process to multiple machines in the distributed cluster. It can be implemented customar-
ily based on OpenMPI [34] such as a fine-granularity scheduling mechanism [35] and a
fault-tolerate mechanism [36], or just used the Apache Spark [37]’s own scheduling mecha-
nism [38,39], which is a big data distributed computing framework. The distributed storage
strategy can be two-level storage [40], tile-based storage [41] and group-based storage [42]
based on Hadoop distributed file system (HDFS) [43] to store the raster DEM data.

Remote Sens. 2023, 15, 761 3 of 21

The mature distributed computing mechanism of Apache Spark supports the stable
implementation and execution of production workload algorithms. Hence, a Spark-based
implementation of viewshed analysis makes a lot of sense. The current distributed XDraw
computing schemes can handle viewshed computing of large DEM data efficiently by the
equal area decomposition strategy and Spark-based computing approach [38]. However,
two problems still exist based on these strategies shown in Figure 1:

(1) The calculating bottleneck problem of the cluster’s executor is that a single executor in the
cluster cannot easily hold the decomposed data in limited memory and process. The
hardware resources such as CPU and memory in the Spark cluster are divided finely
and wrapped into executors. The usual distributed approach divides the DEM grid
into multiple triangles, and then multiple executors in cluster read and process the
data in triangles’ MBR (Minimum Bounding Rectangle) in parallel. However, the MBR
amplifies the data size of its corresponding triangle, which may not be easily read by
a single executor all at once with limited hardware resources. More importantly, the
large triangle may not be split further to reduce its MBR’s size. As an example shown
in Figure 1, the data in both the triangle a and its further split part triangle c may not
be processed all at once by a single executor.

(2) The precision loss problem in calculation near the boundary is that the visibility results
of grid points near the boundary may not be calculated. In Figure 1, the visibility
calculation of point C near the boundary depends on the visibility results of A and B.
However, unfortunately, the machine holding point C cannot obtain the calculation
result of another machine holding point A, so its visibility cannot be calculated.

Figure 1. The distributed XDraw algorithm with equal area decomposition strategy based on Spark,
O is the viewpoint.

This article introduces a multi-level distributed XDraw algorithm using Spark to
optimize the 2 problems above. The main original contributions are as follows.

(1) An improved approach named multi-level distributed XDraw (ML-XDraw) algorithm
is designed to process viewshed analysis of large DEM data with Spark.

(2) A multi-level data decomposition strategy is introduced to solve the calculating
bottleneck problem of the cluster’s executor.

(3) A boundary approximate calculation strategy is proposed to solve the precision loss
problem in calculation near the boundary.

The implementation of the improved XDraw algorithm contains the steps below.

(1) Dividing the DEM grid into multiple levels each holding further divided raster frag-
ments by the multi-level data decomposition strategy.

(2) Calculating each raster fragment’s visibility result by the raster fragment-based XDraw
algorithm, whose implementation is based on the boundary approximate calcula-
tion strategy.

Remote Sens. 2023, 15, 761 4 of 21

(3) Organizing the total calculation process into a multi-level distributed algorithm using
Apache Spark.

The article is organized into the following sections. In Section 2, the serial XDraw
algorithm is introduced, and the principle of the ML-XDraw algorithm, the two strategies
above, and the related algorithm’s implementation are described. In Section 3, the designed
experiments are presented with the relevant evaluation details of performance and accu-
racy. The experimental results are discussed in detail in Section 4. In Section 5, the key
conclusions drawn and additional future research are outlined.

2. Methods
2.1. Serial XDraw Algorithm

The XDraw is a serial viewshed algorithm that calculates all the DEM grid points’
visibility by nested rings’ order from inner to outer. All grid points are grouped into
multiple rings of width 1 {r1, r2, . . . } as shown in Figure 2, starting from the viewpoint and
working from the inside out.

Figure 2. Principle of the Serial XDraw algorithm.

For any point P on the terrain, P is visible if and only if O and P can be connected with
a straight line without being obscured. ZP is the minimum height of P which can make it
visible, VP is the visibility of P, hP is the elevation of P, rP is the ring on which P is located,
and LOP is the length of line segment OP. For any point P on the rP, there must exist 2
grid points M and N on the adjacent inner ring such that OP intersects the line MN at Q.
LoS(P) can be defined as below:

LoS(P) =

hP, if rP is r1

(interp(ZM, ZN)− ho)× LOP
LOQ

+ ho,

if rP is not r1

(1)

where interp can be linear interpolation, so that
ZP = LoS(P)

VP =

{
1, ZP ≤ hP

0, ZP > hP

(2)

P is visible (VP = 1) when ZP ≤ hP, otherwise P is not visible (VP = 0). After that
ZP should be updated by max(ZP, hP). The viewshed calculation of the outer ring’s grid
points depends on the result of the adjacent inner ring ones. The XDraw algorithm solves
all the grid points’ VP by iterative calculation from the inner to the outer ring.

Remote Sens. 2023, 15, 761 5 of 21

2.2. Principle of Multi-Level Distributed XDraw Algorithm
2.2.1. Overview of the Improved Algorithm

The multi-level distributed XDraw (ML-XDraw) algorithm splits the serial XDraw
algorithm into multiple levels’ parallel computing process, as shown in Figure 3.

Figure 3. Principle of the ML-XDraw algorithm.

First, the multi-level data decomposition strategy divides the DEM grid into m
viewpoint-centered annular bands {level1, . . . levelk, . . . levelm}. The borderk is the ring
between levelk and levelk+1 (border0 is the adjacent ring of viewpoint). The borderk contains
up to 4 sub-borders up, down, le f t, right in the corresponding directions, and the vertical
distance between viewpoint O and all sub-borders of borderk is equal. Each level is further
divided into n fragments with approximately the same area.

Then, the ML-XDraw algorithm calculates the viewshed results of all levels in turn
from level1 to levelk and merges them uniformly. All grid points’ ZP on border0 are their
elevation hP. The ML-XDraw algorithm starts from the viewshed computation of level1
driven by border0, and the viewshed computation of levelk+1 is driven by borderk. When
VP of the viewshed result of levelk has been calculated, ZP of all grid points on borderk has
also been calculated. The algorithm combines all intermediate results of every level into
the final viewshed result.

Finally, the viewshed computation of the levelk can be accelerated by n fragment-
based XDraw algorithm processes in parallel. The levelk is divided into n corresponding
fragments, so all grid points’ visibility in a single fragment can be individually calculated
by a single spark executor, which holds hardware resources of CPU and memory. The n
executors do the fragment-based XDraw algorithm concurrently, whose implementation is
based on the boundary approximate calculation strategy.

2.2.2. Multi-Level Data Decomposition Strategy

The multi-level data decomposition strategy solves the calculating bottleneck problem.
This strategy divides the big terrain grid into m× n raster fragments under the executor
memory limit, where m denotes the number of levels, and n denotes the number of divisions
with a single level. The flowchart of the data multi-level data decomposition strategy is
illustrated by Figure 4. The Smax is the maximum raster area that can be analyzed by a single
executor. The borderend is the DEM gird’s out border. The Hk of levelk is the vertical distance
between borderk−1 and borderk, and the f ragmentsk is the set of n fragments created by the
division of levelk, where 1 ≤ k ≤ m.

This strategy calculates the {Hk, f ragmentsk} in numbered order. The function H
is used to calculate Hk, and the function F is used to divide levelk into f ragmentsk. The
strategy firstly calculates {H1, f ragments1} of level1 by border0, and then border1 can be

Remote Sens. 2023, 15, 761 6 of 21

calculated by border0 and H1. By analogy, borderk can be calculated by borderk−1 and Hk,
and then calculate {Hk+1, f ragmentsk+1} of levelk+1. The decomposing process ends when
borderk attaches borderend, then the result fragments can be obtained.

Figure 4. The flowchart of the Multi-level Data Decomposition Strategy.

The function F divides the levelk to n area-equal fragments f ragmentsk. The time
complexity of the XDraw algorithm is O(n2) where n is the area (as known as grid points’
number) of the grid. The f ragmentsk’s viewshed result can be calculated by n executors
in parallel, so all its fragments’ area should be equal. Specifically, borderk−1 is divided
counterclockwise n equal parts according to its length, and the lines connecting the n-
section points and the viewpoint divide levelk into n fragments. Figure 5 shows the details
of the F division process, where m = 6, n = 6. According to the geometric similarity
relationship, the areas of all fragments are approximately equal. To facilitate the geometric
description of the irregularly shaped fragment, a fragment can be further divided into a set
of sectors based on the border’s inflection points. The example in Figure 5 shows that a
single fragment can be described by a combination of 3 basic sectors, where a, c ∈ {0, 1},
0 ≤ b ≤ 4. The n-division of levelk is only related to the n, borderk−1 and Hk, so f ragmentsk
is solved by F:

f ragmentsk = F(n, borderk−1, Hk) (3)

The function H calculates the levelk’ s width Hk with the Smax constraint. All sectors
in a single fragment are read and computed by a single executor in MBR form. Therefore,
the area sum S of all these sectors’ MBR should satisfy S ≤ Smax. The length of borderk−1 is
bl, the vertical distance between borderk−1 and viewpoint O is h′, the maximum width of
levelk is h, the sum of the top and bottom edge lengths of all the sectors in a single fragment
is edge, edge′, respectively. Figure 6 defines the other related edges (le, le′, re, re′, ei, e′i , lw,
lw′, rw, rw′) of the 3 basic sectors. The following Equations (4)–(6) exist according to the
geometric relationship:

bl =

8, k = 0 and O = O1

4, k = 0 and O = O2

2, k = 0 and O = O3

borderk’s length, k > 0

(4)

Remote Sens. 2023, 15, 761 7 of 21

edge = le + ∑b
i=1 ei + re

edge′ = le′ + ∑b
i=1 e′i + re′ =

bl
n

le
le′

=
ei
e′i

=
re
re′

=
h′ + h

h′

lw
lw′

=
rw
rw′

=
h
h′

S = (edge + lw + rw)× h

(5)

Smax = max(S) (6)

Figure 5. The details of function F in the Multi-level Data Decomposition Strategy (m = 6, n = 6,
a, c ∈ {0, 1}, 0 ≤ b ≤ 4). (a–g) are the divisions of (level1, level2, level3, level4, level5, level6), and (h) is
the details of the decomposed fragments.

Figure 6. The details of function H in the Multi-level Data Decomposition Strategy.

Remote Sens. 2023, 15, 761 8 of 21

The h can be solved and defined as f based on the equations above.

h =
− bl

n
+

√√√√
(

bl
n
)2 + 4× (

bl
n
+ ∆

h′
× Smax)

2×
bl
n
+ ∆

h′
= f (n, bl, ∆, h′, Smax)

∆ = max(lw′ + rw′)

(7)

∆ is the maximum value of all the fragments’ lw′ + rw′ in levelk. The ∆ can be easily
calculated by traversing the geometric positions of n-section points and inflection points of
borderk−1. The m1, m2, m3, m4 are defined as the margin from borderk−1’s sub-border le f t,
down, up and right to the borderend, respectively. The Hk should be the minimum of h, m1,
m2, m3, m4, so that:

Hk = min(h, m1, m2, m3, m4)

= min(f (n, bl, ∆, h′, Smax), m1, m2, m3, m4)

= H(n, borderk−1, Smax)

(8)

2.2.3. Boundary Approximate Calculation Strategy

The boundary approximate calculation strategy solves the precision loss problem. The
example in Figure 7 shows that the LoS calculation of point F on sector boundary relies on
ZD and ZE, but D is divided into another sector resulting in the inability to solve for ZF.
For this reason, this strategy implements an approximation approach by calculating one
more grid point’s ZP on the left or right boundary. Taking the left boundary in Figure 7 as
an example, ZM of the intersection point M which is created by the left boundary and BC
can be calculated by ZA, then update ZB with ZM. For the next row’s iteration, ZN of the
intersection point N can be calculated by ZB and ZC, then update ZD with ZN . Finally, the
ZF can be calculated by ZD and ZE.

The raster fragment-based XDraw algorithm is implemented based on the boundary
approximate calculation strategy. An executor calculates a raster fragment’s visibility result
by this algorithm. The main process is traversing a fragment’s sectors and processing them
with the XDraw algorithm, which is given in Figure 7. The fragment in Figure 7 contains
2 sectors a and b. The algorithm performs iterative computation from top to bottom for
a and b, respectively, to obtain the Zp and VP of the grid points. First, the algorithm
copies borderk’s corresponding grid points’ Zp into the array buckets. Then, the algorithm
calculates the grid points’ Zp and VP row by row. VP will be saved to the viewshed
bitmap, and Zp will update the corresponding grid points’ Zp in array buckets. Finally, the
algorithm copies the grid points’ Zp stored in buckets and updates the corresponding grid
points’ Zp of borderk+1.

Figure 7. The Boundary Approximate Calculation Strategy.

Remote Sens. 2023, 15, 761 9 of 21

2.3. Algorithms Implementation Based on Spark

The Spark-based ML-XDraw algorithm is implemented based on the multi-level data
decomposition strategy, which is the overall distributed computing process. The raster
fragment-based XDraw algorithm is implemented based on the boundary approximate
calculation strategy, which is executed by a single executor to calculate a single raster
fragment’s visibility result.

2.3.1. Spark-Based ML-XDraw Algorithm

The ML-XDraw algorithm is a level-grained iterative computation, and it can be
implemented by Apache Spark to accelerate its parallel process. Figure 8 gives the details
of the overall computation. The total process includes 3 main stages: the build stage, the
submit stage, and the merge stage. The build stage builds all levels into RDDs (Resilient
Distributed Datasets). Each RDD treats a level’s fragments as multiple partitions which
can be calculated in parallel. The submit stage submits RDDs in the group to the Spark
cluster to execute actually. A partition’s computation should be allocated to an executor.
If each RDD holds n partitions, no more than w RDDs can be submitted when there are
e(≈w× n) executors. The merge stage merges all executors’ cached computed results to
the final visibility bitmap.

Figure 8. The detail of Spark-based ML-XDraw, which submits multiple RDD tasks concurrently.

The details of the ML-XDraw algorithm are described in Algorithm 1. The operator
map(func) returns a newly formed dataset by passing elements in the origin dataset through
the function func. The operator reduce(func) aggregates the elements of the dataset using the
function func (which accepts two elements and outputs one). The operator cache() persists in
a dataset and keeps it in the memory of executors. The inputs of the ML-XDraw algorithm
are raster DEM data D, viewpoint O, grid’s border borderend, and the cluster’s resource
information. Step 1 uses the multi-level data decomposition strategy to decompose D
into m × n fragments. The build stage contains steps 3–9. Step 5 adds a read operator
to read fragments[k][j] into rddk’s partition j created by step 4. Step 6 blocks the process
until rddk gets the borderk−1. Steps 7–8 add the FragmentXDraw operator to calculate the
visibility result of fragments[k][j] and cache it. Steps 10–11 calculate the maximum amount
of submitted RDDs w, get and store border0. The submit stage contains steps 12–23. Steps
16–18 use map-reduce operators to merge all partitions’ results of rddk into borderk and
store it in Redis. After that, the rddk+1’s calculation can be unblocked in Step 6. Step 22
submit RDDs in groups of k. The merge stage with steps 24–27 merges all RDD’s visibility
results to the final result and writes it for storage.

Remote Sens. 2023, 15, 761 10 of 21

Algorithm 1: Spark-based ML-XDraw algorithm
input : the raster DEM D, the viewpoint O, the end border borderend, the Redis

instance R, the SparkContext instance sc with e available executors, the
number of divisions n, the max raster area each executor can handle Smax

output :viewshed result bitmap

1 Split D to an array f ragments of size m× n by multi-level data decomposition
strategy with {n, Smax, O, borderend}

2 rdds← Array[RDD[border, bitmap]](m);

3 for k← 1 to m do // 1.build stage
4 rdds[k]← sc .parallelize([1, 2, ..., n])
5 .map(j→ read(f ragments[k][j]))
6 .map(repeat b←R.get(k− 1) until b 6= null)
7 .map(f gmt→ FragmentXDraw(f gmt, b))
8 .cache();
9 end

10 w← e / n, border0 ← O ’s adjacent ring;
11 R.set(0, border0);

12 for start← 1 to m with step w do // 2.submit stage
13 tasks← Empty Set;
14 for k← start to start + w do
15 tasks.add({
16 nborder ← rdds[k]
17 .map((border, bitmap)→ border)
18 .reduce((b1, b2)→ b1 + b2);
19 R.set(k, nborder);
20 });
21 end
22 submit tasks concurrently to Spark
23 end

24 sc.union(rdds) // 3.merge stage
25 .map((border, bitmap)→ bitmap)
26 .reduce((bm1, bm2)→ merge(bm1, bm2))
27 .write();

2.3.2. Raster Fragment-Based XDraw Algorithm

The Raster Fragment-based XDraw algorithm consists of two main parts: Fragmen-
tXDraw and SectorXDraw. The FragmentXDraw is the main entry algorithm. The input
of this algorithm is the raster fragment f gmt and its up-border border, and the output
is the viewshed bitmap nbitmap and down-border nborder of f gmt. The up-border and
down-border of a fragment in levelk are borderk−1, borderk, respectively.

The details of the FragmentXDraw are described in Algorithm 2. Steps 1–2 initialize the
nbitmap, nborder, and iteration array buckets returned by the algorithm. Steps 3–9 traverse
f gmt’s all the sectors and calculate with the XDraw algorithm. First, step 5 is responsible
for copying the corresponding grid points’ Zp in the up-order to the buckets. Second, step
6 is responsible for executing the SectorXDraw algorithm to obtain the viewshed result for
the sector. Then, step 7 is responsible for copying the buckets’ Zp to the corresponding grid
points on the down-border. Finally, step 8 is responsible for merging the viewshed result of
the sector with the final result of the fragment it belongs to.

The details of the SectorXDraw are described in Algorithm 3. It traverses row by row
from the viewpoint and calculates the visibility of each grid point inside the sector in turn.
More details of the algorithm are described in Algorithm 3. Step 1 initializes the temporary

Remote Sens. 2023, 15, 761 11 of 21

array zp and the viewshed bitmap bm. Steps 4–5 get the left and right boundaries of
the sector, ignoring the grid points beyond the sector boundary. Steps 6–19 calculate the
elevation of the left boundary point, right boundary point, and interior point of this sector,
respectively, and calculate the Zp and Vp of each point by LoS algorithm. The zp keeps the
Zp of the grid points in this row, and the bm keeps the Vp of all grid points. Step 20 copies
that row’s zp to the array buckets for the next XDraw iteration.

Algorithm 2: FragmentXDraw
input : the raster fragment data f gmt, the up-border border
output : the down-border nborder, all grid points’ Vp bitmap in that fragment

nbitmap
1 nborder, nbitmap← empty border, bitmap;
2 buckets← empty float array;
// sectors[i].d="left|right|up|down"

3 foreach sector ← f gmt.sectors do
4 d← sector.d;

5 copy the grid points’ Zp in border[d] to buckets;
6 buckets, bm← SectorXDraw(sector, buckets);
7 copy buckets to the grid points’ Zp in border[d];

8 nbitmap← merge(nbitmap, bm);
9 end

10 return nborder, nbitmap;

Algorithm 3: SectorXDraw
input : the sector’s MBR DEM data sector, all the first row grid points’ Zp array

buckets
output :all the last row grid points’ Zp array buckets, all grid points’ Vp bitmap in

that sector bm
1 zp← empty float array, bm← empty bitmap;
2 for i← 1 to sector.height do
3 for j← 1 to sector.width do
4 le, rt← sector[i].le f tJ, sector[i].rightJ;
5 if j < le and i > rt then continue;

6 if j = le. f loor then // left boundary
7 hp← (le− j) ∗ sector[i][j]+
8 (j + 1− le) ∗ sector[i][j + 1];
9 zp[j]← LoS(i, le, buckets);

10 else if j = rt.ceil then // right boundary
11 hp← (j + 1− rt) ∗ sector[i][j + 1]+
12 (rt− j) ∗ sector[i][j];
13 zp[j]← LoS(i, rt, buckets);
14 else // inner
15 hp, zp[j]← sector[i][j], LoS(i, j, buckets)
16 endif

17 bm[i][j]← if zp[j] ≤ hp then 0 else 1;
18 zp[j]← max(zp[j], hp);
19 end
20 for j← 1 to sector.width do buckets[j]← zp[j];
21 end
22 return buckets, bm

Remote Sens. 2023, 15, 761 12 of 21

3. Experiments and Results
3.1. Datasets

Open access DEM data of Australia (Available: https://data.gov.au/data/dataset/9a9
284b6-eb45-4a13-97d0-91bf25f1187b, (accessed on 1 February 2020)) was used to evaluate
the computational performance, accuracy, and distributed scalability of the ML-XDraw
algorithm. Figure 9 is the elevation map and the histogram of Australia. The elevation of
most areas is located in the interval [0, 600] (unit: meter).

The determining factors that affect the computation of the viewshed algorithm are the
volume of DEM data and the location of the viewpoint. To verify the efficient processing
capability of ML-XDraw on large-scale DEM data, the experiments were designed based
on four elevation datasets with different sizes created by the origin DEM’s resample. The
associated data files are stored in the extended GRD format and are described in Table 2.
The grid cells located in Australia are the valid points in the dataset DEM grid, and the
others are invalid. To determine that ML-XDraw achieves good performance under various
viewpoint locations, three different types of viewpoints (points on the pit, peak, and flat
areas) were chosen in the corresponding experiments.

Table 2. Experimental datasets.

DataSet Size (GB) Grid-Cell Size Columns Rows Total Grid Cells Valid Grid Cells

DEM1 16.83 2′′ × 2′′ 73,800 61,201 4,516,633,800 2,634,119,863
DEM2 29.91 1.5′′ × 1.5′′ 98,399 81,602 8,029,555,198 4,682,469,269
DEM3 67.30 1′′ × 1′′ 147,600 122,401 18,066,387,600 10,536,479,532
DEM4 105.16 0.8′′ × 0.8′′ 184,500 153,001 28,228,684,500 16,462,348,871

(a) Elevation map of Australia.

50

'

40 -

'

-

'

21.7
-

'

10 -

'

0
0.22

I I

[−oo, 0) [0, 50)

8.76

I

ID Frequency I

18.13 17.23

I I

29.63

4.33

I
I I

[50, 100) [100, 200) [200, 300) [300, 600) [600, +oo)
Evaluation range (m)

(b) Histogram of elevation in Australia.

Figure 9. Elevation map and histogram of Australia.

3.2. Hardware Environment

An Apache Spark cluster holding seven computers was used as the distributed com-
puting platform for the ML-XDraw algorithm. All the cluster nodes were linked by 1 Gbps
rapid ethernet. There were, in all, 96 cores of CPU capacity, 384 GB of memory, and 16 TB
HDD of storage in this cluster. A single computer workstation was utilized to perform
the serial XDraw algorithm for comparison. It had 48 cores of CPU capacity, 96 GB of
memory, and 10 TB HDD of storage. The program compilation environment is JDK-1.8 and
Scala-2.11.11. The runtime environment for the algorithm is Ubuntu 18.04, Hadoop 2.7.1,
and Spark 2.4.7 on all computers.

3.3. Experimental Designs

To test the parallel performance of the ML-XDraw algorithm in this article, four
experiments were conducted. Each experiment was repeated five times, and the results
were averaged.

(1) To study the effectiveness of ML-XDraw in terms of parallel performance, both
the serial XDraw algorithm implemented on a workstation and the ML-XDraw algorithm

https://data.gov.au/data/dataset/9a9284b6-eb45-4a13-97d0-91bf25f1187b
https://data.gov.au/data/dataset/9a9284b6-eb45-4a13-97d0-91bf25f1187b

Remote Sens. 2023, 15, 761 13 of 21

implemented on a cluster was tested on four datasets and three viewpoints. Limited by the
capability of the serial algorithm to handle big terrain data, both algorithms were executed
based on the first three datasets and three types of viewpoints.

(2) To investigate the impact of the multi-level data decomposition strategy on the
overall performance of ML-XDraw, the different number of divisions are used to explore
how the decomposed results affect the overall performance.

(3) To verify the accuracy improvement of the boundary approximate calculation
strategy, the serial XDraw algorithm implemented on the workstation was chosen as a
correct reference. Only the first three datasets were chosen for the same reason as (1).

(4) To explore the scale-out distributed performance of the ML-XDraw algorithm,
it was performed on four datasets and three viewpoints with an increasing number of
Spark executors.

3.4. Performance Evaluation

(1) The speedup ratio (SR) was used to measure the performance of the ML-XDraw
algorithm. It is defined as the ratio between the computational time of the viewshed
analysis executed on the workstation and that implemented on the cluster. Its equation is
as follows:

SR =
Tserial−XDraw
TML−XDraw

(9)

where SR is the speedup ratio, Tserial−XDraw is the computational time of the viewshed
algorithm on the workstation, and the TML−XDraw is the computational time of the proposed
algorithm on the cluster.

(2) The average area ratio (AAR) was used to measure the efficiency of the multi-level
data decomposition strategy. It describes the average area of DEM grid data processed by
each executor throughout a distributed computation. The different number of divisions
will produce different decomposition results, thus the read amplification introduced by
reading the data in MBR type is variant. The AAR is defined as follows:

AAR =
∑ AMBR

ADEM × Nexecutors
(10)

where ∑ AMBR is the area sum of all sectors’ MBR decomposed of the multi-level data
decomposition strategy, ADEM is the area of the total DEM grid, and Nexecutors is the number
of executors in use.

(3) The correctness ratio (CR) was used to measure the accuracy of the proposed ap-
proach when using the boundary approximate calculation strategy or not. It is defined
as follows:

CR =
Ncorrect

Ntotal
(11)

where Ntotal is the total number of valid grid cells in the raster DEM, and Ncorrect is the
number of grid cells with the same visibility result between those of the proposed algorithm
and those of the serial XDraw algorithm.

3.5. Results

The viewshed result maps are illustrated in Figure 10. The two algorithms are tested
on the same dataset DEM3 and three viewpoints. Three viewpoints were used to illustrate
comprehensively the viewshed results of the two algorithms. The DEM3 was used as the
viewshed analysis data to compare the two algorithms. The larger dataset DEM4 cannot be
chosen due to the serial XDraw algorithm cannot calculate it on the workstation’s limited
hardware now. The experimental results and further detailed discussions are given in
Section 4.

Remote Sens. 2023, 15, 761 14 of 21

Colors reprensentation

O Viewpoint Pit

11111 Visible

1111 Invisible

0 300 600 1200 km

j..*':' ..

'
. . '"

-

N

A

(a) Serial XDraw (Pit)

Colors reprensentation

O Viewpoint Pit

11111 Visible

1111 Invisible

0 300 600 1200 km

�-\· ,.

' .. "

w

(b) ML-XDraw (Pit)

.Ytt ,.:. '"'��:
·1'

.,./

·�:4�·�·�:·1(:

··�·

Colors reprensentation

� Correct

1111 Incorrect

0 300 600 1200 km

·-,

. ·.;\

-. .

· .'\.

(c) Differences map (Pit)

Colors reprensentation

O Viewpoint Peak

11111 Visible

11111 Invisible

0 300 600 1200 km

(d) Serial XDraw (Peak)

Colors reprensentation

O Viewpoint Peak

11111 Visible

1111 Invisible

0 300 600 1200 km

-
:-:-:- ..

' .. \.

w

(e) ML-XDraw (Peak)

·•·

.. ;t
· �;. .

. -��7(
.. ··�,f._:·

·"'·•4- '

\,;�;;:;r:v
Colors reprensentation

CJ
1111

Correct

Incorrect

0 300 600 1200 km

......

. ·.;"
-..

,

(f) Differences map (Peak)

Colors reprensentation

0 Viewpoint Flat

11111 Visible

11111 Invisible

0 300 600 1200 km

'

(g) Serial XDraw (Flat)

Colors reprensentation

O Viewpoint Flat

11111 Visible

1111 Invisible

0 300 600 1200 km

'
. . '"

"

(h) ML-XDraw (Flat)

,, ...
. ,.,.�f�·

s};�.: �.�·?.
·��i

.::Jb-:.,;.:r ��
... f1' -,..:.,::�.:{,,

. ,$; ;��'\

Colors reprensentation

� Correct
1111 Incorrect

0 300 600 1200 km

N

A

}:

.,; .. .'

(i) Differences map (Flat)

Figure 10. Viewshed result maps generated by two algorithms based on dataset DEM3. (a,d,g) are
the calculation results of serial XDraw algorithm. (b,e,h) are the calculation results of ML-XDraw
algorithm. (c,f,i) are the differences maps of the two algorithms’ results.

4. Discussions

In Section 4.2, 8 was proved to be the optimal number of divisions for the ML-XDraw
algorithm with Spark. Therefore, in Sections 4.1, 4.3, and 4.4, 8 was selected as the number
of divisions. Except for the experiment shown in the scale-out performance of the approach,
the other three experiments used 64 executors, each with 1 CPU core and 6G RAM. We
specified 25% of memory for Spark runtime usage and 75% of memory for data storage.
Thus, the maximum area of DEM grid data that a single executor could process was
approximately Smax = 1.2× 109.

4.1. Effectiveness of the Approach on Parallel Performance

The performance results illustrated in Figure 11 and Table 3 show that the ML-XDraw
algorithm is computationally efficient as the data volume is increased. First, the multi-level
data decomposition strategy has a compounded influence on the acceleration of the XDraw
algorithm because it divides the raster DEM into multiple fragments with approximately
the same area by maximizing the memory utilization of Spark executors on the cluster.
This approach takes full account of the maximum data area that can be handled by a single
actuator and is more suitable for computing characteristics of the distributed framework
Spark. Second, the ML-XDraw algorithm is relatively gentle under the influence of data
volume. As the volume of data increases, the overall computational time of the ML-XDraw
algorithm performs steadily, while that of the serial XDraw algorithm increases rapidly.
This is because a load of data input is balanced to parallel executors in ML-XDraw, but
the total load is concentrated on one computer in the serial algorithm. Multiple nodes
equally share the computational burden of increasing the data size. Finally, the variant

Remote Sens. 2023, 15, 761 15 of 21

viewpoint on the terrain has nearly no effect on the ML-XDraw algorithm but affects the
performance of the serial XDraw algorithm. This is because the serial algorithm spreads
out the computation from the viewport according to the visibility of the neighboring points.
The computational overhead in the different directions is variant in the serial algorithm.
Instead, the ML-XDraw algorithm divides all levels around the viewport as evenly as
possible, subdivides each level further into the same number of fragments, and calculates
them orderly. The computational overhead under three kinds of viewpoints is nearly the
same as a result.

Table 3. The two algorithms’ overall computing time and speedup ratios.

DataSet Viewpoint Serial XDraw
(min)

ML-XDraw
(min) Speedup Ratio

DEM1

Pit 17.70 4.96 3.57

Peak 15.66 5.84 2.68

Flat 12.44 5.44 2.29

DEM2

Pit 37.14 7.24 5.13

Peak 42.54 8.04 5.29

Flat 30.64 7.46 4.11

DEM3

Pit 195.80 14.89 13.15

Peak 148.09 16.51 8.97

Flat 137.81 16.31 8.45

DEM4

Pit - 27.82 -

Peak - 28.81 -

Flat - 32.18 -

(a) Viewpoint on pit (b) Viewpoint on peak (c) Viewpoint on flat

Figure 11. Comparisons of the computation time of two algorithms.

4.2. Effectiveness of Data Decomposition Strategy

(1) Eliminating the calculating bottleneck of a single executor: The existing distributed
XDraw algorithms which adopt the equal area decomposition strategy, focus on obtaining
evenly-divided areas for the viewshed calculation. With the increase of the data’s amount,
the calculation area generated by these data decomposition strategies could easily exceed
the maximum handling capacity of a single executor. The max area statistics processed
by a single executor are shown in Figure 12. It indicates that as the DEM data volume
is increased, the data decomposition strategy can steadily maintain the maximum area
within the processable range by a single executor (The red line in Figure 11 stands for the
maximum area Smax that a single executor can process). The reason is that the function H
in the multi-level data decomposition strategy calculates each triangle’s maximum height

Remote Sens. 2023, 15, 761 16 of 21

under the max capability (Smax), so that the area of each triangle’s MBR which is processed
by its corresponding executor cannot beyond Smax.

On the contrary, the decomposed part’s area without using that strategy may be beyond
the Smax, so that a single executor cannot easily process it. That is because the area of each
decomposed triangle’s MBR increases without constraints as the dataset volume increases.

(2) Reducing read amplification by increasing the number of divisions: The experiment
results shown in Figures 13 and 14 indicate that as the number of divisions increases, the
calculation time of ML-XDraw becomes shorter and the AAR becomes smaller. Based on
the result, 8 was the optimal number of divisions for the ML-XDraw algorithm with Spark.
The reason is that the smaller AAR means less read amplification effect caused by the MBR
data process approach, and each executor may process fewer data and cost less time. With
the increase in the number of divisions, each triangle is finely decomposed of the function
F. Fine decomposition makes the difference between the triangle and its MBR smaller so
that the read amplification introduced by MBR is reduced.

l.6×l0 10

--o-- pit - with strategy

l.4×l0 10 --0-- peak - with strategy
l,..,

--6- flat - with strategy 0
......
;::::l

� pit - without strategy u

l.2×l0 10
11)
>< • peak - without strategy11)

11)
� flat - without strategy-

bl)

l.0×l0 10C:

'vi
t'd

�
�

8.0×l09

"O
11)
Vl
Vl
11)
u

6.0×l09
0
l,..,

0..

t'd
11)
l,..,

4.0×l09t'd

><
t'd

�

2.0×l09

0.0

DEMI DEM2 DEM3 DEM4

Dataset

Figure 12. Comparisons of max area statistics processed by a single executor with or without the
multi-level data decomposition strategy.

(a) Viewpoint on pit (b) Viewpoint on peak (c) Viewpoint on flat

Figure 13. Comparisons of the computation time of different number of divisions.

Remote Sens. 2023, 15, 761 17 of 21

(a) Viewpoint on pit (b) Viewpoint on peak (c) Viewpoint on flat

Figure 14. Comparisons of the average area ratio of different number of divisions.

4.3. Accuracy Comparison of Algorithms

In this experiment, the results’ accuracy of ML-XDraw is evaluated in cases with the
number of divisions 8 because of its fewer time costs. As an improved approach to XDraw,
this experiment uses (serial) XDraw’s result as the correctness baseline. DEM1-DEM3 were
chosen except DEM4 because the serial XDraw may fail on the workstation with limited
resources. Meanwhile, the ML-XDraw without the boundary approximate calculation
strategy is compared to explore its effectiveness. The CRwith and CRwithout are ML-XDraw
with and without the boundary approximate calculation strategy, respectively.

The results in Table 4 indicate that data size and the number of divisions have no
significant effect on the accuracy. However, there are significant results differences between
different viewpoint positions. As can be seen from the overall results in Figure 10, the
difference between the results of the ML-XDraw and serial XDraw algorithms is more
pronounced at the pit viewpoint and peak viewpoint than at the flat viewpoint. The
differences in the calculations for the pit viewpoint are mainly in the northeast, while the
differences in the calculations for the peak and flat viewpoints are mainly in the east and
central regions. This is due to the fact that the terrain around pits and peaks is more complex
than flat, so the boundary approximation computation strategy cannot accommodate
its drastic terrain changes and ineffectively address the accuracy loss. Therefore, the
calculation accuracy of the flat viewpoint in Table 4 is higher than that of the pit viewpoint
and peak viewpoint. More importantly, the ML-XDraw with approximation is better than
without one, indicating that the approximation strategy works well. The reason is that
the terrain of adjacent grid points is similar, so the line of sight (LoS) of grid points can be
approximated by using the elevation information of adjacent grid points. The boundary
approximate calculation strategy uses the nearby grid points’ Zp to calculate the points’
visibility result on the boundary approximately (given detailed in Section 2.2.3), instead of
just filling it with invisibility result directly.

Remote Sens. 2023, 15, 761 18 of 21

Table 4. Accuracy comparison of the ML-XDraw with the boundary approximate calculation strategy
and without one.

Dataset Viewpoint

The Number of Correct Grid
Cells with or without the
Boundary Approximate

Calculation Strategy

The Number
of Total Valid

Grid Cells

The Correctness Ratio
(CR) with or without

the Boundary
Approximate

Calculation Strategy

With Without CRwith CRwithout

DEM1

Pit 2,542,432,197 2,521,655,681

2,634,119,863

96.52% 95.73%

Peak 2,557,788,752 2,522,559,008 97.10% 95.76%

Flat 2,580,371,920 2,537,012,236 97.96% 96.31%

DEM2

Pit 4,519,469,298 4,482,533,344

4,682,469,269

96.52% 95.73%

Peak 4,544,360,919 4,484,942,211 97.05% 95.78%

Flat 4,584,508,695 4,510,636,787 97.91% 96.33%

DEM3

Pit 10,169,731,863 10,090,239,758

10,536,479,532

96.52% 95.76%

Peak 10,227,544,304 10,092,046,397 97.07% 95.78%

Flat 10,321,489,519 10,155,278,753 97.96% 96.38%

4.4. Scale-Out Performance of the Approach

In this experiment, the ML-XDraw is carried out on a Spark cluster with different
hardware resources. The executor is the computing unit to do the real calculation, so the
number of executors determines the total calculation time of the distributed algorithm.
Figure 15 shows the experimental result in cases of variant viewpoints, datasets, and
the number of executors. First, the computation time of the ML-XDraw decreases as the
number of executors increases totally. This is because the more executors there are, the more
calculation jobs of ML-XDraw can be submitted. Second, the smaller the DEM dataset, the
earlier the curve flattens out. It is due to that the smaller DEM may be divided into fewer
raster fragments, so it needs fewer executors to submit and compute all levels completely
at once.

(a) Viewpoint on pit (b) Viewpoint on peak (c) Viewpoint on flat

Figure 15. Comparisons of the computation time of different number of executors.

5. Conclusions

Compared with other viewshed algorithms, the XDraw algorithm is faster and more
accurate, so it is more commonly used in single viewpoint viewshed analysis. With the
continuous development of more refined remote sensing technology and the expansion
of DEM data scale, viewshed analysis based on large-scale DEM becomes particularly
important. This article proposes a multi-level distributed XDraw viewshed analysis method

Remote Sens. 2023, 15, 761 19 of 21

based on Spark, which includes the multi-level distributed XDraw algorithm (ML-XDraw),
the multi-level data decomposition strategy, and the boundary approximate calculation
strategy. First, the ML-XDraw divides the whole process into multi-level coarse-grained
iterative computations, which makes XDraw computation on a large-scale grid suitable
for computing clusters with different computing levels. Second, the multi-level data
decomposition strategy gives a data division method under the limitation of single executor
memory size, which solves the bottleneck problem. Then, the boundary approximate
calculation strategy gives the approximate processing method of data boundary, which
reduces the precision loss to a certain extent. Finally, this article implements the ML-
XDraw based on Spark. The experimental results show that the ML-XDraw has a perfect
acceleration effect on the viewshed analysis of large-scale DEM, and has good scalability
with small precision loss.

In future work, we will continue to focus on the improvement and optimization of ML-
XDraw in the viewshed analysis of large-scale DEM grid data. First, we will try to calculate
the visibility of large-scale DEM data with higher accuracy, to fully test the performance,
accuracy, and scalability of the algorithm. Second, some other XDraw data decomposition
methods have been proposed in the existing research work. We will further organize
relevant experiments compared with this algorithm and draw relevant conclusions. Then,
we will try to accelerate the calculation of ML-XDraw by heterogeneous computing such
as GPU. GPU can speed up computationally intensive algorithms such as XDraw, but
Spark’s scheduling policies and fault tolerance mechanism do not fully support multi-core
computing hardware such as GPU. We will further explore acceleration solutions that
integrate the Spark distributed framework with multi-core computing hardware such as
GPUs. Finally, we will refine the comparison with existing computing frameworks. Some
current computing frameworks support viewshed analysis for large-scale grid data, and
we will further supplement their comparative experiments with the algorithm in this article
and support relevant conclusions in this article.

Author Contributions: Conceptualization, J.D. and J.Z.; methodology, J.D.; software, J.Z.; vali-
dation, J.D. and J.Z.; formal analysis, J.D.; investigation, J.D.; resources, J.Z.; data curation, J.D.;
writing—original draft preparation, J.D.; writing—review and editing, J.Z.; visualization, J.D.; super-
vision, J.D.; project administration, J.D.; funding acquisition, J.Z. All authors have read and agreed to
the published version of the manuscript.

Funding: This research was funded by National Natural Science Foundation of China under grant
No.41871304.

Data Availability Statement: Data available in a publicly accessible repository. The data presented
in this study are openly available in https://data.gov.au/data/dataset/9a9284b6-eb45-4a13-97d0-9
1bf25f1187b, accessed on 1 November 2022.

Acknowledgments: The authors would like to thank C.Chen and S.Zhao from the China University
of Geosciences for their earlier research work.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Larsen, M.V. Viewshed Algorithms for Strategic Positioning of Vehicles. Master’s Thesis, Faculty of Mathematics and Natural

Sciences, University of Oslo, Oslo, Norway, May 2015.
2. Łubczonek, J.; Kazimierski, W.; Pałczyński, M. Planning of combined system of radars and CCTV cameras for inland waterways

surveillance by using various methods of visibility analyses. In Proceedings of the 2011 12th International Radar Symposium
(IRS), Leipzig, Germany, 7–9 September 2011; pp. 731–736.

3. Qiang, Y.; Shen, S.; Chen, Q. Visibility analysis of oceanic blue space using digital elevation models. Landsc. Urban Plan. 2019,
181, 92–102. [CrossRef]

4. Tracy, D.M.; Franklin, W.R.; Cutler, B.; Luk, F.T.; Andrade, M. Path planning on a compressed terrain. In Proceedings of the 16th
ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, Irvine, CA, USA, 5–7 November
2008; pp. 1–4.

https://data.gov.au/data/dataset/9a9284b6-eb45-4a13-97d0-91bf25f1187b
https://data.gov.au/data/dataset/9a9284b6-eb45-4a13-97d0-91bf25f1187b
http://doi.org/10.1016/j.landurbplan.2018.09.019

Remote Sens. 2023, 15, 761 20 of 21

5. Yaagoubi, R.; El Yarmani, M.; Kamel, A.; Khemiri, W. HybVOR: A voronoi-based 3D GIS approach for camera surveillance
network placement. ISPRS Int. J. Geo-Inf. 2015, 4, 754–782. [CrossRef]

6. Bao, S.; Xiao, N.; Lai, Z.; Zhang, H.; Kim, C. Optimizing watchtower locations for forest fire monitoring using location models.
Fire Saf. J. 2015, 71, 100–109. [CrossRef]

7. Guo, H.; Nativi, S.; Liang, D.; Craglia, M.; Wang, L.; Schade, S.; Corban, C.; He, G.; Pesaresi, M.; Li, J.; et al. Big Earth Data science:
An information framework for a sustainable planet. Int. J. Digit. Earth 2020, 13, 743–767. [CrossRef]

8. Guo, H.; Liu, Z.; Jiang, H.; Wang, C.; Liu, J.; Liang, D. Big Earth Data: A new challenge and opportunity for Digital Earth’s
development. Int. J. Digit. Earth 2017, 10, 1–12. [CrossRef]

9. Mazumder, S.; Bhadoria, R.S.; Deka, G.C. Distributed computing in big data analytics. In InCon-Cepts, Technologies and Applications;
Springer: New York, NY, USA, 2017.

10. DAAC, L. The shuttle radar topography mission (SRTM) collection user guide. In NASA EOSDIS Land Processes DAAC; USGS
Earth Resources Observation and Science (EROS) Center: Sioux Falls, SD, USA, 2015.

11. Shook, E.; Hodgson, M.E.; Wang, S.; Behzad, B.; Soltani, K.; Hiscox, A.; Ajayakumar, J. Parallel cartographic modeling: A
methodology for parallelizing spatial data processing. Int. J. Geogr. Inf. Sci. 2016, 30, 2355–2376. [CrossRef]

12. Yang, C.; Raskin, R.; Goodchild, M.; Gahegan, M. Geospatial cyberinfrastructure: Past, present and future. Comput. Environ.
Urban Syst. 2010, 34, 264–277. [CrossRef]

13. Cheng, T.; Haworth, J.; Manley, E. Advances in geocomputation (1996–2011). Comput. Environ. Urban Syst. 2012, 36, 481–487.
[CrossRef]

14. De Floriani, L.; Marzano, P.; Puppo, E. Line-of-sight communication on terrain models. Int. J. Geogr. Inf. Syst. 1994, 8, 329–342.
[CrossRef]

15. Toma, L. Viewsheds on terrains in external memory. Sigspatial Spec. 2012, 4, 13–17. [CrossRef]
16. Katz, M.J.; Overmars, M.H.; Sharir, M. Efficient hidden surface removal for objects with small union size. Comput. Geom. 1992,

2, 223–234. [CrossRef]
17. Ozimek, A.; Ozimek, P. Viewshed analyses as support for objective landscape assessment. J. Digit. Landsc. Archit. JoDLA 2017,

2, 190–197.
18. Franklin, W.R.; Ray, C.K.; Mehta, S. Geometric algorithms for siting of air defense missile batteries. Res. Proj. Battle 1994, 2756; .

S0022-0302(94)77044-2. [CrossRef]
19. Franklin, W.R.; Ray, C. Higher isn’t necessarily better: Visibility algorithms and experiments. In Proceedings of the Advances in GIS

Research: Sixth International Symposium on Spatial Data Handling; Taylor & Francis: Edinburgh, UK, 1994; Volume 2, pp. 751–770.
20. Zhi, Y.; Wu, L.; Sui, Z.; Cai, H. An improved algorithm for computing viewshed based on reference planes. In Proceedings of the

2011 19th International Conference on Geoinformatics, Shanghai, China, 24–26 June 2011; pp. 1–5.
21. Xu, Z.Y.; Yao, Q. A novel algorithm for viewshed based on digital elevation model. In Proceedings of the 2009 Asia-Pacific

Conference on Information Processing, Shenzhen, China, 18–19 July 2009; Volume 2, pp. 294–297.
22. Yılmaz, G. Accelerating of Line of Sight Analysis Algorithms with Parallel Programming. Master’s Thesis, Middle East Technical

University, Ankara, Turkey, 2017.
23. Wu, H.; Pan, M.; Yao, L.; Luo, B. A partition-based serial algorithm for generating viewshed on massive DEMs. Int. J. Geogr. Inf.

Sci. 2007, 21, 955–964. [CrossRef]
24. Xia, Y.; Li, Y.; Shi, X. Parallel viewshed analysis on GPU using CUDA. In Proceedings of the 2010 Third International Joint

Conference on Computational Science and Optimization, Huangshan, China, 28-31 May 2010; Volume 1, pp. 373–374.
25. Zhao, Y.; Padmanabhan, A.; Wang, S. A parallel computing approach to viewshed analysis of large terrain data using graphics

processing units. Int. J. Geogr. Inf. Sci. 2013, 27, 363–384. [CrossRef]
26. Johansson, E.; Lundberg, J. Distributed Viewshed Analysis an Evaluation of Distribution Frameworks for Geospatial Information

Systems. Master’s Thesis, Chalmers University of Technology, Gothenburg, Sweden, 2016.
27. Gao, Y.; Yu, H.; Liu, Y.; Liu, Y.; Liu, M.; Zhao, Y. Optimization for viewshed analysis on GPU. In Proceedings of the 2011 19th

International Conference on Geoinformatics, Shanghai, China, 24–26 June 2011; pp. 1–5.
28. Axell, T.; Fridén, M. Comparison between GPU and Parallel CPU Optimizations in Viewshed Analysis. Master’s Thesis, Chalmers

University of Technology, Gothenburg, Sweden, 2015.
29. Cauchi-Saunders, A.J.; Lewis, I.J. GPU enabled XDraw viewshed analysis. J. Parallel Distrib. Comput. 2015, 84, 87–93. [CrossRef]
30. Carabaño, J.B.; Sarjakoski, T.; Westerholm, J. Efficient implementation of a fast viewshed algorithm on SIMD architectures. In

Proceedings of the 2015 23rd Euromicro International Conference on Parallel, Distributed, and Network-Based Processing, Turku,
Finland, 4–6 March 2015; pp. 199–202.

31. Dou, W.; Li, Y.; Wang, Y. An equal-area triangulated partition method for parallel Xdraw viewshed analysis. Concurr. Comput.
Pract. Exp. 2019, 31, e5216. [CrossRef]

32. Li, Y.N.; Dou, W.F.; Wang, Y.L. Design and Implementation of parallel XDraw algorithm based on triangle region division. In
Proceedings of the 2017 16th International Symposium on Distributed Computing and Applications to Business, Engineering and
Science (DCABES), Anyang, China, 13–16 October 2017; pp. 41–44.

33. Song, X.D.; Tang, G.A.; Liu, X.J.; Dou, W.F.; Li, F.Y. Parallel viewshed analysis on a PC cluster system using triple-based irregular
partition scheme. Earth Sci. Inform. 2016, 9, 511–523. [CrossRef]

http://dx.doi.org/10.3390/ijgi4020754
http://dx.doi.org/10.1016/j.firesaf.2014.11.016
http://dx.doi.org/10.1080/17538947.2020.1743785
http://dx.doi.org/10.1080/17538947.2016.1264490
http://dx.doi.org/10.1080/13658816.2016.1172714
http://dx.doi.org/10.1016/j.compenvurbsys.2010.04.001
http://dx.doi.org/10.1016/j.compenvurbsys.2012.10.002
http://dx.doi.org/10.1080/02693799408902004
http://dx.doi.org/10.1145/2367574.2367577
http://dx.doi.org/10.1016/0925-7721(92)90024-M
http://dx.doi.org/10.3168/jds. S0022-0302(94)77044-2
http://dx.doi.org/10.1080/13658810601034218
http://dx.doi.org/10.1080/13658816.2012.692372
http://dx.doi.org/10.1016/j.jpdc.2015.07.001
http://dx.doi.org/10.1002/cpe.5216
http://dx.doi.org/10.1007/s12145-016-0263-5

Remote Sens. 2023, 15, 761 21 of 21

34. Graham, R.L.; Shipman, G.M.; Barrett, B.W.; Castain, R.H.; Bosilca, G.; Lumsdaine, A. Open MPI: A high-performance,
heterogeneous MPI. In Proceedings of the 2006 IEEE International Conference on Cluster Computing, Barcelona, Spain, 25–28
September 2006; pp. 1–9.

35. Dou, W.; Li, Y.; Wang, Y. A fine-granularity scheduling algorithm for parallel XDraw viewshed analysis. Earth Sci. Inform. 2018,
11, 433–447. [CrossRef]

36. Dou, W.; Li, Y. A fault-tolerant computing method for Xdraw parallel algorithm. J. Supercomput. 2018, 74, 2776–2800. [CrossRef]
37. Zaharia, M.; Xin, R.S.; Wendell, P.; Das, T.; Armbrust, M.; Dave, A.; Meng, X.; Rosen, J.; Venkataraman, S.; Franklin, M.J.; et al.

Apache spark: A unified engine for big data processing. Commun. ACM 2016, 59, 56–65. [CrossRef]
38. Zhang, J.; Zhao, S.; Ye, Z. Spark-Enabled XDraw Viewshed Analysis. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021,

14, 2017–2029. [CrossRef]
39. Jianbo, Z.; Caikun, C.; Tingnan, L.; Hao, X.; Simin, Z. A Parallel Implementation of an XDraw Viewshed Algorithm with Spark.

In Proceedings of the 2019 IEEE 21st International Conference on High Performance Computing and Communications; IEEE 17th
International Conference on Smart City; IEEE 5th International Conference on Data Science and Systems (HPCC/SmartCity/DSS),
Zhangjiajie, China, 10–12 August 2019; pp. 19–28.

40. Zhang, J.; Zhou, S.; Liang, T.; Li, Y.; Chen, C.; Xia, H. A two-level storage strategy for map-reduce enabled computation of local
map algebra. Earth Sci. Inform. 2020, 13, 479–492. [CrossRef]

41. Zhang, G.; Xie, C.; Shi, L.; Du, Y. A tile-based scalable raster data management system based on HDFS. In Proceedings of the
2012 20th International Conference on Geoinformatics, Hong Kong, China, 15–17 June 2012; pp. 1–4.

42. Liu, Z.; Hua, W.; Liu, X.; Liang, D.; Zhao, Y.; Shi, M. An Efficient Group-Based Replica Placement Policy for Large-Scale Geospatial
3D Raster Data on Hadoop. Sensors 2021, 21, 8132. [CrossRef] [PubMed]

43. Shvachko, K.; Kuang, H.; Radia, S.; Chansler, R. The hadoop distributed file system. In Proceedings of the 2010 IEEE 26th
Symposium on Mass Storage Systems and Technologies (MSST), Incline Village, NV, USA, 3–7 May 2010; pp. 1–10.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1007/s12145-018-0339-5
http://dx.doi.org/10.1007/s11227-018-2321-x
http://dx.doi.org/10.1145/2934664
http://dx.doi.org/10.1109/JSTARS.2021.3051210
http://dx.doi.org/10.1007/s12145-020-00452-x
http://dx.doi.org/10.3390/s21238132
http://www.ncbi.nlm.nih.gov/pubmed/34884135

	Introduction
	Methods
	Serial XDraw Algorithm
	Principle of Multi-Level Distributed XDraw Algorithm
	Overview of the Improved Algorithm
	Multi-Level Data Decomposition Strategy
	Boundary Approximate Calculation Strategy

	Algorithms Implementation Based on Spark
	Spark-Based ML-XDraw Algorithm
	Raster Fragment-Based XDraw Algorithm

	Experiments and Results
	Datasets
	Hardware Environment
	Experimental Designs
	Performance Evaluation
	Results

	Discussions
	Effectiveness of the Approach on Parallel Performance
	Effectiveness of Data Decomposition Strategy
	Accuracy Comparison of Algorithms
	Scale-Out Performance of the Approach

	Conclusions
	References

