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Abstract: Semi-empirical kernel-driven models have been widely used to characterize anisotropic
reflectance due to their simple form and physically meaningful approximation. Recently, several
kernel-driven models have been coupled with topographic effects to improve the fitting of bidi-
rectional reflectance over rugged terrains. However, extensive evaluations of the various models’
performances are required before their subsequent application in remote sensing. Three typical
kernel-driven BRDF models over snow-free rugged terrains such as the RTLSR, TCKD, and the
KDST-adjusted TCKD (KDST-TCKD) were investigated in this paper using simulated and observed
BRFs. Against simulated data, the fitting error (NIR/Red RMSE) of the RTLSR gradually increases
from 0.0358/0.0342 to 0.0471/0.0516 with mean slopes (α) increases from 9.13◦ to 33.40◦. However,
the TCKD and KDST-TCKD models perform an overall better fitting accuracy: the fitting errors of
TCKD gradually decreased from 0.0366/0.0337 to 0.0252/0.0292, and the best fit from the KDST-
TCDK model with NIR/Red RMSE decreased from 0.0192/0.0269 to 0.0169/0.0180. When compared
to the sandbox data (α from 8.4◦ to 30.36◦), the NIR/Red RMSE of the RTLSR model ranges from
0.0147/0.0085 to 0.0346/0.0165, for the TCKD model from 0.0144/0.0086 to 0.0298/0.0154, and for
the KDST-TCKD model from 0.0137/0.0082 to 0.0234/0.0149. Using MODIS data, the TCKD and
KDST-TCKD models show more significant improvements compared to the RTLSR model in rugged
terrains. Their RMSE differences are within 0.003 over a relatively flat terrain (α < 10◦). When α is
large (20◦–30◦ and >30◦), the RMSE of the TCKD model has a decrease of around 0.01 compared
to that of the RTLSR; for KDST-TCKD, it is approximately 0.02, and can even reach 0.0334 in the
savannas. Therefore, the TCKD and KDST-TCKD models have an overall better performance than
the RTLSR model in rugged terrains, especially in the case of large mean slopes. Among them,
the KDST-TCKD model performs the best due to its consideration of topographic effects, geotropic
growth, and component spectra.

Keywords: BRDF; kernel-driven model; rugged terrain; terrain sandbox; model evaluation

1. Introduction

The bidirectional reflectance-distribution function (BRDF) is the basic physical quantity
used to characterize the anisotropic property of land surface reflectance [1]. It has been
widely used in the retrieval of energy budget variables (such as albedo, land surface
temperature, and so on) [2–5], biophysical and vegetation structure parameters (such
as the normalized difference vegetation index (NDVI), leaf area index (LAI), fraction of
absorbed photosynthetically active radiation (FPAR), and so on) [6,7], and regional land-
cover classification [8]. Therefore, the accurate description of the BRDF of land surface is
crucial for quantitative remote-sensing applications. Additionally, more challenges appear
in rugged areas. The complex terrain not only changes the geometric relationship of “sun-
terrain-sensor” [9], but also affects the distribution of radiation energy in mountainous
areas through factors such as mutual shading, shadowing and multiple scattering [10,11].
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Thus, rugged terrain strongly affects the land surface BRDF, which in turn will lead to a
larger uncertainty for subsequent quantitative remote-sensing applications in mountainous
areas [12–15].

In the past decades, great efforts have been made in modeling the bidirectional re-
flectance over rugged terrains for a single slope and a composite slope [16]. For a single
slope, topographic effects are considered through mechanistic modeling. Some models were
developed from radiative transfer (RT) models, such as the path length correction model
(PLC) [17], and the improved 4SAIL canopy radiative-transfer model (4SAILT) [18]. There
are also some models based on geometrical optical (GO) theory; the GOMST model [19]
was proposed to consider the changes of incidence and observation geometry in the GOMS
model. The geometric–optical model for sloping terrains (GOST) was developed from
the four-scale geometric–optical model [20], and the simplified geometric–optical model
was developed for crown-scene components modeling over rugged terrain (SGOT) [21].
Regarding the hybrid models (GO-RT models), Wu et al. [22] took the GOMS model as
the main framework, considered the geotropic growth of the canopy, and introduced the
SAIL model to describe the effect of multi-scattering within the canopy on the component
reflectance (GOSAILT model). In terms of composite sloping terrain, Wen et al. [23] ex-
tended the bidirectional reflectance model to composite slopes by establishing a virtual
slope (equivalent slope model, ESM). Additionally, Hao et al. [10] further constructed
a bidirectional reflectance model coupled with diffuse skylight over composite sloping
terrain (dESM).

In the generation of remote-sensing satellite products, the semi-empirical kernel-
driven model has been widely used [24]. Among these kernel-driven models, the RTLSR
model is applied to the operational BRDF/albedo product algorithms such as MODIS and
VIIRS [25–27]. However, the RTLSR model is intended for flat terrain, which significantly in-
creases the uncertainty of BRDF retrieval over rugged areas [10,13,28]. Based on the RTLSR
model framework, a new sloping-terrain kernel-driven model (KDST) was developed from
the GOSAILT model for the single slope by Wu et al. [29]. Recently, a topography-coupled
kernel-driven model with the correction of diffuse skylight effects(TCKD) has also been
proposed by Hao et al. [30], based on the dESM for the composite slopes. The TCKD model
illustrates that the bidirectional reflectance of composite-sloping terrain can be modeled as
the product of equivalent slope reflectance and a sub-topographic impact factor. Based on
TCKD model, the single-sloping kernel-driven model (KDST) is used to characterize the
reflectance of equivalent slope in this paper, referred to as the KDST-TCKD model.

In this paper, the performances of the RTLSR, TCKD, and KDST-TCKD models were
evaluated over a clear-sky rugged terrain with BRFs of different mean slopes. The three
models are introduced in Section Two. Section Three presents the BRF datasets used for
assessments and the evaluation method. Section Four illustrates the evaluated results of
the three kernel-driven models on rugged terrain under a clear sky. Finally, conclusions
and limitations are summarized in Section Five.

2. Model Development
2.1. RTLSR Kernel-Driven Model

The linear, kernel-driven model can be expressed by the empirically weighted sum of
the kernels, as follows:

R(θs, θv, ϕ, λ) = fiso(λ) + fgeo(λ)Kgeo(θs, θv, ϕ) + fvol(λ)Kvol(θs, θv, ϕ) (1)

where θs, θv and λ are the solar zenith angle, view zenith angle, and relative azimuth
angle, respectively, Kgeo(θs, θv, ϕ) and Kvol(θs, θv, ϕ) are the geometric optical kernel and
the volume scattering kernel, respectively, and fiso(λ), fgeo(λ) and fvol(λ) represent the
weight coefficients of isotropic kernel (equals to 1), geometric optical kernel, and scattering
kernel with wavelength λ, respectively.
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The RTLSR kernel-driven model uses the LiSparseReciprocal kernel and the RossThick
volume-scattering kernel. The LiSparseReciprocal geometric optical kernel can be for-
mulized as follows [31]:

KLiSparseR = O(θs, θv, φ)− sec θs − sec θv +
1
2
(1 + cos ξ ) sec θv sec θs (2)

where O(θs, θv, φ) is the overlap function of the viewing and sunlit shadows [32] and ξ
refers to the phase angle regarding the viewing and illuminating geometries.

The RossThick volume-scattering kernel was derived by Roujean et al. [33]. It is based
on the radiative transfer theory of Ross [34], expressed as:

KRossThick =
(π/2− ξ) cos ξ + sin ξ

cos θs + cos θv
− π

4
(3)

2.2. TCKD Model

The TCKD model illustrates that the bidirectional reflectance of composite-sloping
terrain can be modeled as the product of the equivalent slope reflectance and a sub-
topographic impact factor T. The reflectance of equivalent slope can be modeled by any
reflectance model for a single slope. The subpixel slope and aspect, shadowing effect, and
terrain occlusion and illumination as variables are involved in the calculation of T. The
calculation is written as follows:

Rrugged (θs, θv, φs, φv, skyl, λ) = fiso (λ) ∗ KisoTCKD(θs, θv, φs, φv, skyl)
+ fvol (λ) ∗ KvolTCKD(θs, θv, φs, φv, skyl) + fgeo (λ) ∗ KgeoTCKD(θs, θv, φs, φv, skyl)

(4)

The above three kernel functions in the TCKD model can be expressed as:

KisoTCKD (θs, θv, φ, skyl) = (1− skyl) ∗ T1(θs, θv, φ) + skyl ∗ T2(θv, φ)

KvolTCKD (θs, θv, φ, skyl) = (1− skyl) ∗ T1(θs, θv, φ) ∗ Kvol
(
ie
s, ie

v1, ϕe
1
)

+skyl ∗ T2(θv ,φ)
π ∗

∫ 2π
0

∫ π/2
0 Kvol

(
ie
s, ie

v2, ϕe) cos ie
s sin ie

sdie
sdϕe

KgeoTCKD (θs, θv, φ, skyl) = (1− skyl) ∗ T1(θs, θv, φ) ∗ Kgeo
(
ie
s, ie

v1, ϕe
1
)

+skyl ∗ T2(θv ,φ)
π ∗

∫ 2π
0

∫ π/2
0 Kgeo

(
ie
s, ie

v2, ϕe) cos ie
s sin ie

sdie
sdϕe

where ie
s, ie

v and ϕe
1 represent the equivalent solar zenith angle, view zenith angle, and relative

azimuth angle with respect to the virtual single slope (i.e., the equivalent slope), respectively,
skyl is the ratio of diffuse skylight to total incident radiation, Rrugged (θs, θv, φs, φv, skyl, λ)

is the reflectance of composite slope pixels in wavelength λ under different illumination
conditions, and T1(θs, θv, φ) and T2(θv, φ) are the sub-topographic impact factors when
skyl = 0 and skyl = 1, respectively, calculated as:

T1(θs, θv, φ) =
cos ie

v1 cos ie
s1

cos(θs)

N
∑

k=1
ΘskΘvk/ cos αk

N
∑

k=1
Θvk cos ivk/ cos αk

(5)

T2(θv, φ) = cos ie
v2

N
∑

k=1
ΘvkVk/ cos αk

N
∑

k=1
Θvk cos ivk/ cos αk

(6)

where ivk is the relative VZA corresponding to the kth local subpixel slope, αk is the slope of
the kth subpixel slope, N is the total number of the subpixel slopes within the coarse-scale
pixel, Θsk and Θvk indicate whether the kth subpixel slope is sunlit or visible to the sensor,
respectively, and Vk is the sky view factor.
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2.3. KDST-TCKD Model

The KDST model [29] is a kernel-driven model for a single slope based on the GOSAILT
model and the ROSST radiative transfer model. Its most significant feature is the improve-
ment of the geometric optical kernel, which considers the geotropic growth of vegetation
and the component spectra ratio factor. The KDST model also includes two kernel forms of
direct and diffuse radiation. The geometric optical kernels of KDST, KgeoBT_KDST(θ

′
s, θ′v, ϕ′)

for direct illumination and Kgeo DT_KDST(θ
′
s, θ′v, ϕ′) for diffuse illumination, are written as:

KgeoBT_KDST(θ
′
s, θ′v, ϕ′) = cos α

(
M
[
O(θ′s, θ′v, ϕ′)− sec θ′s − sec θ

′
v
]

+ fBRF(θ
′
s, θ′v, ϕ′) sec θ′s sec θ′v

1
2 (1 + cos ξ)+M− fBRFN(θ

′
s = 0, θ′v = 0))

(7)

Kgeo DT_KDST
(
θ′s, θ′v, ϕ′

)
=
(

fHDRF
(
θv
′, ϕv

′)−M
)

sec θ′v cos α (8)

where θ′ and ϕ′ are zenith and azimuth angles in the slope coordinates, respectively,
fBRF(θ

′
s, θ′v, ϕ′) is the bidirectional leaf-crown linking factor, which can be provided by the

physical-canopy radiation-transfer model, M is the component spectra ratio factor (CSRF),
and fHDRF(θv

′, ϕv
′) is hemispherical–directional leaf-crown linking factor. For the specific

solution process of each factor, please refer to the Wu et al. [29].
Under a clear sky (skyl = 0), the volumetric-scattering kernel Kvol_KDST is obtained by

substituting the angles after simple geometric rotation from the horizontal datum to the
local terrain into Equation (3). The volumetric-scattering for diffuse illumination can be
derived from an integral of Kvol_KDST over the viewing hemispherical. As this paper focuses
on the clear-sky situation, the details of the volumetric-scattering for diffuse illumination
can be referred to in Wu et al. [29].

As introduced in Section 2.2, the reflectance of the equivalent slope in the TCKD model
can be modeled by the reflectance model for single-sloping terrain. Here, the single-sloping,
kernel-driven (KDST) model is used to characterize the reflectance of the equivalent slope
in this paper, titled the KDST-TCKD model. In this way, the KDST-TCKD can express the
composite-sloping reflectance while considering the geotropic growth, which is also an
important factor in topographical effects. The KDST-TCKD model of composite-sloping
terrain can be expressed as:

Rrugged (θs, θv, φs, φv, skyl, λ) = fiso (λ) ∗ KisoKDST-TCKD(θs, θv, φs, φv, skyl)
+ fvol (λ) ∗ KvolKDST-TCKD(θs, θv, φs, φv, skyl) + fgeo (λ) ∗ KgeoKDST-TCKD(θs, θv, φs, φv, skyl)

(9)

where

KisoKDST-TCKD (θs, θv, φ, skyl) = (1− skyl) ∗ T1(θs, θv, φ) + skyl ∗ T2(θv, φ)

KvolKDST-TCKD (θs, θv, φ, skyl) = (1− skyl) ∗ T1(θs, θv, φ) ∗ Kvol_KDST
(
ie
s1, ie

v1, ϕe
1
)

+skyl ∗ T2(θv ,φ)
π ∗

∫ 2π
0

∫ π/2
0 Kvol_KDST

(
ie
s, ie

v2, ϕe) cos ie
s sin ie

sdie
sdϕe

KgeoKDST-TCKD (θs, θv, φ, skyl) = (1− skyl) ∗ T1(θs, θv, φ) ∗ KgeoBT_KDST
(
ie
s1, ie

v1, ϕe
1
)

+skyl ∗ T2(θv ,φ)
π ∗ KgeoDT_KDST

(
ie
s, ie

v2, ϕe)
The kernel function of RTLSR is in the form of BRDF kernels, but TCKD and KDST

contain both direct- and diffuse-radiation kernel functions. Therefore, for the consistency
of the evaluation of the models, the kernel functions of the TCKD and KDST models under
clear sky or direct illumination (i.e., the skyl is set to 0) are used in this paper.

3. Materials and Methods

Both simulated and observed data are employed for this evaluation. As this paper
focuses on the evaluation of the three models in a bidirectional reflectance, all evaluation
data sets refer to clear-sky conditions. These include the simulated BRFs (bi-directional
reflectance) from 3-D LESS (LargE-Scale remote-sensing data and image Simulation frame-
works) (presented in Section 3.1), ground-measured BRFs from sandboxes (in Section 3.2),



Remote Sens. 2023, 15, 786 5 of 18

and satellite observations from MODIS (in Section 3.3). The evaluation method is presented
in Section 3.4.

3.1. Simulated Multi-Angle Reflectance of Rough Terrain with 3-D LESS

In recent years, the 3D radiative-transfer model has been widely used in the simu-
lation of bidirectional reflectance characteristics of complex scenarios at the pixel scale.
Qi et al. [35] developed a computer simulation model, LESS, based on a ray-tracing algo-
rithm. Three digital elevation models (DEM) of rugged terrain were produced with different
mean slopes and normal distribution of elevations (α = 9.13◦, α = 22.83◦, and α = 33.40◦).
The scene size was 1200 m × 1200 m (Figure 1). In order to make the fluctuation of the ter-
rain smoother and more natural, the method of mean filtering (3 × 3 filtering window) was
used to average the DEM within a certain range. The structural and spectral information of
individual trees, vegetation distribution (Poisson distribution) and “sun-sensor” geometry
were set in the LESS system. The vegetation type in the scene was birch, and the spectral
attributes of leaves, branches, and soil adopt the default spectral attributes of the LESS
system. The ratio of diffuse skylight to total incident radiation is set to 0 (skyl = 0). The
reflectance of the view zenith angles in the principal plane (PP) were from −70◦ (backward
scattering) to 70◦ (forward scattering) with an increment of 10◦. The solar zenith angle
was fixed at 45◦. Figure 2 shows the reflectance of the simulated tree canopy on the solar
principal plane.
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3.2. Multi-Angle Reflectance Data from the Terrain Sandbox

In order to acquire BRFs of large-scale rugged terrain, Wen et al. [16] proposed the
use of the miniature terrain sandbox to simulate the multi-angle reflectance under the
influence of rugged terrain. At present, four sandboxes with different, typical terrain
features have been built at the Huailai Remote Sensing Experiment Station of the Chinese
Academy of Sciences, shown as Figure 3. They are scaled from the real DEM with a ratio of
500:1, numbered1 to 4, and contain a relatively flat surface with an average slope of 8.4◦, a
normally distributed rugged terrain with an average slope of 24.7◦, a concave valley with
an average slope of 25.7◦, and a convex ridge with an average slope of 30.36◦. The multi-
angle reflectance can be obtained by using existing imaging spectroscopy technology and
multi-angle observation equipment under clear-sky days, when the sky diffuse light can be
ignored. Figure 4 presents the hemispheric NIR reflectance of the four sandboxes. Figure 4
shows that the hemispheres of the reflectance distributions of Sandbox1 and Sandbox3
are approximately symmetrical about the solar principal plane. However, Sandbox2 and
Sandbox4 show the asymmetric hemispheric distribution of reflectance due to the strong
heterogeneity of rugged terrain.
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Figure 3. Four typical terrain sandboxes ((a,b) are both normally distributed terrains. Their mean
slopes are 8.4◦ and 24.7◦, respectively; (c) is a concave valley with an average slope of 25.7◦; and (d) is
a convex ridge with an average slope of 30.36◦).

3.3. MODIS Satellite Observations

In addition to the ground measurements of BRFs, satellite observations are another
important source of data for the model assessments. The red and near-infrared reflectance
from MOD09GA and MYD09GA, the atmospheric-corrected surface-reflectance products
from MODIS boarded on Terra and Aqua with a spatial resolution of 500 m, are employed
here. The study area is located in the Qinghai-Tibet Plateau, as it contains a variety
of rugged terrain with abundant land-cover types, suitable for evaluation of mountain
kernel-driven models, shown in Figure 5. A 16 day cycle was selected from 23 August to
7 September 2020 to accumulate the multi-angular reflectance. High-quality reflectance
data with a clear sky factor were selected based on a quality control flag, and the pixels with
a clear sky data of less than seven were discarded. The 30 m DEMs in the study area were
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collected from the Advanced Spaceborne Thermal Emission and Reflection Radiometer
(ASTER) Global Digital Elevation Model (GDEM), which was jointly developed by NASA
and the Ministry of Economy, Trade, and Industry (METI) of Japan. Finally, a MCD12Q1
land-cover product was used to classify and extract MODIS pixels of the same land-cover
type. Five vegetation cover types were extracted, including grasslands, coniferous forests,
broadleaved forests, savannas and shrubs.
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3.4. Evaluation Methods

To comprehensively evaluate the three models, two aspects are fully investigated.
First, as the topographic effects distort the BRDF shapes, the variations of the kernel
shape of the three models under different terrains are analyzed. Then, the performance of
the three models in terms of retrieval and fitting is further evaluated using the different
sources of BRFs mentioned above. The influence of the angle sampling and surface type
on the retrieval results are fully considered in the model evaluation. The retrieval error
distribution (violin plots) and scatter plots are used for evaluation. Additionally, metrics
such as the root mean-square-error (RMSE) and mean absolute percentage error (MAPE),
Equations (10) and (11), are employed to quantitatively indicate the accuracy.

RMSE =

√
1
n

n

∑
i=1

(yi − xi)
2 (10)

MAPE =
1
n

n

∑
i=1

∣∣yi − xi
∣∣

xi
∗ 100% (11)

where n is the total number of angles, x is the BRF reference (from the three evaluation
datasets), and y represents the model-predicted BRF.

4. Result
4.1. Evaluation of Kernel Shapes

The kernel shape is of great importance in accurately characterizing the distribution of
bidirectional reflectance. Therefore, the performances of the three kernel-driven models for
rugged terrain are first analyzed through the investigation and comparison of their kernel
shapes. The three terrains in Section 3.1 are utilized. The component spectral factor was
0.8 as for KDST-TCKD. The solar zenith angle and solar azimuth angle were 45◦ and 0◦

respectively in the kernel function. Then the view zenith angles are changed along and
cross the principal plane.

Figure 6 shows the kernel shapes of Kiso, Kgeo, and Kvol for the three models under
the three topographies of Figure 1. First, Figure 6a–c shows that the isotropic kernel value
of the RTLSR model is set to 1, because the RTLSR model assumes a flat and homogeneous
surface. However, even if the interior of the rugged terrain is Lambertian, the entire scene
is anisotropic due to shadowing effects and uneven distribution of solar radiation [23].
Therefore, the Kiso of the TCKD and KDST-TCKD models varies with the view geometry
and changes more significantly with the increase of the roughness of the terrain. Secondly,
the Kvol in the RTLSR model cannot describe the hotspot effect in the PP because the
correlation between the solar and sensor angles is not considered [36]. However, the
volumetric-scattering kernels in the TCKD and KDST-TCKD models are larger in the near-
hotspot region (fewer terrain shadows) due to the addition of topographic factors, as is
shown in Figure 6e,f. In addition, the volumetric-scattering kernels of the TCKD and KDST-
TCKD models show similar kernel shapes. This is because the RossT radiative-transfer
model [37] is equivalent to the geometric rotation of the reflectance of the slope with the
reflectance of the horizontal plane. Third, Figure 6g–i shows that, when compared to the
TCKD model and RTLSR model, the KDST-TCKD model presents a great difference in the
kernel shape due to a great improvement in the geometric optical kernel. Compared with
the RTLSR model in the PP, the Kgeo values of the TCKD and the KDST-TCKD models are
generally larger in the forward direction and smaller in the backward direction.
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Figure 6. The kernel shape of the RTLSR, TCKD and KDST−TCKD (abbreviated as ‘Model’) models
in the PP under different terrains (the three terrains in Section 3.1, (a–c) are the kernel shapes of the
isotropic kernel, (d–f) are the volumetric-scattering kernel shapes, and (g–i) are the geometric–optical
kernel). Columns from left to right are the three rugged terrains with mean slopes of 9.13◦, 22.83◦,
and 33.40◦, respectively.

Figure 7 shows the shapes of the isotropic kernel, geometric–optical kernel, and
volumetric-scattering kernel of the KDST-TCKD model along the principal plane (PP) and
the cross-principal plane (CPP) under different terrains. Additionally, Kiso is correlated with
VZA due to shadowing effects and the uneven distribution of incident energy. Furthermore,
as is shown in Figure 7a,b, the difference of Kiso between the PP and CPP indicates that
Kiso is also associated with relative azimuth angle (RAA). Figure 7e,f indicates that the
geometric–optical kernel has a dome shape and exhibits a distinct hot-spot effect. With the
increase of the average slope, the Kgeo increases as a whole in the PP. While the hot-spot
value is basically unchanged, the width of the hot spot increases. Wu et al. [29] explained
that this was due to the increase in slope, which resulted in a decrease in the relative height
of the canopy center from the slope [36]. Figure 7c,d shows that, similar to the Kgeo, the
value of the Kvol increases with the average slope in the PP and the Kvol kernel shape
becomes asymmetric in the CPP.
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and CPP, respectively.

4.2. Model Comparisons with 3-D LESS Simulations

In this section, LESS-simulated BRFs of the three rugged terrains in Figure 1 will be
used to examine the three kernel-driven models. As angle sampling has a great influence
on the retrieval accuracy [38], all angle-sampling combinations are retrieved and verified
in order to objectively evaluate these models. Here, seven angles are selected as a retrieval
group, the rest of the data are used as a verification group, and the RMSE is calculated for
each retrieval. Figure 8 shows the retrieval error statistics and distribution of models in
different terrains (DEM1: α = 9.13◦, relatively flat; DEM2: α = 22.83◦, moderately rugged;
DEM3: α = 33.40◦, steeply rugged). Table 1 shows statistics for all retrieval error results.

As is shown in Figure 8, the RMSE distribution of the RTLSR and TCKD models in
red bands and NIR bands is similar in relatively flat terrain (DEM1: α = 9.13◦). Meanwhile,
the KDST-TCKD model shows the highest accuracy because it takes into account the
geotropic growth and component spectra. The boxplots show that the KDST-TCKD model
has the lowest median RMSE, shown as the flattest boxes for all three terrains. With the
increase of mean slope from 9.13◦ to 33.40◦, the retrieved error distribution of RTLSR in
the NIR and red bands gradually disperses, and the median RMSE in the box plot also
increases gradually. On the contrary, the retrieved error distributions of the TCKD and
KDST-TCKD models are gradually concentrated, and the median RMSE in the boxplot is
also gradually reduced.

Table 1 also quantitatively reflects these evaluation results. For instance, as α in-
creases from 9.13◦ to 33.40◦, the NIR/Red RMSE of RTLSR increased from 0.0358/0.0342
to 0.0471/0.0516, that of the TCKD model varies from 0.0366/0.0337 to 0.0252/0.0292,
and that of the KDST-TCKD model changes from 0.0192/0.0269 to 0.0169/0.0180. The
reason is that topography and component spectra gradually become the main factors affect-
ing the bidirectional reflection of the composite slope with the increase of the roughness.
Hao et al. [13] also illustrated these influencing factors in the results of a global sensitivity
analysis of composite-slope reflectance. Therefore, the retrieved accuracy of the TCKD and
KDST-TCKD models gradually increases with the increase of terrain roughness, which
indicates that they have good applicability in rugged terrain. In particular, the KDST-TCKD
model shows the highest accuracy because it takes topographic effects, geotropic growth,
and component spectra into consideration.
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Figure 8. Comparison of performance of the RTLSR model, TCKD model and KDST-TCKD model
in red and NIR bands. The abscissa was divided into three groups, representing the three terrains
of Figure 1 with mean slopes of 9.13◦, 22.83◦, and 33.40◦, respectively. The width of the violin plot
represents the frequency of the RMSE distribution.

Table 1. Accuracy statistics of RTLSR model, TCKD model and KDST model in the red and NIR
bands over three different terrains.

Models

DEM1 DEM2 DEM3

NIR Red NIR Red NIR Red

RMSE MAPE RMSE MAPE RMSE MAPE RMSE MAPE RMSE MAPE RMSE MAPE

RTLSR 0.0358 7.859% 0.0342 23.791% 0.0392 9.665% 0.0446 39.195% 0.0471 15.7869% 0.0516 61.869%
TCKD 0.0366 7.992% 0.0337 23.337% 0.0257 6.245% 0.0324 28.049% 0.0252 8.8421% 0.0292 30.511%

KDST-TCKD 0.0192 4.409% 0.0269 17.711% 0.0167 4.522% 0.0224 18.407% 0.0169 5.1521% 0.0180 18.930%

RMSE: root-mean-square error; MAPE: mean absolute percentage error.

4.3. Model Comparisons with Sandbox Measurements

The same evaluation processes are performed in this section as in Section 4.2 using
the sandbox data. In general, the KDST-TCKD model is better than TCKD model, and
TCKD model is better than RTLSR model in the retrieved accuracy of NIR and red bands.
Figure 9 shows that the three models demonstrated similar and good performance in
Sandbox1 due to the weak topographic effect. The NIR/Red RMSE was approximately
0.014/0.008 in Sandbox1 (Table 2). As the topography became steeper such as in Sandbox2
(α = 24.7◦) compared to Sandbox1 (α = 8.4◦), the three models presented different error
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distributions in Sandbox2, shown in the Figure 9. In Sandbox2, the NIR/Red RMSE of the
RTLSR model was 0.0346/0.0156, that of the TCKD model was 0.0298/0.0127, and that
of the KDST-TCKD model was 0.0175/0.0079. It is obvious that the KDST-TCKD model
performs the best over rough terrain. Similar results have also been shown in another
two typical terrains, including the valley in Sandbox3 (α = 25.7◦, concave valley) and the
ridge in Sandbox4 (α = 30.36◦, convex ridge). In Sandbox3, the NIR/Red RMSE of the
RTLSR model was 0.0174/0.0126, that of the TCKD model was 0.0171/0.0125, and that
of the KDST-TCKD model was 0.0133/0.0116. In Sandbox4, the NIR/Red RMSE of the
RTLSR model were 0.0265 and 0.0165, respectively, those of the TCKD model were 0.0251
and 0.0154, respectively, and those of the KDST-TCKD model were 0.0234 and 0.0149,
respectively (Table 2). The NIR/Red violin plots also show that the error distribution of
the KDST-TCKD model was smaller and more concentrated compared to the RTLSR and
TCKD models (Figure 9). Therefore, it is revealed that the accuracy of the RTLSR model is
worse over the rough surface, while the KDST-TCKD model shows great advantages.
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Figure 9. Comparison of performance of RTLSR model, TCKD model and KDST-TCKD model in red
and NIR band over four different sandboxes. The width of the violin plot represents the frequency of
the RMSE distribution. Columns from left to right are the four rugged terrains (Sandbox1: α = 8.4◦,
normal distribution; Sandbox2: α = 24.7◦, normal distribution; Sandbox3: α = 25.7◦, concave valley;
Sandbox4: α = 30.36◦, convex ridge). The first row are results for NIR band, and the second for
red band.

Table 2. Accuracy statistics of RTLSR model, TCKD model and KDST model in the red and NIR
bands over four different sandboxes.

Band Models
Sandbox1 Sandbox2 Sandbox3 Sandbox4

RMSE MAPE RMSE MAPE RMSE MAPE RMSE MAPE

NIR
RTLSR 0.0147 4.198% 0.0346 14.797% 0.0174 5.247% 0.0265 12.343%
TCKD 0.0144 4.129% 0.0298 14.002% 0.0171 5.194% 0.0251 11.699%

KDST-TCKD 0.0137 3.878% 0.0175 8.402% 0.0133 4.441% 0.0234 11.111%

Red
RTLSR 0.0085 3.542% 0.0156 18.666% 0.0126 5.495% 0.0165 12.023%
TCKD 0.0086 3.582% 0.0127 17.866% 0.0125 5.443% 0.0154 11.297%

KDST-TCKD 0.0082 3.368% 0.0079 11.124% 0.0116 5.167% 0.0149 11.075%

4.4. Model Comparisons with MODIS Observations

The performance of the three models was further evaluated based on MODIS re-
flectance over different terrain and land surface types to examine their applications in
satellite data. The MODIS pixels of five vegetation-cover types were extracted, including
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grassland, coniferous forest, broadleaved forest, savannas, and shrub. The pixels of the five
land cover types were further categorized into three groups based on α: 0◦–10◦ (relatively
flat); 10◦–20◦ (gently rugged); 20◦–30◦ (moderately rugged) and >30◦ (steeply rugged). The
kernel coefficients of the three models in the red and NIR bands were retrieved using seven
randomly selected angles. The remaining observations were used as validations.

Tables 3 and 4 show the metrics of the three models in the red and NIR bands, re-
spectively. The scatterplots in Figure 10 are shown to visualize the retrieved results of the
three models under different average slopes. In general, when α < 10◦, the three models
have similar and good performance due to the weak topographic effect in all the five
land-cover types. The accuracy improvement (the difference from RMSE of the RTLSR) of
the KDST-TCKD and TCKD models are within 0.003. With the increase of α, the TCKD
show better results than the RTLSR, the KDST-TCKD has revealed the highest accuracy.

Table 3. Comparisons of the retrieval accuracy of RTLSR model, TCKD model, and KDST-TCKD
model in the NIR band under different land-cover types and different α.

Model
Broad Needleleaf Savannas Shrub Glasslands

RMSE MAPE RMSE MAPE RMSE MAPE RMSE MAPE RMSE MAPE

a < 10◦
RTLSR 0.0309 6.161% 0.0601 15.405% 0.0603 16.128% 0.0250 5.875% 0.0300 6.261%
TCKD 0.0307 6.011% 0.0600 15.285% 0.0599 15.974% 0.0231 5.268% 0.0293 6.057%

KDST-TCKD 0.0302 5.905% 0.0580 14.721% 0.0589 15.679% 0.0223 5.058% 0.0270 5.693%

10◦–20◦
RTLSR 0.0360 7.443% 0.0703 18.080% 0.0682 16.792% 0.0296 6.575% 0.0340 7.413%
TCKD 0.0309 6.154% 0.0649 16.446% 0.0692 16.296% 0.0248 5.124% 0.0297 6.069%

KDST-TCKD 0.0286 5.667% 0.0602 14.964% 0.0590 14.274% 0.0202 4.641% 0.0249 5.430%

20◦–30◦
RTLSR 0.0421 10.684% 0.0801 22.129% 0.0677 17.138% 0.0569 15.719% 0.0396 9.480%
TCKD 0.0287 6.485% 0.0691 18.817% 0.0613 15.924% 0.0465 12.289% 0.0332 7.581%

KDST-TCKD 0.0218 5.112% 0.0633 17.360% 0.0575 14.952% 0.0377 10.518% 0.0300 6.825%

a > 30◦
RTLSR – – 0.0842 27.130% 0.0718 19.038% 0.0602 19.127% 0.0514 14.240%
TCKD – – 0.0843 26.971% 0.0450 14.929% 0.0498 14.558% 0.0409 10.833%

KDST-TCKD – – 0.0765 24.059% 0.0384 11.752% 0.0420 12.544% 0.0340 8.625%

Table 4. Comparisons of the retrieval accuracy of RTLSR model, TCKD model and KDST-TCKD
model in the red band under different land-cover types and different α.

Model
Broad Needleleaf Savannas Shrub Glasslands

RMSE MAPE RMSE MAPE RMSE MAPE RMSE MAPE RMSE MAPE

a < 10◦
RTLSR 0.0250 6.642% 0.0544 19.478% 0.0549 19.452% 0.0209 6.587% 0.0233 7.422%
TCKD 0.0243 6.343% 0.0543 19.288% 0.0542 19.260% 0.0202 6.170% 0.0224 6.909%

KDST-TCKD 0.0238 6.147% 0.0530 18.742% 0.0531 18.721% 0.0196 5.986% 0.0216 6.684%

10◦–20◦
RTLSR 0.0282 9.161% 0.0557 21.029% 0.0690 21.201% 0.0213 7.632% 0.0333 10.116%
TCKD 0.0238 7.221% 0.0515 18.514% 0.0634 18.849% 0.0164 5.420% 0.0274 7.849%

KDST-TCKD 0.0221 6.621% 0.0484 17.358% 0.0595 17.188% 0.0157 5.136% 0.0236 7.008%

20◦–30◦
RTLSR 0.0643 14.828% 0.0664 24.813% 0.0695 21.954% 0.0416 17.608% 0.0322 11.468%
TCKD 0.0579 11.395% 0.0609 22.068% 0.0566 17.112% 0.0336 14.103% 0.0272 9.016%

KDST-TCKD 0.0470 9.869% 0.0547 19.154% 0.0536 16.064% 0.0297 12.137% 0.0247 8.014%

a > 30◦
RTLSR – – 0.0692 27.268% 0.0774 23.279% 0.0609 35.147% 0.0429 19.369%
TCKD – – 0.0601 25.493% 0.0533 19.120% 0.0453 24.785% 0.0334 14.436%

KDST-TCKD – – 0.0584 25.733% 0.0523 18.318% 0.0358 19.428% 0.0283 11.548%

When α is between 10◦ and 20◦, the accuracy improvement of the TCKD model is
about 0.005, and that of the KDST model is about 0.01. The greater the terrain ruggedness,
the better performance the KDST-TCKD and TCKD models have revealed when compared
to the RTLSR. When α is large (20◦–30◦ and >30◦), the TCKD model’s RMSE generally
decreases by about 0.01 when compared to the RTLSR’s RMSE, and the RMSE of the
KDST model decreasesby about 0.02. Especially in the savannas, significant accuracy
improvements are presented with α increases. When α belongs to <10◦, the NIR MAPE and
NIR RMSE of the three models in the savannas are around 16% and 0.06, respectively. As
is shown in Tables 3 and 4, with the increase of α, the NIR RMSE/MAPE of RTLSR in the
savannas increased from 0.0603 (16.128%) to 0.0718 (19.038%), and that of the TCKD model
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varies from 0.0599 (15.974%) to 0.0450 (14.929%), whereas that of the KDST-TCKD changes
from 0.0589 (15.679%) to 0.0384 (11.752%). When α > 30◦, the RMSE of the two models
compared to RTLSR in the NIR band decrease by 0.0268 and 0.0334 respectively, and for
red band these values decrease by 0.0241 and 0.0251, respectively.
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Figure 10. Comparison of the NIR BRF retrieved by the RTLSR, TCKD, and KDST−TCKD models
with MODIS BRFs under different terrains (all land types are included). The orange lines are the
lines of best fit. The colors correspond to the point density from the lowest (blue) to highest (yellow).
From the first row to the fourth row are different mean slopes, and columns from left to right are the
RTLSR, TCKD, and KDST−TCKD models.
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Although the error of the TCKD and KDST-TCKD models sometimes increases with
the increase of α due to the large uncertainty of satellite data, the increase of the RTLSR
model is more significant in comparison. As shown in Figure 10, when compared with
RTLSR model, the scatter points of the TCKD and KDST-TCKD models are more concen-
trated, and their fitting lines are closer to the “1:1 line”. For instance, as α increases, the Red
RMSE/MAPE of RTLSR increased from 0.0209 (6.587%) to 0.0609 (35.147%) in the shrub,
that of the TCKD model varied from 0.0202 (6.170%) to 0.0453 (24.785%), and that of the
KDST-TCKD changed from 0.0196 (5.986%) to 0.0358 (19.428%). In addition, the retrieval
accuracies of the three models are different under different surface types with the same
mean slope. The retrieval errors of the three models over evergreen needleleaf forests are
larger than those of other land-cover types, and the increase is yet larger with the increase
of mean slope. On one hand, this may be related to the clustered, non-random structure of
the needleleaf canopy [39], which is inconsistent with the assumptions in the RossThick
kernel (random distribution), resulting in a large deviation. On the other hand, this land
type is more complex and affected by terrain, and the spatial heterogeneity within the pixel
is greater.

In general, as α increases, the TCKD and the KDST-TCKD models gradually outper-
form the RTLSR model—especially the KDST-TCKD model. It is worth noting that when α

is larger than 30◦, the TCKD and KDST-TCKD models perform better in fitting the MODIS
observations than the RTLSR model, as is shown in Figure 10 (α > 30◦).

5. Discussion and Conclusions

This paper combines the KDST and TCKD models to characterize composite-sloping
terrain BRDF values based on the equivalent slope model and sub-topographic factors to
derive the so-called KDST-TCKD model. It comprehensively evaluates the applicability of
three kernel-driven models (RTLSR, TCKD, and KDST-TCKD) over snow-free rugged ter-
rain using the 3D LESS simulation dataset, terrain sandbox dataset, and MODIS reflectance
dataset under a clear sky.

The investigation of the kernel shape reveals that the topographic effects have signifi-
cant distortions on the kernel shape in the TKCD and KDST-TKCD models when compared
to the original RTLSR kernels. The volumetric-scattering kernel of the RTLSR model Kvol
characterizes a bowl-shaped curve in the PP, and it cannot depict the hot-spot effects due
to the neglect of the correlation between the solar illumination and sensor observation.
However, the volumetric-scattering kernels of TCKD and KDST-TCKD models are large
in the near-hot-spot region because fewer shadows can be observed. Compared with the
RTLSR model, the Kgeo values of the TCKD and the KDST-TCKD models in the PP are
generally larger in the forward direction and smaller in the backward direction.

In terms of the evaluation using simulated data, the performances of the three models
are evaluated using the simulated LESS data, ground measurements from terrain sandboxes,
and satellite sensor observations from MODIS. The evaluation results using LESS simulation
data show that, with the increase of terrain roughness from the mean slope (α) of 9.13◦

to 33.40◦, the accuracy of the RTLSR model gradually decreases, and the accuracies of
the TCKD and KDST-TCKD models gradually increases. In detail, the NIR/Red RMSE
of RTLSR increased from 0.0358/0.0342 to 0.0471/0.0516, that of the TCKD model varies
from 0.0366/0.0337 to 0.0252/0.0292, and that of the KDST-TCKD model changes from
0.0192/0.0269 to 0.0169/0.0180.

Achieving the BRDF measurements in a mountainous area is much more difficult than
measurement on flat ground, so another highlight of this paper is that the terrain sandbox
data is used for the first time to evaluate the model, and the validity of sandbox data
was proved. The three models have similar and good performance in Sandbox1 (α = 8.4◦)
due to the weak topographic effect. The performance of the TCKD and KDST-TCKD
models is better than that of RTLSR in the other three sandboxes with more rugged typical
terrain (Sandbox2: α = 24.7◦, normal distribution; Sandbox3: α = 25.7◦, concave valley;
Sandbox4: α = 30.36◦, convex ridge). The results of the sandbox evaluation show that the
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error distribution of the KDST-TCKD model is smaller and more concentrated compared to
the RTLSR and TCKD models.

With respect to the MODIS data, the TCKD and KDST-TCKD models have an overall
better performance than the RTLSR model for different mean slopes. The accuracy improve-
ment (the difference from RMSE of the RTLSR) of the KDST-TCKD and TCKD models are
within 0.003 over a relatively flat terrain (α < 10◦). Increasing with the roughness of the
terrain, the TCKD and KDST models have a more significant improvement in accuracy than
the RTLSR model, and have a smaller RMSE. When α is large (20◦–30◦ and >30◦) for all the
five land covers, the RMSE of the TCKD model decreases by about 0.01 compared to that of
the RTLSR, and that of the KDST-TCKD model by about 0.02. Especially in the savannas,
the RMSE decrease can even reach to 0.0334 for the KDST-TKCD model when compared
to the RTLSR. In addition, the performances of three models are different under different
surface types with the same mean slope. In general, their retrieved accuracies are approx-
imately equal over a relatively flat surface. With the increase of terrain roughness, the
TCKD and KDST-TCKD models gradually show good applicability and advantages. The
KDST-TCKD model in particular shows the highest accuracy because it takes topographic
effects, the geotropic growth, and component spectra into consideration.

In the future, it is necessary to comprehensively utilize multi-angle satellite observa-
tions to carry out global assessments of this proposed kernel-driven KDST-TCKD model
under different surface types. The current kernel-driven model coupling topographic ef-
fects should also be further modified and perfected in order to improve the retrieval ability
of surface bidirectional reflectance and the application of quantitative remote sensing.
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