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Abstract: Currently, remote sensing crop identification is mostly based on all available images
acquired throughout crop growth. However, the available image and data resources in the early
growth stage are limited, which makes early crop identification challenging. Different crop types
have different phenological characteristics and seasonal rhythm characteristics, and their growth
rates are different at different times. Therefore, making full use of crop growth characteristics to
augment crop growth difference information at different times is key to early crop identification. In
this study, we first calculated the differential features between different periods as new features based
on images acquired during the early growth stage. Secondly, multi-temporal difference features of
each period were constructed by combination, then a feature optimization method was used to obtain
the optimal feature set of all possible combinations in different periods and the early key identification
characteristics of different crops, as well as their stage change characteristics, were explored. Finally,
the performance of classification and regression tree (Cart), Random Forest (RF), Gradient Boosting
Decision Tree (GBDT), and Support Vector Machine (SVM) classifiers in recognizing crops in different
periods were analyzed. The results show that: (1) There were key differences between different crops,
with rice changing significantly in period F, corn changing significantly in periods E, M, L, and H, and
soybean changing significantly in periods E, M, N, and H. (2) For the early identification of rice, the
land surface water index (LSWI), simple ratio index (SR), B11, and normalized difference tillage index
(NDTI) contributed most, while B11, normalized difference red-edge3 (NDRE3), LSWI, the green
vegetation index (VIgreen), red-edge spectral index (RESI), and normalized difference red-edge2
(NDRE2) contributed greatly to corn and soybean identification. (3) Rice could be identified as early
as 13 May, with PA and UA as high as 95%. Corn and soybeans were identified as early as 7 July, with
PA and UA as high as 97% and 94%, respectively. (4) With the addition of more temporal features,
recognition accuracy increased. The GBDT and RF performed best in identifying the three crops in
the early stage. This study demonstrates the feasibility of using crop growth difference information
for early crop recognition, which can provide a new idea for early crop recognition.

Keywords: early crop identification; crop growth characteristics; multi-temporal features; stage
change characteristics

1. Introduction

The Northeast Black Soil Region is China’s main commercial grain base [1–3]. Timely
and accurate access to crop planting information in the early stages of the Black Soil
Region is of great significance to improving agricultural management and productivity
and ensuring national food security [4,5].

Remote sensing has proven to be a practical and efficient way to obtain information
for crop mapping [6]. According to different monitoring phenological periods, current crop
identification can be divided into pre-season, mid-season, and post-season crop identifica-
tion, as early identification has relatively little research due to the lack of available image
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and sample data and the difficulty of capturing the characteristic information of the crop
at the crop early stage [7]. However, due to sufficient image and sample data, satisfactory
identification accuracy has been achieved in mid-season and post-season, but the mapping
results are obtained relatively late and cannot meet the demand of relevant departments
for timely access to crop acreage information [8,9]. In contrast, early crop identification can
obtain crop planting information at an earlier time and is more practical, which can provide
timely information reference for planting management and food production security, make
the formulation of relevant government policies more directional, and provide a guarantee
for the healthy and sustainable agricultural development [10,11].

Finding distinguishable features of crops in the early growing season is essential to
improving the accuracy of early crop identification [12]. Currently, commonly used remote
sensing identification features include spectral, spatial, temporal, and polarization features,
as well as auxiliary features such as Digital Elevation Models (DEMs) [13–15]. Among them,
temporal characteristics can reflect crop growth and development during the growth stage.
Many researchers have found that combining temporal characteristics with other features
is conducive to improving crop identification accuracy at the early growth stage [16–18].
Crop identification methods based on single-temporal remote sensing imagery distinguish
ground objects by finding the features of crops that differ significantly in the “critical
period”. For example, rice in the irrigation period, rapeseed in the flowering period, and
cotton in the boll opening period appear white, and all have more distinctive characteristics
compared to other crops in the key phenological period. Early identification of these
crops can be achieved by finding sensitive bands and constructing indices to enhance
their performance with only one phase of imagery [19–21]. However, homozygosity and
heterozygosity are more serious for areas with complex crop planting structures, which
may lead to low recognition accuracy.

Multi-temporal remote sensing data can effectively capture the spectral confusion
between crops caused by different crop phenological periods and effectively improve crop
discriminability, which has been widely applied to remote sensing crop recognition [22,23].
Some researchers have collected images of crops over the entire fertility period from sowing
to pre-harvest, then used multi-source remote sensing data fusion and multiple remote sens-
ing indices to improve crop information and identify crops earlier. Wei et al. [24] achieved
early identification of corn, rice, and soybeans by collecting images of the entire growth
period and integrating them with multiple time-phased information via an incremental
design to make up for the lack of a single phase. In addition, some researchers have used
different curve shapes in the time-series images of different crops to identify early-stage
crops by mining obvious differences at certain periods or time points. They then used
relevant decision knowledge or similarity matching to set appropriate thresholds for these
differences. For example, Ashourloo et al. [25] found that the summation of differences
between the red and near-infrared reflectance in a time series of Landsat images of alfalfa
was significant. Also, the average values of the near-infrared and red bands during the
growing season were remarkably higher for alfalfa than for other crops. Based on these
findings, a new vegetation index was constructed to achieve efficient automatic mapping of
alfalfa. Based on the growth phenological characteristics of different crops, a time-weighted
dynamic time warping (TWDTW) similarity matching algorithm was used to calculate
the similarity distance between each image element to be classified and the crop standard
sequence to achieve early identification of winter wheat [26]. Zhang et al. [27] successfully
realized automatic early season mapping of winter wheat by phenological indicators such
as NDVI integration, NDVI maximum, the relative rate of change, and a series of winter
wheat discriminative classification rules, and then by a threshold method. However, they
have integrated image data from the entire growth period, with mapping not completed
until the end of the season. Different crops have unique growth and development rules.
Over time, growth rates and spectral characteristics may differ [28,29], which brings a good
opportunity for the early identification of crops. Qiu et al. [30], combined with the knowl-
edge of crop growth and development, designed the index of vegetation index variation in
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the early and late growth period of winter wheat, established the winter wheat extraction
model, which efficiently and quickly realized the multi-year continuous mapping of winter
wheat in ten provinces of North China, the main production area of China, with the overall
recognition accuracy up to 92%. However, there is also a lack of analysis on which periods
have greater growth differences and which features contribute more during these key peri-
ods. Therefore, our research objective is to mine the differential crop growth information
from the early growing season, then construct multi-temporal indicators that can effectively
highlight the differences in their growth processes and explore its impact on early crop
identification in typical black soil areas in Northeast China. Our contributions are:

(1) Design indicators that can reflect crop growth characteristics and construct a crop
growth characteristics dataset composed of a sequence of spectral bands and their derived
indices for the early growing season.

(2) Explore the potential ability to use different growth datasets to differentiate crops
at early growth stages and analyze their spatial and temporal variations.

(3) Achieve remote sensing recognition of crops in different periods based on different
classifier models, and summarize the earliest identifiable date and identifiable accuracy of
different crops.

2. Study Sites and Data Sources
2.1. Study Sites

The Songnen Plain is one of the world’s three major black soil areas and is an important
commercial grain production base in China. Grain production is related to the national
economy’s stability and food security. Our experimental area is located in the western
part of the Songnen Plain (125◦02′E–127◦64′E, 48◦24′N–48◦94′N) (Figure 1), which has a
temperate continental monsoon climate with an average altitude of about 220 m and is
suitable for mechanized cultivation of agriculture. The multi-year average temperature
ranges from 0 ◦C to 5 ◦C, the accumulated temperature ranges from 1800 ◦C to 2800 ◦C, and
the precipitation ranges from 400 mm to 700 mm. the precipitation is mainly concentrated
in the summer months (May–October). Its climatic conditions are favorable for the growth
of crops. This region’s main high-quality food crops are corn, soybeans, and rice, which
occupy more than 96% of the total area of the study area, and their cropping systems are all
harvested one year. Based on the previous phenological period [31], we found that the three
crops were basically sown from late April to early May and gradually entered the harvest
period from September to October. Rice differs more significantly from other crops during
the flooding and transplanting periods. Corn and soybeans have similar phenological
periods in the early stages, but there are some differences in the phenological period after
entering July, which can be distinguished according to these phenological differences. Their
phenological periods are shown in Table 1.

2.2. Data Sources
2.2.1. Satellite Images

The Sentinel-2 mission has two twin satellites, Sentinel-2A and Sentinel-2B, and each
identical satellite is equipped with a multispectral sensor, that covers 13 spectral bands and
has a swath width of 290 km. Furthermore, this mission monitors the Earth with a resolution
of up to 10 m and a revisit time of 5 d after a dual-satellite network. Compared with other
multispectral satellite data, the Sentinel-2 satellite has more time and spatial resolution
advantages. It can provide more image data resources for the early identification of crops.
Spectral characteristics are the essential characteristics of crop recognition and monitoring.
This study used ten common features of original spectral bands, including three visible
bands, three red-edge bands, one near-infrared band, and two short-wave infrared waves.
The Sentinel data resources we used are obtained through the Google Earth Engine (GEE)
cloud platform. The platform’s dataset is the Sentinel-2 L2A product, which ESA has pre-
processed for radiometric calibration, atmospheric correction, and automatic resampling of
the bands to uniform resolution. Hence, the data reflect the reflectance information of the
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surface. We did the imagery processing to clip each period using the common area SHP to
produce an image dataset with a size of 6850 × 7767 pixels. GEE platform not only enables
users to easily access and process a large number of geospatial data sets but also reduces
the time and energy in the image pre-processing stage, providing a new opportunity for
rapid and accurate remote sensing crop information monitoring [32–34].

Table 1. Phenological periods of main crops in the studied region.

Month Apri May June July August September October

Ten
Days 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1

Rice Sowing Emergence/Flooding Transplanting Reviving Tillering Booting Heading Milky/Mature Harvest

Corn Sowing Emergence Three
leaves Seven leaves Jointing Heading Milky/Mature Harvest

Soybeans Sowing Emergence Three
leaves Bloom Pod Mature Harvest
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In addition, from the analysis of this study’s date-by-date crop identification results,
it was found that the satisfactory accuracy of early crop identification could be reached
(≥85%) when used for up to 7 July. Therefore, we collected six available remote sensing
images in the early stage, and their information is shown in Table 2.

Table 2. Image data was used in this study.

Serial Number Sentinel Image Number Acquisition
Date Band Name Cloud

Coverage
Width-
Height

1 20200428T023549_20200428T024214_T51UXP 28 April 2020

B2, B3, B4, B5,
B6, B7, B8, B8A,

B11, B12
≤10% 6850 × 7767

2 20200508T023549_20200508T023546_T51UXP 8 May 2020
3 20200513T023551_20200513T023553_T51UXP 13 May 2020
4 20200528T023549_20200528T023954_T51UXP 28 May 2020
5 20200612T023601_20200612T023555_T51UXP 12 June 2020
6 20200707T023549_20200707T023550_T51UXP 7 July 2020

2.2.2. Historical Crop Type Mapping

Since the ground data collection work has not been carried out in the early stages of
crops, which made a great challenge to early crop identification. Previous studies have shown
that historical crop-type mapping contains a large amount of a priori knowledge. There has
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been a consensus that bulk crops have little difference in crop planting structure over a short
period of time [31–33]. So, we combined this information with remote sensing images to
generate training samples to guide early crop identification in the year to be classified. The
historical crop-type mapping was derived from the results of Zhao [35]. It included corn, rice,
and soybean, with an overall identification accuracy of 93.12% and a Kappa coefficient of 0.90,
which meets the requirements of our study. The process of automatically generating samples
based on historical crop-type mapping is: (1) Based on the historical crop-type mapping in
2019, and remote sensing imagery in 2020, candidate images of three crops were obtained by
segmentation, respectively. (2) K-means clustering was applied to the candidate image areas
to obtain clustering results. The number of clusters was 12. (3) We calculated the area of these
sub-clustering results and selected the largest class as the “pure sample” area for each crop
type. (4) The pure sample area was raster vectorized, and training sample points for each crop
were randomly generated in the top N (the number of training samples of each crop type)
sub-vector areas with the largest area. Through the above steps, 823, 815, and 618 samples for
corn, soybean, and rice were obtained.

2.2.3. Ground References

The location and crop type of each sample in the study area were recorded with a
handheld Global Positioning System (GPS) instrument; the study area’s main object types
included corn, rice, soybeans and other land cover types (rivers, water bodies, etc.). Our
main target objects are three main crops, so 218 corn samples, 205 soybeans samples, and
156 rice samples were selected to evaluate the classification results of all images for each
period. Their spatial distribution is shown in Figure 1.

3. Method

This study mainly focuses on the impact of multi-temporal difference features on
early crop identification. It includes three parts. Section 3.1 introduces the spectral and
vegetation index features used in single-period remote sensing imagery for the subsequent
design of multi-temporal differential features. Section 3.2 presents the combinatorial design
of the key change period in the early crop growth period. Based on the crop growth and
development characteristics, the image features of different periods were calculated and
combined to construct a multi-temporal growth characteristics dataset for early-stage crops.
Section 3.3 explores the key periods of change in different crops and their key features. A
feature optimization method is used to optimize the most effective features for identifying
crops in different periods. Finally, crop recognition is achieved using classification and
regression tree (Cart), random forest (RF), gradient boosting decision tree (GBDT), and
support vector machine (SVM) modeling. The early crop recognition accuracy is analyzed
from different perspectives using various evaluation indicators. The technical route is
shown in Figure 2.

3.1. Feature Construction

In terms of the features used, this study excluded B1, B9, and B10 bands with coarse
spatial resolution and only used B2, B3, B4, B5, B6, B7, B8, B8A, B11, and B12; these repre-
sent 10 original bands and 12 vegetation indices (Table 3). These indices are selected based
on early crop growth characteristics and are widely used in crop identification. Mainly
included three categories: (1) The red edge index: Red-edge Spectral Index (RESI), Normal-
ized Difference Red-edge1 (NDRE1), Normalized Difference Red-edge2 (NDRE2), Normal-
ized Difference Red-edge3 (NDRE3), Red Edge Normalized Vegetation Index (RENDVI).
(2) Low vegetation cover index: NDVI, Optimization Soil Adjusted Vegetation Index (OS-
AVI), Normalized Difference Tillage Index (NDTI), Simple Ratio Index (SR). (3) High vegeta-
tion cover index: Enhanced Vegetation Index (EVI), Green Vegetation Index (VIgreen).
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Table 3. Vegetation Index used in this study.

Vegetation Index Formula Reference

NDVI B8−B4
B8+B4

[36]

LSWI B8−B11
B8+B11

[37]

EVI 2.5 B8−B4
B8+6B4+1−7.5B2

[38]

RESI B7+B6−B5
B7+B6+B5

[39]

RENDVI B8−B6
B8+B6

[40]

NDRE1 B6−B5
B6+B5

[41]

NDRE2 B7−B5
B7+B5

[42]

NDRE3 B7−B6
B7+B6

[43]

VIgreen B3−B4
B3+B4

[44]

OSAVI 1 + 0.16 B8−B4
B8+B4+0.16 [45]

NDTI B11−B12
B11+B12

[46]

SR B8
B4

[47]

3.2. Quantitative Description of Crop Early Growth Characteristics

This section describes the growth differences of crops in different periods by construct-
ing differential temporal-phase features. The multi-temporal features are superimposed
to increase the amount of early-stage crop information. Each crop has a unique phenol-
ogy [48,49]. As the crop grows, the spectral reflectance of the crop varies at different
periods (Figure 3). The trend of corn and soybean is similar, with a faster growth rate in
the early stage, a gradual increase in the middle stage, and a rapid increase or decrease
in the later stage, but there are differences in the rate of increase or decrease between the
two at different stages. Due to its unique characteristics, the spectral properties of rice are
more different from those of the previous two, with a gradual increase in the early stage,
followed by a gradual decrease and an upward trend in the later stage. The three crops
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have different growth rates and show different remote sensing information at different pe-
riods [50], indicating that crops can be distinguished by different time phase characteristics.
Therefore, the multi-temporal and spectral features were considered together to construct
an index of the early growth characteristics of crops. Specifically:
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Figure 3. The mean spectral values of the three crops at different periods. (a) The mean spectral
values of corn at different periods, (b) The mean spectral values of soybean at different periods, and
(c) The mean spectral values of rice at different periods.

(1) The spectral features of crops are not obvious or easy to distinguish based on a single
image of early crop growth [44]. Based on all the remote sensing images collected in the early
stages, the different image features were constructed to amplify the performance of crops in
different periods. To facilitate understanding, Figure 4 represents the different information in
different periods, while Table 4 defines the meaning of each character in the figure represents.
The formula for the constructed temporal difference images (TSDVIT1T2) is:

TSDVIT1T2 = VT2 −VT1 (1)

where V comes from the 12 vegetation indices collected in Table 4 and the 10 original bands,
T2 represents the current image, T1 represents the prior image, and T1 and T2 were acquired
on 28 April, 8 May, 13 May, 28 May; and 12 June, 7 July.

Remote Sens. 2023, 15, x FOR PEER REVIEW 8 of 27 
 

 

where V comes from the 12 vegetation indices collected in Table 4 and the 10 original 
bands, 𝑇  represents the current image, 𝑇  represents the prior image, and 𝑇  and 𝑇  
were acquired on 28 April, 8 May, 13 May, 28 May; and 12 June, 7 July. 

Figure 3. The mean spectral values of the three crops at different periods. (a) The mean spectral 
values of corn at different periods, (b) The mean spectral values of soybean at different periods, and 
(c) The mean spectral values of rice at different periods. 

28 April 8 May 13 May 28 May 12 June 7 July

A B C D E

F G

H

I

J

K

L

M

N

O

 
Figure 4. Diagram of the multi-temporal crop discrimination information in the 2020 crop early 
stage. 

Table 4. Definition of each letter in Figure 4 in 2020 different time phases. 

Letter T2 date T1 date 
A 8 May 28 April 
B 13 May 8 May 
C 28 May 13 May 
D 12 June 28 May 
E 7 July 12 June 
F 13 May 28 April 
G 28 May 8 May 
H 28 May 28 April 
I 12 June 13 May 
J 12 June 8 May 
K 12 June 28 April 
L 7 July 28 May 
M 7 July 13 May 
N 7 July 8 May 
O 7 July 28 April 

28
 Apri

l
8 M

ay

13
 M

ay

28
 M

ay

12
 Ju

ne
7 J

uly

M
ea

n 
sp

ec
tra

l v
al

ue

28
 Apri

l
8 M

ay

13
 M

ay

28
 M

ay

12
 Ju

ne
7 J

uly

M
ea

n 
sp

ec
tra

l v
al

ue

28
 Apri

l
8 M

ay

13
 M

ay

28
 M

ay

12
 Ju

ne
7 J

uly

M
ea

n 
sp

ec
tra

l v
al

ue

Figure 4. Diagram of the multi-temporal crop discrimination information in the 2020 crop early stage.

(2) Multi-temporal features can describe the growth characteristics of different crops,
which can help improve the accuracy of crop identification [51–53]. All possible com-
binations of images were exhausted based on each period’s different images using the
permutation method (Cm

n ). The band combination was performed according to the m
combination type and used as input for uncombined-type image features for that period.
Table 5 shows the number of available difference images for each period and the total
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number of images after band combination (Call). Table 6 shows all possible combination
types for each period and the number of different images each combination type contains.

Cm
n =

Am
n

m!
=

m!
m!(n−m)!

(2)

Call = ∑n
m=1 Cm

n = 2n − 1 (3)

where n is the total number of available difference images in each period, m is the combina-
tion type, and m ≤ n.

Table 4. Definition of each letter in Figure 4 in 2020 different time phases.

Letter T2 Date T1 Date

A 8 May 28 April
B 13 May 8 May
C 28 May 13 May
D 12 June 28 May
E 7 July 12 June
F 13 May 28 April
G 28 May 8 May
H 28 May 28 April
I 12 June 13 May
J 12 June 8 May
K 12 June 28 April
L 7 July 28 May
M 7 July 13 May
N 7 July 8 May
O 7 July 28 April

Table 5. Available difference images and total images after band combination for each period in 2020.

Date Available Difference Time Phase n Number of Images after Band Combination (Call)

8 May A 1 1
13 May A, B, F 3 7
28 May A, B, F, C, G, H 6 63
12 June A, B, F, C, G, H, D, I, J, K 10 1023
7 July A, B, C, D, E, F, G, H, I, J, K, L, M, N, O 15 32,767

Table 6. All possible combination types at each stage and the number of images contained in
each type.

Date 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
7

July 15 105 455 1365 3003 5005 6435 6435 5005 3003 1365 455 105 15 1

12
June 10 45 120 210 252 210 120 45 10 1

28
May 6 15 20 15 6 1

13
May 3 3 1

8
May 1

3.3. Classification Schemes and Accuracy Assessment

Although the addition of multi-temporal features can improve crop identification
accuracy to a certain extent, not all features play a positive role in recognition [54]. Therefore,
the feature optimization method is essentially used to obtain the effective recognition
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feature set. Finally, different classifiers are modeled to explore the impact of different
features on crop recognition accuracy in different periods, as follows:

(1) Feature Optimization
Based on all available images collected in the current period, the different image

features in each period are calculated, combined, and then optimized for each combination
in each period. Then, the Gini coefficient of RF is used to rank the importance of the
optimized feature set. Firstly, Pearson correlation coefficients are used to initially screen out
features with correlations above 0.85 and less importance according to the principles that
(1) the stronger the correlation, the greater the information redundancy, and (2) the lower
the importance of the feature, the weaker its classification ability. Then, RFE is used to
perform feature optimization on the remaining features, and the optimal feature collection
in each period can be obtained. RFE is used to obtain the optimal feature set by iteratively
constructing a model based on the filtered results, removing the features with the lowest
scores, and repeating the process until all features have been traversed [55]. A 10-fold
cross-validation strategy is used in the selection process to determine the optimal subset of
feature variables. Through the above steps, the optimal feature set obtained one differential
image on 8 May, seven optimal feature sets on 13 May, 63 optimal feature sets on 28 May
1023 optimal feature sets on 12 June, and 32,767 optimal feature sets on 7 July.

(2) Classification model
In this study, each image’s optimal recognition feature set was used as the input of RF,

GBDT, Cart, and SVM classifiers to achieve crop recognition of all images in different periods.
RF classification is composed of multiple decision trees, which have the advantages of

strong noise immunity, fast speed, and high accuracy and has been widely used in various
classification scenarios [56–58]. Its principle is to use bootstrap resampling to extract
multiple samples from the original sample, model the decision tree for each bootstrap
sample and run it in parallel, and combine the predictions of multiple decision trees to
obtain the final prediction according to a voting process. The key parameters are the
number of decision tree classifiers (ntree) and the maximum number of features (mtry).
The optimal values for ntree are 100, and mtry is 10.

The GBDT classifiers have the advantages of high robustness, high accuracy, and fast
speed [59,60]. Its basic principle is to generate a weak Cart regression tree learner, obtain the
residuals of the input after training, and then iteratively train the next learner based on the
residuals generated by the previous round of learners. During each iteration, each learner
aims to minimize the loss function. The final prediction is obtained by accumulating the
weak learners’ results. There are some parameters that need to be optimized: learning_rate
(the step size when learning), max_features (the number of features to consider when
finding the best split) and n_estimators (the number of boosting stages to perform). The
search range for learning _rate was set to 0.05 to 0.5 with a search step of 0.05, the search
range for max_features was set to 5 to 50 with a search step of 5, and the search range for
n_estimators was set to 10 to 300 with a search step of 10. The final parameters for the three
were determined to be 0.15, 25, and 150, respectively.

The Cart classifier performs classification tasks based on the generated tree decision
rules. It has the advantages of a simple structure and easy interpretation. Therefore, it is
widely used in crop identification [61,62]. The algorithm consists of a root node, a series of
internal nodes, and leaf nodes; Each internal node represents an attribute judgment, each
branch represents a judgment result output, and each leaf node represents a classification
result. However, this method also has some drawbacks. Small changes in the training data
may affect the tree structure, and a single decision tree is often prone to overfitting and
poor generalization. When classifying images, the max_depth is set to 20, the standard is
set to “Gini”, the min_samples_leaf is set to 35, and the min_sample_split is set to 10.

The SVM classifier has good generalization ability when the number of samples is
limited, and the dimensionality of the feature variables is high [63–65]. Therefore, it is
widely used to solve classification problems. The principle is to find the optimal hyperplane
(decision boundary) to separate the various input training samples (support vectors) from
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each class. The setting of the kernel type, gamma coefficient, and penalty parameter C in
this classifier significantly affects the model performance. The types of kernel functions
include “RBF”, “linear”, “sigmoid”, and “poly”. The search values for gamma coefficients
include 0.1, 0.2, 0.5, 0.75, and 1, and the search values for C include 1, 2, 4, 8, and 10. The
final three were RBF, 0.5, and 4.

(3) Accuracy Assessment
To quantitatively assess the accuracy of the above four classifiers in identifying crops in

different periods, the image classification results based on the confusion matrix established
from the field validation data were evaluated. The overall accuracy (OA), kappa coefficient,
producer accuracy (PA), user accuracy (UA), and F1-score were selected to reflect the
classification accuracy of the images from different aspects [66]. The formula for F1-score is:

F1 = 2× PA ∗UA
PA + UA

(4)

4. Results
4.1. Trend Analysis of Crop Identification Overall Accuracy and Kappa Coefficient

In this study, the Cart decision tree, GBDT, RF and SVM classifiers were applied to remote
sensing recognition of crops in each period. This included 1 recognition result on 8 May,
7 recognition results on 13 May, 63 recognition results on 28 May, 1023 recognition results on
12 June, and 32,767 recognition results on 7 July. The OA and kappa coefficients were used to
evaluate the overall crop recognition performance of each classifier in each period. The overall
accuracy and kappa coefficient trends in different periods were analyzed as follows.

Figure 5 shows the maximum overall recognition accuracy of the four classifiers in
different periods. It can be seen that the most significant increase occurred from 12 June
to 7 July, when the recognition accuracy increased from 75% to 97%, followed by 8 May
to 13 May (60% to 74%). From 13 May to 28 May and 28 May to 12 June, the recognition
accuracy changes were relatively low, with ranges of 67–77% and 71–81%, respectively. The
OA of the four classifiers tended to increase as more feature information was added over
time. The GBDT and RF performed better than the SVM and Cart classifiers throughout
the period, with the maximum identification accuracies achieved on 12 June (about 81%)
and 7 July (about 97%).
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Figure 6 shows the maximum kappa coefficients of the four classifiers in different
periods. The upward trend is similar to that of OA during the early stage. The most
significant increase occurred from 12 June to 7 July, with a kappa coefficient range of
62–95%, followed by 8 May to 13 May (37–68%). From 13 May to 28 May and 28 May to
12 June, the changes were relatively low (63–68% and 62–71%, respectively). The GBDT
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and RF performed better than the SVM and Cart classifiers throughout the period, with the
kappa coefficients peaking at around 71% on 12 June and about 95% on 7 July.
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Overall, the identification performance of GBDT and RF was better than those of
other classifiers in the early stage, and Figure 7 shows the best recognition results for each
period. The performance of SVM was comparable to that of Cart in the early stage, while
the recognition ability gradually increased in the later stage, with Cart being worse than
the other classifiers.
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Figure 7. Optimal identification results in 2020 different periods. (a) Identification results on 8 May;
(b) Identification results on 13 May; (c) Identification results on 28 May; (d) Identification results on
12 June; (e) Identification results on 7 July.
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4.2. Analysis of Trends in Producer Accuracy and User Accuracy

In this study, the PA and UA were used to evaluate the recognition of each crop. The
time at which the PA and UA reached above 85% was considered the earliest that each crop
was identifiable. The PA and UA recognition analysis for each crop is as follows.

(1) Analysis of trends in producer accuracy and user accuracy for rice identification
Table 7 shows the maximum PA and UA achieved by each classifier at different

periods for rice identification. The maximum PA was achieved on 8 May (87.9%), and the
corresponding UA (80.1%) was lower, so the rice could not be effectively monitored at that
time. The RF classifier performed best on 13 May, with its PA and UA being about 95%,
followed by the GBDT (about 93%). In contrast, the Cart and SVM did not perform as well
as the first two, but both could identify rice effectively, with PA and UA above 90%.

Table 7. Maximum PA and UA of rice in 2020 different periods.

Date
Cart GBDT RF SVM

PA UA PA UA PA UA PA UA

8 May 77.1% 69.7% 87.9% 80.1% 86.4% 80.2% 86.3% 79.2%
13 May 90% 91.9% 93.6% 95.6% 95.9% 97.7% 91.3% 92.4%

(2) Analysis of trends in producer accuracy and user accuracy for corn identification
Table 8 shows the maximum PA and UA that each classifier could achieve at different

times for corn identification. It can be seen that both PA and UA increase with time. In
particular, the maximum PA and UA achieved on 12 June was about 81% using GBDT
and RF. Corn was able to be identified earliest in the period to 7 July using any of the four
classifiers. Their performance was comparable, with the maximum PA and UA both being
above 97%.

Table 8. Maximum PA and UA of corn in 2020 different periods.

Date
Cart GBDT RF SVM

PA UA PA UA PA UA PA UA

8 May 57.5% 58.1% 69.5% 64.9% 69% 64.8% 57.5% 62.8%
13 May 64.5% 63.2% 71.5% 71.9% 71% 69.5% 87% 68.8%
28 May 72.5% 69.4% 77.5% 74.9% 78% 75.7% 73.2% 72.7%
12 June 78% 73.8% 83% 81.2% 83% 81.2% 79.5% 80.9%
7 July 98% 97% 98% 98.4% 98% 98.5% 98.5% 97.3%

(3) Analysis of trends in producer accuracy and user accuracy for soybeans identification
Table 9 shows the maximum PA and UA achieved by each classifier for soybeans at

different times. As with soybeans identification, the PA and UA of soybean identification also
increased over time. The maximum PA and UA on 12 June was also around 81%. On 7 July,
all four classifiers could effectively identify soybeans, with GBDT and RF having maximum
PA and UA of 97%. The SVM and Cart are somewhat lower at 96% and 94%, respectively.

Table 9. Maximum PA and UA of soybeans in 2020 different periods.

Date
Cart GBDT RF SVM

PA UA PA UA PA UA PA UA

8 May 53% 56.7% 61.5% 64.7% 60% 63.5% 77% 51.2%
13 May 59.5 61.1% 70.5% 69.6% 67.5% 67.2% 77% 58.8%
28 May 70% 69.6% 75.5% 75.5% 77% 75.6% 77% 71.1%
12 June 76% 74.5% 82% 81.6% 82% 81.4% 85% 76.9%
7 July 96.5% 96.9% 99% 97.9% 98.5% 97.9% 94% 95.7%
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4.3. Different Remote Sensing Indices Temporal Contribution and Variation Characteristics

Crops have unique growth and seasonal phase-change characteristics. Multi-temporal
spectral characteristics can provide effective crop identification information and reveal
their changes over time [67]. Usually, the changes in these characteristics are stable and
can be used to distinguish between crops over a period of time. This study calculated
the importance of all multi-temporal difference features for each period to reflect the
relative importance of the features in different periods. Tables A1–A12 summarizes the top
10 optimal feature sets of each best combination type of three crops in each period. Features
with a higher proportion and ranking are better for crop identification [54]. The key spectral
and temporal characteristics of the three crops are analyzed as follows.

(1) Early identifying characteristics and temporal changes characteristics of rice
Figure 8 shows the proportions of feature types in the top10 optimal rice feature sets of

all best combination types in each period. Rice is a typical paddy crop, which behaves as a
mixture of water and paddy in the early stage. The LSWI, SR, B11, and NDTI can effectively
reflect the water changes in the canopy and canopy background during the growth and
development of rice in this period so that rice crops can be effectively identified.
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Figure 8. Percentage of different character types of rice in 2020 different periods.

Table 10 shows the top10 optimal feature sets of the best combination types for rice in
each period. It can be seen that on 8 May, only one combination of differential temporal
phases (A) was able to achieve 81% recognition accuracy. On 13 May, two combinations
of BF achieved the maximum classification accuracy (94.6%). In addition, the maximum
recognition accuracy of each combination in that period was able to meet the requirement
for early recognition of rice (≥91%). Figure 9 shows the frequency of key temporal changes
in the top10 feature sets of all the best combination types for rice on 13 May. The frequency
of F was significantly greater than those of the other different temporal phases, indicating
that the difference in remote sensing information between 13 May and 28 April is key
information for early rice crop identification.

Table 10. The top-10 optimal feature sets of best rice combination types for each period in 2020.

Date
Best Com-
bination

Type

F1
Accuracy Optimum Features

8 May A 83.8% A_NDTI A_LSWI A_B11 A_SR A_B2 A_RENDVI A_B5 A_NDRE2 A_OSAVI
13 May BF 94.6% F_NDTI F_B12 B_B12 B_LSWI F_B11 F_LSWI B_RESI F_NDVI F_SR F_B6

(2) Early identifying characteristics and temporal changes characteristics of corn
Figure 10 shows the proportion of different feature types in the top-10 optimal corn feature

sets of all best combination types at each period. By early June, corn had undergone the sowing
and emergence stages, and the images acquired at that time showed low vegetation cover
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information. The NDTI, SR, LSWI, and B11 accounted for a relatively large proportion during
this period. As the crop grows, it gradually enters its peak growth period. In early July, when
corn is at the seventh leaf stage, the vegetation cover is greater compared to the previous months.
Features such as short-wave infrared bands, some vegetation red-edge bands, and indices of
vegetation cover (B11, NDRE3, LSWI, VIgreen, RESI, NERED2) become more prominent and
can effectively capture corn growth information.
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Table 11 shows the top10 optimal feature sets of the best combination types for corn
identification in each period. On 8 May, a 67.1% corn recognition accuracy was achieved
with index combination A. The maximum recognition accuracy for the period to 13 May
(72%) was achieved using the two combinations of AB. The classification achieved the
maximum recognition accuracy for the period to 28 May (76.8%) using the three combina-
tions of ABF. On 12 June, the maximum recognition accuracy for the period was achieved
using five combinations of CDHIJ (82%). On 7 July, the maximum recognition accuracy
for the period (98.2%) was achieved using eight and nine combinations of CEFGHIKM
and ACDEFGHMN. In addition, the best combination of 15 combinations for the period
achieved satisfactory early identification accuracy for corn (≥94%). Figure 11 shows the
frequency of key change temporal in the top-10 feature sets of all the best combination
types for corn in this period. E, M, and L appeared to have higher frequencies indicating
that the differences between 7 July and 12 June and 13 May and 28 May were obvious
enough to identify corn effectively. In addition, the growth difference information on 28
May and 28 April (H) was also obvious.

Table 11. The top-10 optimal feature set of best corn combination types for each period in 2020.

Date
Best

Combination
Type

F1 Accuracy Optimum Features

8 May A 67.1% A_NDTI A_LSWI A_B11 A_SR A_B2 A_RENDVI A_B5 A_NDRE2 A_OSAVI
13 May AB 71.7% B_LSWI A_NDTI A_B11 B_NDTI B_OSAVI A_NDVI B_SR A_LSWI B_B11 A_OSAVI
28 May AFG 76.8% A_LSWI F_SR G_B11 G_LSWI A_SR A_RENDVI G_B12 G_RENDVI F_B11 F_B12
12 June CDHIJ 82% J_LSWI H_SR I_B11 C_NDTI D_NDVI J_EVI H_LSWI D_LSWI D_B11 H_B12

7 July CEFGHIKM 98.2% E_NDRE3 E_B11 M_NDRE3 M_LSWI E_LSWI M_VIgreen K_B11 G_B11 M_NDRE2 H_RESI
ACDEFGHMN 98.2% E_NDRE3 E_B11 M_RESI M_NDRE3 H_B11 N_NDRE3 M_LSWI E_LSWI E_EVI A_NDRE2
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(3) Early identifying characteristics and temporal changes characteristics of soybeans
Figure 12 shows the proportion of different feature types in the top10 optimal soybeans

feature sets of all best combination types at each period. Corn and soybean have similar
phenology in their early growth stage, and their performance is similar. As of early June,
the soybeans had gone through the seeding, emergence, and three-leaf stages and with
low vegetation cover information. The NDTI, SR, LSWI, and B11 indexes accounted for a
relatively large proportion of this period. In early July, soybean enters the flowering stage
and exhibits lavender-colored petals. During this period, its vegetative and reproductive
development is concurrent and vigorous. The B11, NDRE3, LSWI, Vigreen, RESI, EVI, B12,
and NDRE2 indexes play a key role in the identification of soybeans in this period, which
is slightly different from corn.

Table 12 shows the top10 optimal feature sets of the best combination types for soy-
beans identification in each period. The best temporal combinations for soybean on 8 May,
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12 June, and 7 July were the same as those for corn. The maximum identification accuracies
achieved using A, CDHIJ, and BEFHIM were 63%, 81.8%, and 98.5%, respectively. On
13 May, the maximum soybean identification accuracy (70%) was achieved using three
combinations of ABF, while on 28 May, the maximum identification accuracy (76.2%) was
achieved using three combinations of AFG. On 7 July, the maximum identification accuracy
for each combination was above 94% to achieve the soybean early identification accuracy.
Figure 13 shows the frequency of key change temporal in the top10 feature sets of all the
best combination types for soybeans in this period. The frequency of E is the highest, fol-
lowed by M, N, and H. Adding these different time phases can effectively capture soybean
growth information and enable them to be identified effectively.
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Table 12. The top-10 optimal feature set of best soybeans combination types for each period in 2020.

Date
Best

Combination
Type

F1 Accuracy Optimum Features

8 May A 63% A_NDTI A_LSWI A_B11 A_SR A_B2 A_RENDVI A_B5 A_NDRE2 A_OSAVI
13 May ABF 70% B_LSWI F_SR B_NDTI A_B11 F_NDTI F_OSAVI A_SR B_SR F_LSWI F_B11
28 May AFG 76.2% A_LSWI F_SR G_B8 G_LSWI A_SR A_RENDVI G_B12 G_RENDVI F_B11 F_B12
12 June CDHIJ 81.8% J_LSWI H_SR I_B11 C_NDTI D_NDVI J_EVI H_LSWI D_LSWI D_B11 H_B12

7 July BEFHIM 98.5% I_LSWI F_LSWI I_EVI E_NDRE2 I_RESI E_VIgreen F_B11 B_LSWI E_RENDVI H_RESI
CEFGHIKM 98.5% E_NDRE3 E_B11 M_NDRE3 M_LSWI E_LSWI M_VIgreen K_B11 G_B11 M_NDRE2 H_RESI
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5. Discussion

(1) Potential of using crop growth difference information for early identification
Currently, remote sensing recognition of crops is mainly based on all available images

acquired throughout the growth period [68–70]. However, the limited imagery available
in the early growth stages poses a great challenge to early crop identification [71]. The
paper investigated the impact of using differential temporal information for early crop
identification. Specifically, a dataset of early-stage growth characteristics was constructed
based on differences in spectral features among all available temporal phases of the crop
at each period, and all possible combinations of each period were identified. The results
show that the different time phase features, such as mid-May and late April (F), are
more critical for the early identification of rice; for the early identification of corn, the
difference time phase features, such as early July and mid-June, late May, mid-May, and
late May and late April (E, M, L, H) play a key role in its early identification; for the
early identification of soybeans, the difference time phases features such as early July and
mid-June, mid-May, early May, and late-May and late-April (E, M, N, H) contribute more
to its early identification. In addition, we compared the F1 accuracy of each crop obtained
by this method with that in the study [24]. They used Sentinel-2 remote sensing images
to construct spectral and vegetation index feature sets of various crops in each growth
period in an incremental manner. It investigated the early recognition of corn, rice, and
soybean in Northeast China based on common classifiers. As can be seen from Tables 13–15,
compared with [24], the recognition accuracy of crops at each stage obtained by our method
is higher than that in this paper, mainly because the index we designed that can effectively
highlight the crop growth characteristics, which comprehensively considers crop growth
difference information and the time phase information, and can effectively amplify the
difference between crops and distinguish them effectively. Therefore, the combination of
spectral vegetation index features of crops with differential temporal features can effectively
improve crop recognition accuracy at early growth stages.

(2) Effective identification features of crops at different periods
The use of suitable classification features can effectively improve the accuracy of

remote sensing crop recognition [72–75]. Many studies have shown that spectral and
vegetation indices derived from Sentinel-2 multispectral remote sensing images play a
more important role in crop identification than spatial texture information in Northeast
China [34,76]. Accordingly, this study selected ten spectral and 22 vegetation indices as
image features and explored their differences for use in crop identification in different
growth periods. We found that rice moisture information was more prominent in May and
June, and some of the relevant vegetation indices constructed with short-wave infrared as
input were more sensitive to the vegetation canopy moisture information [77], which could
effectively capture the moisture information of rice and thus identify rice as early as possible.
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Corn and soybean are dryland crops with the same phenological period [78], and some
indicators of low vegetation cover play a role in this period, but their recognition ability
is limited. In July, when various crops enter their peak growth period, some indicators
related to vegetation canopy cover and the red edge index can be fully utilized [72,79] to
effectively identify corn and soybeans.

Table 13. Comparison of F1 identification accuracy of rice in 2020.

Period to Proposed Method Study [24]

8 May 83.8% 76.2%
13 May 94.6% 80%

Table 14. Comparison of F1 identification accuracy of corn in 2020.

Period to Proposed Method Study [24]

8 May 67.1% 61.5%
13 May 71.7% 63.3%
28 May 76.8% 63.9%
12 June 82% 56.1%
7 July 98.2% 83.9%

Table 15. Comparison of F1 identification accuracy of soybeans in 2020.

Period to Proposed Method Study [24]

8 May 63% 57.4%
13 May 70% 54.1%
28 May 76.2% 59.1%
12 June 81.8% 55.9%
7 July 98.5% 98.4%

(3) Comparison of the performance of different classifiers in early crop identification
In this study, four common classifiers were selected to evaluate their recognition

effectiveness in the early stage of crops. These classifiers were selected based on their wide
application in land cover [80,81]. Tables 16–18 summarize the F1 recognition accuracy of
each crop at different periods. RF can achieve a maximum rice identification accuracy of
96.8% as early as 13 May, while the accuracy of GBDT is about 2% lower and SVM and Cart
are about 5.8% lower. Both GBDT and RF reached 98% accuracy for corn and soybeans
as early as 7 July, while Cart and SVM were lower, at around 97% for corn and 96.7% and
94.8% for soybeans, respectively. Overall, with the addition of more temporal features, the
recognition accuracy of the four classifiers tended to increase, with GBDT and RF achieving
better results in identifying the three crops in the early stage.

Table 16. Accuracy of rice identification in 2020 different periods.

Period to Cart GBDT RF SVM

8 May 73.2% 83.8% 83.7% 82.6%
13 May 90.9% 94.6% 96.8% 91.9%

Table 17. Accuracy of corn identification in 2020 different periods.

Period to Cart GBDT RF SVM

8 May 57.8% 67.1% 66.8% 60%
13 May 63.8% 71.7% 70.2% 76.8%
28 May 70.9% 76.2% 76.8% 72.9%
12 June 75.8% 82.1% 82.1% 80.2%
7 July 97.5% 98.2% 98.2% 97.9%
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Table 18. Accuracy of soybeans identification in 2020 different periods.

Period to Cart GBDT RF SVM

8 May 54.8% 63.1% 61.7% 61.5%
13 May 60.3% 70% 67.3% 66.7%
28 May 69.8% 75.5% 76.3% 73.9%
12 June 75.2% 81.8% 81.7% 80.7%
7 July 96.7% 98.4% 98.2% 94.8%

6. Conclusions

This study constructed a dataset of early crop growth characteristics based on tem-
poral phase difference feature information and explored its potential for use in early crop
recognition in typical black soil areas of Northeast China. Firstly, a multi-temporal crop
growth characteristics dataset was constructed using the different information on crops
in different periods of the early stages. Then, the feature optimization method was used
to select the best feature set for all possible combinations in each period, and the early
key identification characteristics of different crops and their stage change characteristics
were explored. Finally, the performance differences of four classifiers in early crop recogni-
tion and the recognition accuracy levels of crops in different periods were analyzed. The
conclusions are as follows:

(1) The early crop growth method proposed in this study is intuitive and easy to
understand. It can effectively amplify the differences between early-stage crops and
improve the accuracy of crop identification. Therefore, it has great potential in the early
identification of crops. It can also quickly and accurately map the crop in its early stages,
providing information reference for relevant agricultural departments and having practical
solid application value.

(2) The difference time phase feature can distinguish between crops and improve
their identification accuracy in the early stage. Rice changed obviously between mid-May
and late April (F) periods; corn changed more obviously between early July and mid-
June, late May, mid-May, and late May and late April, which were periods E, M, L, H;
soybean changed more obviously between early July and mid-June, mid-May, early May,
and late-May and late-April, which were periods E, M, N, H.

(3) Short-wave infrared bands and vegetation index feature sensitivity to water in-
formation, and low vegetation coverage contributed more to the early identification of
rice, such as LSWI, SR, B11, and NDTI. For corn and soybean, short-wave infrared band,
red-edge index, and vegetation canopy cover indicators were key in identifying both, such
as B11, NDRE3, LSWI, VIgreen, RESI, and NDRE2.

(4) Corn can be identified as early as 7 July, with both PA and UA above 97%; soybean
can be identified as early as 7 July, with both above 94%; and rice can be identified as early
as 8 May, with both above 90%.

(5) GBDT and RF performed comparably in crop recognition, followed by SVM, while
the Cart classifier was poorer.
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Appendix A

Table A1. Top-10 optimal rice feature sets for different combination types on 8 May 2020.

Combination
Type Letters F1

Accuracy Optimum Features

1 A 83.8% A_NDTI A_LSWI A_B11 A_SR A_B2 A_RENDVI A_B5 A_NDRE2 A_OSAVI

Table A2. Top-10 optimal rice feature sets for different combination types on 13 May 2020.

Combination
Type Letters F1

Accuracy Optimum Features

1 F 91.4% F_NDTI F_OSAVI F_LSWI F_NDVI F_B8 F_B11 F_NDRE2 F_SR F_RENDVI F_B12
2 BF 94.6% F_NDTI F_B12 B_B12 B_LSWI F_B11 F_LSWI B_RESI F_NDVI F_SR F_B6
3 ABF 92.3% B_LSWI F_SR B_NDTI A_B11 F_NDTI F_OSAVI A_SR B_SR F_LSWI F_B11

Table A3. Top-10 optimal corn feature sets for different combination types on 8 May 2020.

Combination
Type Letters F1

Accuracy Optimum Features

1 A 67.1% A_NDTI A_LSWI A_B11 A_SR A_B2 A_RENDVI A_B5 A_NDRE2 A_OSAVI

Table A4. Top-10 optimal corn feature sets for different combination types on 13 May 2020.

Combination
Type Letters F1

Accuracy Optimum Features

1 F 69.8% F_NDTI F_OSAVI F_LSWI F_NDVI F_B8 F_B11 F_NDRE2 F_SR F_RENDVI F_B12
2 AB 71.7% B_LSWI A_NDTI A_B11 B_NDTI B_OSAVI A_NDVI B_SR A_LSWI B_B11 A_OSAVI
3 ABF 69.2% B_LSWI F_SR B_NDTI A_B11 F_NDTI F_OSAVI A_SR B_SR F_LSWI F_B11

Table A5. Top-10 optimal corn feature sets for different combination types on 28 May 2020.

Combination
Type Letters F1

Accuracy Optimum Features

1 H 70.9% B_SR H_B12 H_LSWI H_NDRE1 H_B11 H_B2 H_OSAVI H_NDRE2 H_NDTI H_NDVI
2 FG 75.1% F_SR F_LSWI G_LSWI G_B4 G_NDTI F_NDTI G_SR F_B12 G_B11 F_B11
3 AFG 76.8% A_LSWI F_SR G_B11 G_LSWI A_SR A_RENDVI G_B12 G_RENDVI F_B11 F_B12
4 ABCF 75.9% C_LSWI C_B11 F_LSWI F_SR C_B12 F_NDTI B_RESI B_SR C_B8 C_NDTI
5 ABCGH 76.2% C_SR G_LSWI B_LSWI H_SR H_B11 G_B11 C_NDTI A_NDVI H_NDTI C_LSWI
6 ABCFGH 73.4% C_SR C_NDTI H_B11 C_LSWI C_B11 H_NDTI G_LSWI A_NDTI F_OSAVI F_LSWI

Table A6. Top-10 optimal corn feature sets for different combination types on 12 June 2020.

Combination
Type Letters F1 Accuracy Optimum Features

1 K 72% K_B11 K_NDTI K_LSWI K_OSAVI K_EVI K_B3 K_B5 K_B12
2 DK 78.2% D_SR D_NDTI K_NDTI K_NDVI D_LSWI K_B11 K_OSAVI D_NDVI K_LSWI K_B8A
3 CHJ 79.4% J_LSWI H_B11 H_NDTI H_B12 A_SR J_RENDVI C_NDTI C_OSAVI H_LSWI J_B5
4 BDFJ 80.2% J_SR J_NDVI F_B12 F_LSWI D_OSAVI F_B3 F_OSAVI J_NDRE3 F_B11 J_RESI
5 CDHIJ 82% J_LSWI H_SR I_B11 C_NDTI D_NDVI J_EVI H_LSWI D_LSWI D_B11 H_B12
6 BCDFGJ 80.8% D_SR J_NDTI F_B11 G_LSWI G_NDTI J_LSWI G_SR F_NDRE1 C_LSWI F_NDVI
7 ABDFHJK 80.3% J_LSWI H_LSWI J_SR J_RENDVI J_NDRE3 D_NDVI J_B11 B_NDVI F_LSWI K_SR
8 ABCDGHIJ 80.8% G_NDTI J_LSWI H_B12 G_SR H_NDRE1 A_NDTI I_SR C_NDTI J_B6 D_EVI
9 ABCDFGHJK 80% J_LSWI F_B11 D_LSWI J_NDTI C_LSWI B_LSWI H_B11 F_LSWI G_B11 C_NDTI
10 ABCDFGHIJK 78.7% H_LSWI I_NDTI D_SR F_B11 J_LSWI G_LSWI G_SR H_NDTI H_B11 D_NDRE3

Table A7. Top-10 optimal corn feature sets for different combination types on 7 July 2020.

Combination
Type Letters F1

Accuracy Optimum Features

1 E 94% E_B11 E_NDRE3 E_NDRE2 E_LSWI E_B6 E_B4 E_VIgreen E_B8 E_EVI E_B5
2 EO 95.9% E_NDRE3 E_VIgreen E_B11 E_NDRE2 E_RESI E_LSWI O_NDRE1 E_RENDVI O_NDRE2 O_NDRE3
3 EHI 96.9% E_NDRE3 E_RESI E_LSWI E_EVI H_NDTI H_VIgreen H_B11 E_VIgreen E_B12 H_NDRE2
4 CEHJ 97% E_NDRE3 E_B11 E_LSWI H_B11 E_NDRE2 H_B12 E_RESI I_NDRE2 E_VIgreen H_NDRE2
5 EHIMO 97.3% E_NDRE3 H_B11 E_B11 M_RESI M_LSWI H_VIgreen E_NDRE2 O_EVI H_B12 M_B11
6 BEFHIM 97.3% I_LSWI F_LSWI I_EVI E_NDRE2 I_RESI E_VIgreen F_B11 B_LSWI E_RENDVI H_RESI
7 BCDEHKM 97.3% E_NDRE3 E_B11 E_LSWI M_B11 M_NDRE3 H_B11 H_RESI K_VIgreen E_RESI M_LSWI
8 CEFGHIKM 98.2% E_NDRE3 E_B11 M_NDRE3 M_LSWI E_LSWI M_VIgreen K_B11 G_B11 M_NDRE2 H_RESI
9 ACDEFGHMN 98.2% E_NDRE3 E_B11 M_RESI M_NDRE3 H_B11 N_NDRE3 M_LSWI E_LSWI E_EVI A_NDRE2
10 BCDEGHKLMN 97.3% L_NDRE3 L_B11 E_B11 E_NDRE3 H_B11 E_LSWI L_LSWI M_LSWI M_NDRE3 K_B11
11 BDEFGHIJKLM 96.3% E_NDRE3 L_B11 L_NDRE3 E_B11 E_LSWI L_LSWI M_NDRE3 M_LSWI K_VIgreen M_B11
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Table A7. Cont.

Combination
Type Letters F1

Accuracy Optimum Features

12 ABDEFGHIKLMO 97% L_B11 L_LSWI E_B11 E_NDRE3 L_NDRE3 H_B11 E_LSWI M_LSWI K_B11 M_NDRE3
13 CDEFGHIJKLMNO 97% E_B11 M_VIgreen E_NDRE3 L_LSWI L_NDRE3 L_RESI F_EVI H_VIgreen K_B11 M_LSWI
14 ABCDEFGHIJKLMO 97.2% L_NDRE3 M_NDRE3 L_LSWI L_NDRE2 L_B11 E_NDRE3 L_RESI E_B11 O_NDRE2 O_RESI
15 ABCDEFGHIJKLMNO 96.4% L_NDRE3 E_NDRE3 L_B11 L_LSWI M_NDRE3 E_B11 H_B12 L_NDRE1 E_VIgreen K_B8A

Table A8. Top-10 optimal soybeans feature sets for different combination types on 8 May 2020.

Combination
Type Letters F1

Accuracy Optimum Features

1 A 63% A_NDTI A_LSWI A_B11 A_SR A_B2 A_RENDVI A_B5 A_NDRE2 A_OSAVI

Table A9. Top-10 optimal soybeans feature sets for different combination types on 13 May 2020.

Combination
Type Letters F1 Accuracy Optimum Features

1 F 67.5% F_NDTI F_OSAVI F_LSWI F_NDVI F_B8 F_B11 F_NDRE2 F_SR F_RENDVI F_B12
2 AB 68.5% B_LSWI A_NDTI A_B11 B_NDTI B_OSAVI A_NDVI B_SR A_LSWI B_B11 A_OSAVI
3 ABF 70% B_LSWI F_SR B_NDTI A_B11 F_NDTI F_OSAVI A_SR B_SR F_LSWI F_B11

Table A10. Top-10 optimal soybeans feature sets for different combination types on 28 May 2020.

Combination
Type Letters F1 Accuracy Optimum Features

1 H 69.5% B_SR H_B12 H_LSWI H_NDRE1 H_B11 H_B2 H_OSAVI H_NDRE2 H_NDTI H_NDVI
2 AG 74.1% G_NDRE2 G_LSWI G_NDTI G_RENDVI A_B11 A_B12 A_LSWI A_NDTI A_SR G_B11
3 AFG 76.2% A_LSWI F_SR G_B8 G_LSWI A_SR A_RENDVI G_B12 G_RENDVI F_B11 F_B12
4 ABCF 74.7% C_LSWI C_B11 F_LSWI F_SR C_B12 F_NDTI B_RESI B_SR C_B8 C_NDTI
5 ABCGH 74.7% C_SR G_LSWI B_LSWI H_SR H_B11 G_B11 C_NDTI A_NDVI H_NDTI C_LSWI
6 ABCFGH 73.3% C_SR C_NDTI H_B11 C_LSWI C_B11 H_NDTI G_LSWI A_NDTI F_OSAVI F_LSWI

Table A11. Top-10 optimal soybeans feature sets for different combination types on 12 June 2020.

Combination
Type Letters F1 Accuracy Optimum Features

1 K 72.3% K_B11 K_NDTI K_LSWI K_OSAVI K_EVI K_B3 K_B5 K_B12
2 HK 77.5% K_OSAVI K_B11 H_NDTI K_B5 K_LSWI K_NDRE1 K_VIgreen H_NDRE1 K_B3 H_SR
3 CFI 79.4% I_LSWI C_LSWI I_RENDVI F_B11 F_NDTI C_NDTI C_B3 F_LSWI I_NDTI C_B8
4 BFHI 80.1% I_LSWI I_B11 B_LSWI H_NDRE3 F_B11 F_LSWI H_NDTI H_B11 F_B12 F_NDVI
5 CDHIJ 81.8% J_LSWI H_SR I_B11 C_NDTI D_NDVI J_EVI H_LSWI D_LSWI D_B11 H_B12
6 BCDFGJ 80.2% D_SR J_NDTI F_B11 G_LSWI G_NDTI J_LSWI G_SR F_NDRE1 C_LSWI F_NDVI
7 ABDFHJK 80.2% J_LSWI H_LSWI J_SR J_RENDVI J_NDRE3 D_NDVI J_B11 B_NDVI F_LSWI K_SR
8 ABCDGHIJ 78.9% G_NDTI J_LSWI H_B12 G_SR H_NDRE1 A_NDTI I_SR C_NDTI J_B6 D_EVI
9 ABCDFGHJK 79.5% J_LSWI F_B11 D_LSWI J_NDTI C_LSWI B_LSWI H_B11 F_LSWI G_B11 C_NDTI
10 ABCDFGHIJK 76.8% H_LSWI I_NDTI D_SR F_B11 J_LSWI G_LSWI G_SR H_NDTI H_B11 D_NDRE3

Table A12. Top-10 optimal soybeans feature sets for different combination types on 7 July 2020.

Combination
Type Letters F1

Accuracy Optimum Features

1 N 94.1% N_LSWI N_NDRE3 N_EVI N_NDVI N_NDRE2 N_VIgreen N_B12 N_B7 N_RESI N_SR
2 KN 96.3% N_NDRE3 K_EVI K_B12 N_NDRE2 N_LSWI N_B11 N_EVI K_B11 K_LSWI N_VIgreen
3 EHI 97.3% E_NDRE3 E_RESI E_LSWI E_EVI H_RESI H_VIgreen H_B11 E_VIgreen E_B12 H_NDRE2
4 CEHJ 96.9% E_NDRE3 E_B11 E_LSWI H_B11 E_NDRE2 H_B12 E_RESI I_NDRE2 E_VIgreen H_NDRE2
5 EHIJN 97.3% E_NDRE3 N_VIgreen H_B11 E_B12 E_VIgreen N_LSWI H_B12 E_LSWI H_RESI E_NDRE2
6 BEFHIM 98.5% I_LSWI F_LSWI I_EVI E_NDRE2 I_RESI E_VIgreen F_B11 B_LSWI E_RENDVI H_RESI
7 DEFHJKM 97.3% E_NDRE3 E_B11 M_B12 E_LSWI M_B11 H_B12 M_LSWI E_RESI E_EVI K_RESI
8 CEFGHIKM 98.5% E_NDRE3 E_B11 M_NDRE3 M_LSWI E_LSWI M_VIgreen K_B11 G_B11 M_NDRE2 H_RESI
9 ACDEFGHMN 97.3% E_NDRE3 E_B11 M_RESI M_NDRE3 H_B11 N_NDRE3 M_LSWI E_LSWI E_EVI A_NDRE2
10 ABCDEFGHJM 97.3% E_B11 E_NDRE3 M_NDRE3 M_B11 H_B11 M_LSWI E_RESI D_EVI G_B11 M_EVI
11 ABCDEFIJKMN 97.3% E_B11 E_NDRE3 N_NDRE3 E_LSWI K_VIgreen K_B11 K_LSWI N_LSWI M_NDRE3 M_EVI
12 ABDEFGHIKLMO 97% L_B11 L_LSWI E_B11 E_NDRE3 L_NDRE3 H_B11 E_LSWI M_LSWI K_B11 M_NDRE3
13 CDEFGHIJKLMNO 96.7% E_B11 M_VIgreen E_NDRE3 L_LSWI L_NDRE3 L_RESI F_EVI H_VIgreen K_B11 M_LSWI
14 ACDEFGHIJKLMNO 97.3% E_NDRE3 L_VIgreen L_B11 H_B12 L_LSWI N_NDRE3 E_B11 M_NDRE3 L_B12 E_VIgreen
15 ABCDEFGHIJKLMNO 96.4% L_NDRE3 E_NDRE3 L_B11 L_LSWI M_NDRE3 E_B11 H_B12 L_NDRE1 E_VIgreen K_B8A
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