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Abstract: In real estate appraisal, especially of residential buildings, one of the primary evaluation
parameters is the property’s usable area. When determining the property price, Polish appraisers
use data from comparable transactions included in the Real Estate Price Register (REPR), which is
highly incomplete, especially regarding properties’ usable areas. This incompleteness renders the
identification of comparable transactions challenging and may lead to incorrect prediction of the
property price. We address this challenge by applying machine learning methods to estimate the
usable area of buildings with gable roofs based only on their topographic data, which is widely
available in Poland in the Database of Topographic Objects (BDOT10k) of Light Detection and
Ranging (LiDAR) origin. We show that three features are enough to make accurate predictions of the
usable area: the covered area, the building’s height, and the number of stories optionally. A neural
network trained on buildings from architectural bureaus reached a 4% median percentage error on
the same source and 15% on the real buildings from the city of Koszalin, Poland. Therefore, the
proposed method can be applied by appraisers to estimate the usable area of buildings with known
transaction prices and solve the problem of finding comparable properties for appraisal.

Keywords: real estate appraisal; neural networks; urban remote sensing; GIScience; LiDAR; linear
regression

1. Introduction

The most reliable real estate appraisal technique is the so-called comparative ap-
proach [1,2]. In this approach, the appraiser compares the property in question to similar
buildings that were sold recently on the market to evaluate the property’s price. One of
the primary evaluation parameters for such comparisons is the usable area [3,4]. It is an
especially dominant feature when it comes to residential buildings. When searching for
transactions involving comparable buildings, Polish appraisers use the Polish Real Estate
Price Register (REPR). The REPR includes data on real estate prices given in notarial deeds
and is also an element of the cadastre [5–11]. However, previous works [12–14] have shown
that the REPR is incomplete, especially concerning usable areas of residential buildings. A
thorough examination of the REPR and its data on 800 properties located in Koszalin and
Kołobrzeg counties in Poland showed that the information on usable space is present only
in 40% of the studied cases. With such a limited number of properties with known usable
areas, finding comparable transactions is difficult, which often renders an assessment of a
property’s worth with the comparative approach impossible.

On the other hand, there is another publicly available source of data on properties
that covers the whole territory of Poland, namely the Database of Topographic Objects
(BDOT10k) [15]. The BDOT10k is a database that includes information on spatial location
and descriptive attributes of topographic objects, such as covered areas and heights of the
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buildings. The information contained within the dataset is based on data originating from
airborne Light Detection and Ranging (LiDAR) scanning, provided by the Information
System of the National Guards against Extraordinary Threats (ISOK) Program [16]. If this
widely available information could be translated into a usable area, it would solve the
problem of Polish real estate appraisers. We propose machine learning to estimate the
usable area of residential buildings based on their available topographic data. Machine
learning has been widely used in real estate valuation [17–20], but not so much in estimating
other features of buildings apart from their prices. Dawid et al. [21] demonstrated that in
detached houses with flat roofs, the usable area can be estimated quite precisely based on
such topographic data using neural networks. Their research, conducted using 96 projects of
residential buildings from the architectural bureaus and 29 properties existing in Koszalin,
Poland, has shown that the usable area can be estimated with great accuracy in the case of
flat-roof buildings. Simple buildings (without garages and extensions) can be evaluated
with great precision (3–4%). To take more complex properties into account, a simple neural
network was used there, with a mean error of around 3.5%. Finally, the neural network
they trained on the building designs was tested on real buildings located in Koszalin. The
median error they obtained was below 9%, granting a satisfactory precision for identifying
comparable transactions in the REPR.

Both the work of Dawid et al. [21] and ours use two distinct datasets composed of
building designs from architectural bureaus and existing buildings in Koszalin. There
are two reasons for this choice. First, contrary to real building measurements, designs
from architectural bureaus provide a full detailed description of the building’s interior.
This allowed for testing various parameter combinations in search of the one resulting in
the best prediction results. Second, real building data are inevitably subjected to some
measurement errors, a flaw that pure designs do not have. Since the machine learning
model can only be as good as the data we train it on, using an available source of data not
subject to measurement error is a clear advantage in this matter.

Here, we extend the proposed machine-learning approach of usable area estimation to
residential buildings with gable roofs. A different roof structure creates new challenges for
estimation methods, particularly by introducing slants that impact the usable area of the
highest floors. We discuss this impact in Section 3.1 in light of the different norms used in
practice in Poland, which make gathering data even more challenging. Another issue is the
accuracy of airborne laser scanning, which may play a role when measuring the heights of
gable-roof buildings (in contrast to flat-roof buildings). We discuss this issue and estimate
the worst possible error depending on the roof slope in Section 3.2. After highlighting the
challenges that gable roofs introduce, we present the accuracy of linear regression and
neural networks trained on the gable-roof building data from architectural bureaus and
tested on the same type of data in Section 3.3. Finally, we present the accuracy of those
methods on real buildings from Koszalin, Poland, in Section 3.4.

2. Materials and Methods
2.1. On Polish Norms for Usable Area Calculation

To highlight the legal complexity of real estate appraisal in Poland, we start by explaining
Polish norms for usable area calculation. The problem of calculating usable area in Poland
due to existing various norms has already been discussed in many publications [22–28]. Until
1999, the usable area was commonly calculated using the PN-B-02365:1970 standard [29].
Then PN-ISO 9836:1997 was introduced [30]. Between 1999 and 2012, both standards were in
use, and after 2012, PN-ISO 9836:1997 became obligatory for newly built properties, and two
additional principles were imposed [31]. It is worth mentioning that the Polish Committee
of Standardization withdrew PN-B-02365:1970 and PN-ISO 9836:1997, and since 2015, the
recommended norm has been PN-ISO 9836:2015-12 [32], which remains unused due to a lack
of a legal amendment. Those changes pose additional difficulties in using the REPR as the
contained usable area may have been calculated using an unknown norm. As a result, the
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definition of residential units and the method of estimating usable areas have changed. Those
changes, as well as the basic differences among norms, are described in detail in Refs. [21,33].

2.2. The Recommended Polish Norm and Gable-Roof Buildings

Here, we focus on the elements important only for buildings with gable roofs. Ac-
cording to this new act, 100% of the area of rooms or their parts with a height equal to or
higher than 2.20 m should be included in the calculation, 50% of the area with a height
equal to or higher than 1.40 m and less than 2.20 m should be included, and finally, an area
with a height less than 1.40 m should be completely omitted. An important consequence of
this act is also ignoring partitioning walls completely, in contrast to previous standards.
Furthermore, this rule waives the PN-B-02365:1970 norm.

2.3. Simulation of Knee Wall Height Impact on Usable Area

To calculate the dependence of the usable area of a building with a gable roof on
the building’s and its knee wall’s height, we used the program AutoCAD Civil 2015 and
modeled a representative gable-roof building project [34]. The sketch of the modeled
building is presented in Figure 1, which also shows the knee wall (distance from the ceiling
to the wall plate, marked as h) and the height of the building (marked as H). Figure 1 also
displays the verging heights for three used norms described in the previous Section 2.1:
140, 190, and 220 cm. To calculate the usable area, according to the project, the following
characteristics were used: area of staircase: 4.2 m2, width of the partitioning walls: 12 cm,
lining of the walls: 5 cm, and the surface of the chimney was omitted.

Figure 1. Sketch of the building used to model the relationship between the usable area and the
building’s and the knee wall’s heights. H—height of the building, and h—height of the knee wall.
The red values marked on the sketch are the verging heights for three used norms described in
Section 2.1: 140, 190, and 220 cm.

2.4. Data on Gable-Roof Properties from Architectural Bureaus

Training machine learning models requires valid and reliable data. Thus, to train
machine learning models for usable area estimation, we decided to use the information
available online from the architectural bureaus Lipińscy [35] and Archon [36]. Within this
dataset, we have access to all the designs and their interiors, and we can easier understand
and prevent potential errors in the model. In this work, we focus on buildings without
garages and boiler rooms because they contribute to the covered area but not to the usable
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area and, as such, make the usable area estimation task more demanding. Moreover,
the inclusion of garages and boiler rooms in the estimation task is already exhaustively
discussed in Ref. [21], and proposed solutions can be readily applied here as a different
roof structure has no impact on garages or boiler rooms.

The data gathered from both architectural bureaus are from a total of 172 single-family
residential buildings with gable roofs. The usable area was provided according to the
PN-ISO 9836: 1997 standard. We constructed this dataset out of 95 original building
designs without garages and 77 building designs that we modified and removed garages
or extensions. The parameters of these 172 residential buildings are presented in Table 1.

Table 1. Recorded features of 172 residential buildings from the architectural bureaus and of 24 houses
in Koszalin with the range of values present in the dataset.

Feature Symbol Values
(Design Offices) Values (Koszalin)

Usable area AU 42.47–217.34 m2 53.58–438.90 m2

Covered area AC 47.18–227.60 m2 66.82–288.39 m2

Number of stories SN 1–2 1-5
Height H 4.54–9.16 m 6–15.73 m

Knee wall’s height h 0–2.21 m no data

2.5. Data on Gable-Roof Residential Buildings in Koszalin from Airborne Laser Scanning

The second dataset used within this work is composed of real residential buildings
from Koszalin, Poland. These are the target buildings whose usable area Polish real estate
appraisers need to identify for a successful application of the comparative approach—the
most reliable appraisal technique so far. Therefore, the performance of our estimation
approach on this dataset is a litmus test of the method’s applicability to such a class of data.

Information on the parameters of Polish residential buildings is available for appraisers
in the REPR in the respective Polish local administrative unit or county office, but we already
noted in Section 1 that this register is highly incomplete. Therefore, we need an additional
source of data. In this work, we propose to use the BDOT10k database [15], which contains
LiDAR information, originating from airborne laser scanning, provided by the Information
System of the National Guards against Extraordinary Threats (ISOK) Program [16]. It covers the
whole territory of Poland and includes information on spatial location and descriptive attributes
of topographic objects. The database contains descriptions of different kinds of topographic
objects ranging from roads and waterways to buildings, the last of which will be our only
point of interest in this database for the purpose of this work. Building descriptions in the
database contain features such as height, width, length, and perimeter. The LiDAR scanning
was conducted at two levels of detail (LoD): LoD1 and LoD2. The LoD1 contains a square
grid of measurement points with a density of 4 pts/m2, neglects roof geometry, and contains
only bodies of buildings. The LoD2 is characterized by a rectangular grid of measurement
points, with a grid density of 12 pts/2, containing roof structures and simple additional building
textures such as extensions or garages. Most of the Polish LiDAR surface data exhibit LoD2,
but residential buildings analyzed within this paper and located in Koszalin exhibit LoD1.
The BDOT10k is available within the Geoportal database [37] managed by the Head Office
of Geodesy and Cartography. Information from the Geoportal for the city of Koszalin was
downloaded in the CityGML 2.0 standard. The information was accessed using the QGIS
program [38]. Google Street View was used when information on the number of stories was
missing in the REPR.

Twenty-four residential buildings with gable roofs and with accessible essential data and
usable areas measured using the PN-ISO 9836:1997 norm were selected for the final test of the
proposed machine learning model. The data comes from the notices on the Koszalin residential
buildings’ construction completion sent to the District Construction Supervision Inspector of
Koszalin. Such documents and permit applications are required to start using buildings. While
we motivate our study by the availability of LiDAR data across Poland, which provides various
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topographic information on buildings, our analysis of errors of LoD1 height measurements (in
Sections 2.6 and 3.2) indicates that this level of detail causes additional challenges as it gives
an estimate for the median of the building’s height. Therefore, to avoid at this stage errors of
LoD1 height measurements, the studied Koszalin buildings have a known height measured by
surveyors. The properties were mostly localized in a region of the European Union Housing
Complex (pol. Osiedle Unii Europejskiej) in Koszalin. The characteristics of the buildings are
presented in Table 1. They were built between 2020 and 2022.

2.6. Monte Carlo Simulation

To estimate the error that airborne laser scanning can make when measuring the height
of the gable-roof building, we conducted a simulation using the Monte Carlo method. Those
errors depend on the standards used during scanning, which are described in more detail
in the previous Section 2.5. In particular, the heights of LoD1 models (obtained at the
density of 4 pts/m2) are determined as a median of heights of LiDAR data points within a
building frame provided by BDOT10k. The heights of gable-roof LoD2 models (obtained at
the density of 12 pts/m2) are the maximum heights measured within the building frame.

In our simulations, whenever we kept any of the dimensions fixed, we assumed
width = 12.44 m, depth = 15.65 m, and height = 2 m. The width and depth are taken
as the representative averages of analyzed Koszalin county residential buildings, as seen
in Ref. [21]. Moreover, it is worth noting that the calculated height measurement errors
presented further in Section 3.2 are expressed as a percentage of actual modeled height.

We calculated two types of errors: the worst-case-scenario measurement error (WC-
SME) and the mean measurement error (MME) for both LoD1 and LoD2 measurements.
To do this, we first modeled a roof as a parametric surface z(x) = a · |x|+ height, where
a = − height

width/2 . The LoD1 and LoD2 densities of 4 and 12 pts/m2, respectively, translate
to measurement points distributed in a rectangular grid of 1 × 1 m spacing and 1

3 × 1
4 m

spacing, as presented in Figure 2. For each configuration of roof dimensions (width, height,
depth), we modeled the measurement errors for all possible scanning angles of an aircraft
from range α ∈ [0, π

2 ], with 100 Monte Carlo steps for each angle, where by scanning angle
we mean the angle in the XY plane, between the measurement grid’s central axis and the
line perpendicular to the roof ridge. This represents the possibility that the measurements
grid is projected by an aircraft moving in a direction that is not co-linear with the roof ridge.
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Figure 2. A render of the roof model we used for our Monte Carlo simulation, with a rendered mea-
surement grid overlaid on top and roof ridge marked in orange. Subplot (a) corresponds to LoD1
measurement grid, with a grid spacing of 1× 1 m. Subplot (b) corresponds to LoD2 measurement grid,
with a grid spacing of 1

3 × 1
4 m. The dimensions we used here are width = 12.44 m, depth = 15.65 m,

height = 2 m.
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In a single Monte Carlo step, we conducted the following routine:

1. We sampled an initial point of the projected measurement grid from the uniform
distribution. The point was sampled within a square of dimensions matching the
grid’s spacing in the lower left corner of the roof;

2. Given this point, we constructed the measurement grid with the spacing representa-
tive of LoD1 or LoD2, which covered the whole roof, with 2 m padding on each side
of the grid;

3. We then measured the height, matching the method to the given LoD:

• For LoD1, the median value among the grid points is was what we modeled as
the measured height;

• For LoD2, the maximal value among grid points was what we modeled as the
measured height.

After conducting 100 Monte Carlo steps for each angle for fixed roof dimensions, we
computed each error as follows:

• WCSME is the difference between the minimal measured height and the set height;
• MME is the difference between the mean measured height (averaged across Monte

Carlo steps for each angle and then averaged over all angles) from the set height.

Once defined, this routine was used to examine how the error changes upon varying roof
width (for fixed height) or varying height (for fixed width).

2.7. Machine Learning Methods

A typical machine learning problem contains three vital parts: the dataset X, the model
g(θ), and the cost function we seek to minimize C(X, g(θ)). The cost function is a measure
of the model’s g(θ) performance on the dataset X at any given point in time, which is
utilized to tune its parameters θ. This process of tuning the model’s parameters while
minimizing the cost function is called training, or in the case of linear models, such as
the regression, we also call it fitting. The changes in parameters are usually computed
according to the Stochastic Gradient Descent (SGD) algorithm. In supervised learning
problems (i.e., with data labels known as a priori), the heuristic is to divide the dataset into
three mutually exclusive parts: training set, validation set, and test set. During the training
process, the machine parameters θ are tuned in such a way that the loss computed on the
training dataset is minimized with each iteration, i.e., training epoch. Additionally, we
can tune the hyperparameters, i.e., learning rate, regularization strength, etc., to minimize
the error on the validation dataset. After the training is completed, its results are assessed
using the test dataset, which is a measure of how well the machine generalizes, that is, how
well it performs on previously unseen data points. In our case, the dataset X is the data of
the real estate characteristics such as the covered area, height, and the number of stories,
along with their usable areas, i.e., labels.

The first machine learning model g(θ) we trained for this estimation task was the
linear regression with bias. The loss function we minimized C(X, g(θ)) was the linear
least squares function, with a penalization term added—L2 regularization. The need
for the penalization term comes with the introduction of more features describing the
buildings. As a result, our linear regression model became what is known in the literature
as ridge regression, or Tikhonov regularization, with the aim of mitigating the problem
of multicollinearity of the features. The L2 regularization we utilized also penalizes the
increase of weights’ values and, as such, limits the tendency to focus on some features only.

The second machine learning models used within this work are neural networks with a
single hidden layer with 10–30 hidden neurons. They were trained using stochastic gradient
descent (SGD) with momentum and scheduled learning rate. All the hyperparameters
can be found in the code in Ref. [39]. We mostly followed the machine learning approach
described in Ref. [21].

For the purpose of both models’ training, validation, and testing, the architectural
bureau designs dataset was split into three respective datasets: training, validation, and test
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dataset, with a split ratio of 60-20-20. Therefore, for a dataset consisting of 172 designs, this
translates to train-val-test sizes of 104-34-34 data points of one- and two-story buildings.
As we present the results in Section 3.3, these two building types are made distinguishable
on the plots for the reader to be able to see the difference in the prediction performance.

In the following sections, we present the results of applying linear regression and
simple neural networks to estimate the usable area of gable-roof residential buildings.
In Section 3.3, we start with buildings from architectural bureaus [35,36] to have fully
controllable training, validation, and test sets. When the usable area estimation is based
solely on topographic data, with no access to interiors, we are unable to take into account
any special interior designs, such as a mezzanine, that heavily impact the usable area,
regardless of the complexity of the applied model. As we have access to all the designs
and their interiors, we can understand potential errors in the model. On the contrary, if we
trained the machine learning models on realistic buildings where we have no knowledge of
interiors nor of the norm used to calculate its usable area, the model would be subjected to
multiple sources of noise and imperfections that would deteriorate its accuracy. Therefore,
we start here by training and testing the models on the controllable dataset, and then we
test it on real buildings in Section 3.4.

There is various topographic information available within the BDOT10k [15] and
LiDAR data accessible in Geoportal [37], the REPR, and Google Street View. We list them in
Table 1: covered area in m2, height in m2, number of stories, and the height of the knee wall
in m. Moreover, we can extract the building’s perimeter, width, and length. The first task is
to find an optimal set of input features needed to estimate the usable area accurately. For
the convenience of real estate appraisers, their number of input features should be minimal.
This problem is discussed in Section 3.3.

3. Results
3.1. Gable Roofs Impact the Usable Area of the Building

Table 2 shows the impact of increasing the height of the knee wall of an exemplary
building described in Section 2.3 on the usable area of its top floor, presented using three
various norms. As discussed in Section 2.1, those norms are used in registers depending on
the construction year of the building.

Table 2. Usable area of a top story in a building with a gable roof according to three norms.

Usable Area According to the Norm [m2] 1

h [cm] PN 70 ISO 97 ISO 2015

14 49.94 51.56 54.7
14 + 25 53.05 56 57.9

14 + 2 × 25 56.16 59.2 61.1
14 + 3 × 25 59.85 62.8 64.9
14 + 4 × 25 64.03 66.8 69.2

1 Source: Based on the representative gable-roof building project [34] described in more detail in Section 2.3.
Norms: PN 1970 (PN-B-02365:1970), ISO 1997 (PN-118 ISO 9836:1997), ISO 2015 (PN-ISO 9836:2015-12), and
h—knee wall’s height.

A higher knee wall decreases the roof slope, which changes the usable area. For
example, increasing the knee wall from 14 to 25 cm increases the usable area of the top floor
by 3.11, 4.44, and 3.20 m2 within the PN 70, ISO 97, and ISO 2015, respectively. By increasing
the knee wall’s height, the usable area converges to the case of a flat-roof building. From
Table 2, we also see that differences between usable areas calculated using different norms
can vary even by 10%.

3.2. Errors in the LiDAR-Based Data for Gable-Roof Buildings

Gable roofs generate an additional challenge when relying on airborne laser scanning
data to provide heights of the buildings. Intuitively, as you increase the slope of the roof
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and decrease the width, the worst-case scenario error that can be made during scanning
should increase. In this section, we estimate the worst-case scenario (WCSME) and mean
measurement (MME) errors, depending on the roof slope, in the case of LoD1 and LoD2
scanning data. We estimated them using the Monte Carlo technique with assumptions
presented in Section 2.6. The dependence of the WCSME and MME on the roof width and
height (so the roof slope) is presented in Figures 3 and 4.

The WCSME for LoD1 is of the order of 55%, which is expected as the height is set
in LoD1 as the median of height measurements. For a varying roof height in the range
(0, 4) m (with a roof width fixed at 12.44 m.), the WCSME oscillates around 55%. With an
increasing roof width in the range (6, 18) m (with a roof height fixed at 2 m), the WCSME
decreases from ~65% to ~50%. The MME for LoD1 is around 50%. It oscillates around
49.2% and 49% when varying a roof height in the range (0, 4) m (with a roof width fixed at
12.44 m) and when varying a roof width in the range (6, 18) m (with a roof height fixed at
2 m), respectively. Interestingly, the mean error is mostly stable across these simulations
and could be approximated by 50%.

The LoD2 errors are significantly smaller. Its WCSME is around 2.5%, and its MME is
around 0.1%. The LoD2 MME decreases from 0.175 % to 0.05 % when a roof width increases
in the range (6, 18) m (with a roof height fixed at 2 m). When using buildings’ heights
measured at LoD2, those errors can be safely ignored.
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Figure 3. Worst-case scenario measurement error (WCSME) for LoD1 and LoD2 measurements as a
function of roof height and roof width.



Remote Sens. 2022, 15, 863 9 of 15

48.0

48.5

49.0

49.5

50.0

[L
oD

1]
 H

ei
gh

t 
m

ea
su

re
m

en
t e

rro
r [

%
]

Roof width = 12.44 m
(a)

48.0

48.5

49.0

49.5

50.0
Roof height = 2 m

(b)

1 2 3 4
Roof height [m]

0.00

0.05

0.10

0.15

0.20

[L
oD

2]
 H

ei
gh

t 
m

ea
su

re
m

en
t e

rro
r [

%
]

Roof width = 12.44 m
(c)

10 15
Roof width [m]

0.00

0.05

0.10

0.15

0.20
Roof height = 2 m

(d)

Figure 4. Mean measurement error (MME) for LoD1 and LoD2 measurements as a function of roof
height and roof width.

3.3. Machine Learning for Buildings of Architectural Bureaus

Firstly, we analyze the accuracy of the linear regression and neural network when
estimating the usable area based only on the covered area and height of the building.
We present the comparison of predicted and true usable areas in Figure 5 on the test set
composed of 34 one- and two-story buildings from architectural bureaus. We also show the
quality metrics such as R2, mean absolute error (MAE), median absolute error (MedAE),
max and min error, and median absolute percentage error (MedAPE) in Table 3.
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Figure 5. Predictions of (a) the linear regression and (b) the neural network with 10 hidden neurons
of the usable area of buildings from architectural bureaus, with a distinction between one- (diamonds)
and two-story (dots) buildings. Input features are the covered area and the building’s height.
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Table 3. Comparison of estimation accuracy of the linear regression model and the best found neural
network models for 34 buildings from architectural bureaus with different input features, as defined
in Table 1.

Metric 1
Input: AC , H Input: AC , H, SN Input: AC , H, SN , h

LinReg NN
(2-10-1) LinReg NN

(3-10-1) LinReg NN
(4-30-1)

R2 [%] 80 81 93 97 95 98
MAE [m2] 10.27 9.86 6.67 4.09 4.91 3.47

MedAE
[m2] 9.88 9.31 5.26 2.93 3.30 3.00

Max error
[m2] 39.01 40.81 18.62 14.70 17.86 11.38

Min error
[m2] 0.41 0.35 0.52 0.28 0.17 0.52

MedAPE
[%] 9 9 6 4 5 3

1 Used metrics: R2 coefficient, mean absolute error (MAE), median absolute error (MedAE), max and min error,
median absolute percentage error (MedAPE).

Let us analyze the test building that is the most confusing to both models (marked
in red in Figure 5). This building design of Lipińsky called “Ostenda” is characterized by
unusually high ceilings and has an attic. As a result, it is unusually high for a one-story
building. When on average, one-story and two-story buildings in the dataset are 6.03 and
8.16 m high, respectively, this Ostenda building is 7.56 m high. With this example, we see
that adding the number of stories as an input feature could improve the performance of
both models as it helps by taking into account possible slants of the top floor or the attic.

Therefore, we analyze the accuracy of the linear regression and neural network when
estimating the usable area based on the covered area, the height of the building, and
the number of stories. We present the comparison of predicted and true usable areas in
Figure 6 on the same test set. The performance metrics are also presented in Table 3. Finally,
we see that both models reach a satisfying accuracy with R2 around 95%, and MedAE
around 5 m2. This time, the neural network performs significantly better than the linear
regression. Having more tunable internal parameters than linear regression, the neural
network can better model the dependence of the usable area on the two input features—the
number of stories and the height. With the median absolute percentage error of 4%, the
network successfully estimates the usable area of gable-roof buildings based only on their
topographic data, i.e., the covered area, height of the building, and the number of stories.
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Figure 6. Predictions of (a) the linear regression and (b) the neural network with 10 hidden neurons
of the usable area of buildings from architectural bureaus, with a distinction between one- (diamonds)
and two-story (dots) buildings. Input features are the covered area, the building’s height, and the
number of stories.
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Finally, we add more input features and check whether the model performance im-
proves. After adding the knee wall’s height, the accuracy of both linear regression and
neural network increases. They reach R2 of 95% and 98% and MedAPE of 5% and 3%,
respectively. However, the performance increase may not be worth the effort of extracting
information on this input feature. An experienced real estate appraiser can use Google
Street View to make an educated guess of the knee wall’s height, but this estimate is sub-
jected to a significant error. Therefore, in the following section, we test the machine learning
model without taking the knee wall’s height as an input feature.

3.4. Machine Learning for Real Buildings in Koszalin

As a final test of our approach, we apply the train neural network to estimate the
usable area of the real 24 buildings in Koszalin, Poland. The information on these buildings
comes from transactions, therefore we can rely on the reported height of the building,
circumventing the problem of possible height measurement errors present in LoD1 LiDAR
data, which we discussed in Section 3.2.

We test two neural networks trained on buildings from architectural bureaus. The first
model uses only two input features: covered area and building height, which are readily
available in the BDOT10k. The second network also uses the number of stories, which
needs to be deduced using Google Street View if absent in the REPR. The comparison of
predicted and actual usable areas of 22 Koszalin buildings is presented in Figure 7. The
performance metrics are in Table 4. We intentionally left out two extreme outliers found
within the dataset: a residential building with over 400 m2 of usable area and a residential
building with 5 stories. Both models predicted the usable areas of those outliers with errors
of the order of 50–100%.
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Figure 7. Predictions of the neural networks with 10 hidden neurons of the usable area of buildings in
Koszalin, Poland, with a distinction between one- (diamonds) and two-story (dots) buildings. Input
features are (a) the covered area, the building’s height, and (b) also the number of stories.

Table 4. Comparison of usable area estimation accuracy of the neural networks for 22 buildings from
Koszalin, Poland, with different input features.

Metric 1 Input: AC , H Input: AC , H, SN

R2 [%] 62 56
MAE [m2] 17.29 19.40

MedAE [m2] 12.44 15.42
Max error [m2] 63.50 63.29
Min error [m2] 0.21 0.03
MedAPE [%] 15 15

1 Used metrics: R2 coefficient, mean absolute error (MAE), median absolute error (MedAE), max and min error,
median absolute percentage error (MedAPE).
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Compared to results from the previous section, we see a significant drop in perfor-
mance resulting from limitations of available training data. At the same time, mean and
median absolute errors of the order of 15 m2 and median percentage error of 15% show
that both models achieved a comparable satisfactory accuracy. Surprisingly, the network
using only two input features has slightly better performance. Finally, it is interesting to
note that the most confusing buildings are different for both models, which hints that both
neural networks estimate the usable area in a different way.

4. Discussion

In this work, we extend the machine-learning approach for the estimation of usable
area based on topographic data [21] to residential buildings with gable roofs. Such an
estimation of the usable area is a challenge that is especially important for Polish real estate
appraisers who, due to the incompleteness of the REPR, lack information on usable areas of
sold buildings and, therefore, may be prevented from using the most reliable of appraisal
techniques—the comparative approach. This challenge is further complicated by a complex
legal situation regarding norms used to calculate the usable area in Poland.

Compared to flat roofs studied in Ref. [21], a gable-roof structure creates new chal-
lenges for estimation methods, in particular by introducing slants that impact the usable
area of the highest floors. For example, changing the knee wall’s height by 1 m, therefore,
changing the slope of the roof, causes a change of the building’s usable area by over 15 m2.
Another issue is the accuracy of airborne laser scanning, which plays a role when mea-
suring the heights of gable-roof buildings (in contrast to flat-roof buildings). In particular,
using the Monte Carlo method, we show that while for LoD2 LiDAR data, the mean and
worst-case errors in height measurements are around 0.1% and 2-6%, respectively, and
can be ignored, the errors introduced by the LoD1 of LiDAR data are not negligible. In
particular, as the heights of LoD1 models are determined as a median of heights of LiDAR
data points within a building frame provided by BDOT10k, the mean measurement error
is close to 50%, and the worst-case error can reach 65%. Therefore, if machine learning
methods are applied to LoD1 data on gable-roof or multi-pitched roof buildings, they
require a pre-processing of the training dataset to account for these measurement errors.
The pre-processing can be done by modifying the building height by subtracting 50% of its
gable roof height—effectively its median. This way we ensure that both in our training,
and test dataset we define building height the same way. However, for LoD2 LiDAR data,
no preprocessing is needed.

After studying the challenges introduced by a gable roof structure, we train the linear
regression and neural networks to estimate the usable area of buildings from architectural
bureaus of Lipińscy [35] and Archon [36] based on their topographic data. Despite the
availability of data on Koszalin buildings, we trained the machine learning models on
building designs where we have full knowledge of interiors and of the norm used to
calculate its usable area. Thanks to this, the model avoided multiple sources of noise
and imperfections that would deteriorate its accuracy. Most importantly, we see that the
covered area and the building’s height are not enough to guarantee a high accuracy of
trained models. The R2 coefficients are of the order of 80%, and MedAE around 10 m2.
Secondly, we see that the neural network performs slightly better than linear regression by
every metric. Finally, it is interesting to note that both models, although they have very
different natures (e.g., linear vs. non-linear), have very similar predictions on the same test
points and struggle the most with the same buildings. Both linear regression and neural
network achieved the best performance when provided with a covered area, building’s
height, number of stories, and height of the knee wall with a median absolute percentage
error of 5 and 3%, respectively. However, the performance increase may not be worth the
effort of extracting information on this input feature. An experienced real estate appraiser
can use Google Street View to make an educated guess of the knee wall’s height, but this
estimate is subjected to a significant error. Therefore, in the following section, we test the
machine learning model without taking the knee wall’s height as an input feature. Avoiding
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a costly input feature such as the knee wall’s height decreases their performance a little, to
6 and 4%, respectively. Such errors are still extremely low and, therefore, acceptable while
gaining a smaller number of input features that a real estate appraiser needs to collect. Both
models learned correlations present in buildings designed by two architectural bureaus,
characterized by modern style. When applied to real buildings constructed between 2020
and 2022, exhibiting different styles, the models have a significantly lower accuracy. The
best neural network was then applied to 24 real buildings constructed between 2020 and
2022 in Koszalin, Poland. The information on those buildings comes from the notices on the
Koszalin residential buildings’ construction completion sent to the District Construction
Supervision Inspector of Koszalin. Therefore, we can rely on reported buildings’ heights,
circumventing the problem of the height measurement errors present in LoD1 LiDAR
data. The neural network performance in this dataset significantly drops to the median
percentage error of 15%. This drop results from limitations of available training data
that contains buildings designed in a modern style by two architectural bureaus. At the
same time, the median percentage error of 15% shows that neural networks using only
the covered area, the height, and optionally the number of stories achieved satisfactory
accuracy in estimating the usable area of gable-roof buildings. In particular, such an error
is acceptable because administrative courts in Poland regard real estate estimate valuation
reports as correct even if they differ by a few percentage points from one to the other.
Moreover, according to Polish law, during the estimation of a property’s value, appraisers
can use (for comparison) the prices of properties sold by tenders that do not differ more
than 20% from average prices on the market for comparison [40]. As a result of the two
aforementioned reasons, a median deviation of 15% in the usable area estimation still lets
the appraiser stay within the margin of error during the appraisal and identification of
similar properties and their respective values.

While using machine learning to estimate a usable area is very promising for the
everyday practice of Polish real estate appraisers, we need to note a fundamental limitation
of this approach. When the usable area estimation is based solely on topographic data,
with no access to interiors, we are unable to take into account any special interior designs,
such as a mezzanine, which heavily impact the usable area, regardless of the complexity
of the applied model. Moreover, to be fully reliable, this approach requires rich training
data. While we believe we have made the next important steps towards creating a useful
machine learning tool for real estate appraisers, a final deployment requires gathering
much more building data with various design styles, constructed in various years, but with
a usable area calculated using the same norm. Due to the complex legal situation regarding
Polish norms on usable area calculation, this is an important challenge to overcome.

Next to gathering more data, an interesting extension of this research is the application
of a neural network (or a different machine learning model) to estimate the usable area of
more complex buildings, e.g., with multi-pitched roofs. Moreover, instead of using tabular
topographic data, such a machine learning approach could use three-dimensional models
of buildings generated with LoD2 LiDAR data, which is available across the majority
of Poland.
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Abbreviations
The following abbreviations are used in this manuscript:

BDOT10k Database of Topographic Objects (pol. Baza Danych Obiektów Topologicznych)
LiDAR Light Detection and Ranging
LoD Level of Detail
REPR Real Estate Price Register (pol. Rejestr Cen Nieruchomości)
WCSME Worst-Case Scenario Measurement Error
MME Mean Measurement Error
MAE Mean Absolute Error
MedAE Median Absolute Error
MedAPE Median Absolute Percentage Error

References
1. Czaja, J.; Krysiak, Z.; Nowak, R. Analysis of property valuation methods in comparative approach in the aspect of securing the

credit liabilities. Finans. Nieruchom. 2005 2/2005, 16–28. (In Polish)
2. Sawiłow, E. Analysis of the real estate valuation methods in comparative approach. Geod. Rev. 2008, 80, 3–7. (In Polish)
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27. Bydłosz, J.; Cichociński, P.; Piotr, P. Possibilities of the Register of Real Estates Prices and Values Restrictions Overcoming
Applying GIS Tools. Stud. Inform. 2010, 31, 229–244. (In Polish)

28. Ebing, J. Calculating of Area and Cubic Volume of Facilities with Different Intended Use; Verlag Dashofer Sp. z o.o Publishing House:
Ljubljana, Slovenia, 2011; ISBN 978-83-7537-108-6. (In Polish)

29. Polish Committee of Standardization. PN-70/B-02365 Surface Area of Buildings—Classification, Definitions, and Methods of
Measurement 1970. Available online: http://rzeczoznawca-zachodniopomorskie.pl/pliki/PN_70_B_02365.pdf (accessed on 22
April 2022). (In Polish)

30. Polish Commitee of Standardization. PN-ISO 9836:1997 Performance Standards in Building—Definition and Calculation of
Area and Space Indicators 1997. Available online: http://rzeczoznawca-zachodniopomorskie.pl/pliki/PN_ISO_9836_1997.pdf
(accessed on 20 April 2022). (In Polish)

31. Regulation of the Minister of Transport, Construction and Maritime Economy of April 25, 2012 on Detailed Scope and Form of a
Construction Project. Journal of Laws of 2012, Item 462. Available online: http://prawo.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=
WDU20120000462 (accessed on 20 May 2020). (In Polish)

32. Polish Commitee of Standardization. PN-ISO 9836:2015-12 Performance Standards in Building—Definition and Calculation of
Area and Space Indicators 2015. Available online: http://sklep.pkn.pl/pn-iso-9836-2015-12p.html (accessed on 25 May 2020).
(In Polish)
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