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Abstract: As the scale of the power grid continues to expand, the human-based inspection method
struggles to meet the needs of efficient grid operation and maintenance. Currently, the existing UAV
inspection system in the market generally has short endurance power time, high flight operation
requirements, low degree of autonomous flight, low accuracy of intelligent identification, slow gener-
ation of inspection reports, and other problems. In view of these shortcomings, this paper designs
an intelligent inspection system based on self-developed UAVs, including autonomous planning of
inspection paths, sliding film control algorithms, mobile inspection schemes and intelligent fault
diagnosis. In the first stage, basic data such as latitude, longitude, altitude, and the length of the
cross-arms are obtained from the cloud database of the power grid, while the lateral displacement
and vertical displacement during the inspection drone operation are calculated, and the inspection
flight path is generated independently according to the inspection type. In the second stage, in order
to make the UAV’s flight more stable, the reference-model-based sliding mode control algorithm
is introduced to improve the control performance. Meanwhile, during flight, the intelligent UAV
uploads the captured photos to the cloud in real time. In the third stage, a mobile inspection program
is designed in order to improve the inspection efficiency. The transfer of equipment is realized in the
process of UAV inspection. Finally, to improve the detection accuracy, a high-precision object detector
is designed based on the YOLOX network model, and the improved model increased the mAP0.5:0.95

metric by 2.22 percentage points compared to the original YOLOX_m for bird’s nest detection. After
a large number of flight verifications, the inspection system designed in this paper greatly improves
the efficiency of power inspection, shortens the inspection cycle, reduces the investment cost of
inspection manpower and material resources, and successfully fuses the object detection algorithm in
the field of high-voltage power transmission lines inspection.

Keywords: autonomous inspection system of power transmission lines; path planning; sliding mode
control; intelligent machine nest; object detection

1. Introduction

The stable transmission of electricity by high-voltage lines is of great importance to
modern industry and people’s lives [1–3]. In daily life, power departments at all levels
should carry out daily maintenance of high-voltage lines to prevent damage to them by
lawless elements or by bad weather, natural losses, etc. The traditional high-voltage line
inspection approach is walking along the line or with the help of transportation, while
using binoculars and infrared thermal imaging cameras, such as line equipment and
channel environment, for proximity inspection and detection, which are low-efficiency
inspection methods [4–6]. Especially in high mountains, swamps, and other complex
terrain, as well as rain, snow, ice, earthquakes, and other disaster conditions that are
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difficult for personnel to reach, difficult-to-find equipment damage on a tower, and other
shortcomings. With the rapid development of aviation, remote sensing, and information
processing technologies, the power industry can actively carry out line construction and
the operation and maintenance of new technology research. Among such technology,
UAVs have the advantages of operating with high flexibility and at a low cost for line
erection traction and overhead line inspection [7]. UAVs are usually controlled by flyers and
collect corresponding aerial images. Researchers have used the captured data to develop
many automated analysis functions, such as defect detection [8], bird’s nest detection, etc.
However, the existing UAV inspection system still has a single technical means, cannot
synchronize line defects in real time, as well as other problems. These are mainly reflected
in the following points:

(1) The degree of autonomy of the inspection flight: This needs to be improved, as the
inspection efficiency is low. At present, a mainstream inspection flight robot basically
uses a combination of human and machine inspection, the need for the manual
operation of the UAV for inspection target photography, which involves copying
or first manually operating the UAV for photo point location collection, and then
re-flying inspection. Photo copying requires manual participation, a low degree of
autonomy, and low inspection efficiency;

(2) Flight control stability issues: An inspection flight robot in response to the complex
inspection environment, has difficulty in achieving high precision and stable hovering,
which brings a serious impact on accurate data collection, so flight control stability
has been a difficult point for industry applications;

(3) Drone battery replacement issues: An existing inspection flight robot generally lacks
the functions of fast and accurate recovery and power battery replacement, which
means that inspection efficiency cannot significantly improve;

(4) Inspection data fault detection: An inspection flight robot has a low accuracy for
intelligent recognition and slow generation of inspection reports.

In order to solve the above problems, we have proposed innovations in autonomous
flight, autonomous path planning, autonomous battery replacement, and intelligent de-
tection and designed a new UAV inspection system, as shown in Figure 1. The main
contributions of this paper are summarized as follows:

(1) The ground station system that automatically generates the inspection program is
designed, including fine inspection, arc-chasing inspection, and channel inspection,
and the UAV can operate autonomously according to this plan to achieve the all-
around inspection of high-voltage lines;

(2) The self-developed flight control and navigation system achieves high robustness and
high precision flight control for the UAV, solving the problem of poor flight control
stability for existing inspection robots;

(3) A mechanical device for automatic battery replacement is designed, and a mobile
inspection scheme is provided to complete the transfer of equipment while the UAV
performs its task, greatly improving the efficiency of inspection;

(4) Based on the YOLOX object detection model, some improvements are proposed, and
the improved YOLOX is deployed on the cloud server to improve detection accuracy.

The main work of this paper is summarized as follows: The experimental background
and main contributions are presented in Section 1. The related work is presented in
Section 2. Section 3 describes the system architecture and methodology. The validation
platform and experimental results are presented in Section 4. The advantages and disad-
vantages of this system are discussed in Section 5. Finally, our work is summarized in
Section 6.
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Figure 1. Comparison of the traditional inspection solution and our solution.

2. Related Work

The traditional inspection method for high-voltage lines is that inspectors inspect the
lines at high a altitude, which is still used in some areas. However, this is very dangerous
for personal safety because they are likely to fall from height or die by electrocution, while
also working very inefficiently [9,10]. Another method is that inspectors use binoculars
to check the lines, which guarantees the safety of the operators, but the inspection is also
very slow [11,12]. In recent years, UASs have been playing an increasingly important
role in high-voltage line inspections. Li et al. [13] proposed an unmanned intelligent line
inspection system applied to the transmission grid, pointing out the construction elements,
operation mechanism, and data flow diagram of the unmanned system. Calvo et al. [14]
proposed a path planning scheme for UAV inspection in a high-voltage line scenario with
reasonable planning for both vehicle and operator tasks, but the reliability of the system
was only verified by simulation. Luque-Vega et al. [15] proposed a quadrotor helicopter-
based UAV inspection system for high-voltage lines to facilitate the qualitative inspection
of high-voltage lines by power inspection departments. The UAV intelligent inspection
system proposed by Li et al. [16] provided a new and efficient control and data processing
method, enhanced the coordination and cooperation of UAV inspection departments, and
improved the informationization and automation of UAV inspection. Guan et al. [17]
proposed the concept of intelligent power line inspection by UAV with LIDAR, with a
system that is able to inspect power lines with great efficiency and at a low cost, but ignores
the inspection of the other components on high-voltage lines.

With the development of computer vision technology, object detection is also gradually
being applied to all aspects of life, such as high-altitude vehicle detection and pedestrian
detection. The mainstream object detection methods are divided into two types; one is the
one-stage detection method, such as YOLO and SSD [18–22]. The other is the two-stage
detection method, such as Faster RCNN [23]. The two-stage inspection method is highly
accurate but slow, while the one-stage inspection method is fast but slightly less accurate.
However, the one-stage inspection method has developed rapidly and now achieves almost
the same accuracy as the two-stage inspection method. In recent years, many high-voltage
line inspection projects have been combined with object detection, and many inspection
functions, such as line detection [24], bird’s nest detection, and insulator detection, have
been developed based on various datasets. Li et al. [25] compared the performance of
YOLOv3, YOLOv5s, and YOLOX_s models and proposed an optimized YOLOv5s bird’s
nest detection model, but the model was deployed on UAVs, which have certain real-time
requirements, so the detection accuracy is not very high. Hao et al. [26] proposed a bird’s
nest recognition method using a combination of a single-shot detector and an HSV color
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space filter to further improve the accuracy of bird’s nest detection. Nguyen et al. [27]
proposed a method based on the combination of a single shot multibox detector and deep
residual networks, capable of detecting common faults in electrical components, such as
cracks in poles and cross-arms, damage on poles caused by woodpeckers, and missing top
caps. However, this method is mainly used for low-voltage ordinary transmission lines
and cannot be directly used for the detection of high-voltage line faults. Yang et al. [28]
combined deep learning and migration learning approaches to propose a new aerial image
defect recognition algorithm that can better detect insulators in complex environments.

3. Structure of the System and Methods

In this section, firstly, the overall structure of the system is described.
Next, the generation of the scheme in the ground station system is described (path plan-
ning). Then a strong robust flight control algorithm is designed to make the UAV fly stably
even during high-altitude operation. Next, a mobile inspection scheme is introduced to
improve the inspection efficiency. Finally, based on the basic framework of YOLOX [29],
some optimization schemes are designed to improve the model’s detection accuracy.

3.1. Structure of the System

The structure of the system in this paper is shown in Figure 2. Firstly, the operator
needs to request the basic data of the high-voltage towers from the ground station and
generate inspection tasks to send to the UAV. After the drone’s self-inspection is completed,
upon receiving the start command, it begins to perform the operation task and inspect the
electric tower. The drone inspection process uploads the photos of the inspection target to
the cloud server in real time. After receiving the photos of the inspection, the cloud server
uses a combination of manual and deep learning to detect the photos from the inspection.
Manual detection is mainly for when they are some defects in the line, while intelligent
detection is mainly for the detection of bird’s nests in high-voltage lines, and the inspection
report is generated after the detection is completed. After viewing the report, the staff
can arrange maintenance personnel to carry out maintenance. After the drone completes
its task, it returns to the intelligent machine nest, which will replace the drone’s battery
autonomously to improve the inspection efficiency and prepare for the next inspection task.

3.2. Path Planning

Inspection drones operate autonomously according to the mission plan planned by the
ground station. Using the inspection equipment carried by the UAV, the inspection demand
points are photographed, and the high-voltage line inspection is completed efficiently; and
its inspection demand is shown in Table 1. According to this demand, this paper designs
three path planning schemes for fine inspection, arc-chasing inspection, and channel
inspection.

Table 1. High-voltage power transmission line inspection demands.

No. Point of Demand Inspection Contents

1 High-voltage line towers Detection of whether the tower is deformed or tilted, the presence of a bird’s nest, etc.
2 Tower bases Detection of the ground conditions near the tower base
3 Cross-arms Detection of whether the cross-arms are tilted and other abnormalities
4 Insulators Detection of an insulator skirt and grading ring damage
5 Bolts Detection of whether the installed bolts and nuts have popped out or fallen off, etc.
6 Lightning rod and grounding device Detection of whether the discharge gap between them has changed significantly
7 Anti-vibration hammer Detection of the fracture of the anti-vibration hammer connection
8 Lead wire pegging point fixtures Testing of small size fixtures such as wire pendant locking pins
9 Ground wire Detection of ground wire for loose strands and other defects
10 Ground wire pegging point fixtures Detection of ground peg locking pin and other objects
11 Power transmission lines Detection of whether the transmission line is broken, damaged by foreign objects, etc.
12 Channel Checking of over-height trees and illegal buildings in the passage
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Figure 2. The structure of the system.

3.2.1. Fine Inspection

According to the inspection requirements of No. 1–10 in Table 1, a fine inspection
scheme is designed, as shown in Figure 3. Each task point of the path planning is calculated
by the base data of the electric tower in the database. The base data of the tower include
latitude, longitude, height, directional angle, and the category of the tower. As shown in
Figure 3, the direction perpendicular to the azimuth of the tower is the azimuth of the task
point location. Taking mission points 2 and 8 as examples, their latitude and longitude can
be obtained from Equations (1) and (2). X0 and Y0 are the latitude and longitude of the
center point of the current tower. D is the distance of the task point from the center point,
determined by the length of the cross-arms of the tower and the safety distance, and the
plus and minus signs indicate both sides of the tower. θ is the azimuth of the current tower.
TX and TY are the conversion factors between actual distance and latitude and longitude
at the current latitude and longitude. The mission point altitude can be obtained from
Equation (3). The above method can obtain the 3D information for task point locations 2
and 8. Task points 3, 4, 5, 9, 10, and 11 can be based on the height of task points 2, and 8,
minus the height of the cross-arms. Mission points 6 and 7 are determined by adding a
certain safety distance (8 m) to mission points 2 and 8, to ensure that the UAV safely crosses
the high-voltage lines.

X = X0 + ((±D) ∗ cos(θ − 90)
TX

(1)

Y = Y0 + ((±D) ∗ sin(θ − 90)
TY

(2)

H = H0 ± h (3)

According to the fine inspection scheme shown in Figure 3, the specific inspection
strategy is designed as follows: Starting the inspection task from the ground, when the
inspection drone reaches the starting point position, it starts to descend in height to task
point 1, i.e., after the same height as the ground line, it performs the task of taking pictures
at that point. Then, it proceeds to mission point 2 at the ground wire and takes a picture of
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the ground wire. After the ground line photo operation is completed, then the inspection
drone’s height is lowered to reach task point 3 at the upper phase position of the tower,
task point 4 at the middle phase position, and task point 5 at the lower phase position, to
complete the photo task corresponding to each corresponding point. When the tasks of the
single-side tower are finished, the inspection drone is raised to cross-tower task point 6 and
reaches task point 7 on the opposite side of the tower by moving laterally. There is no photo
task at these two points, so the role is to allow the inspection drone to traverse towers at
a safe height. On the other side of the tower, the inspection drone lowers its altitude to
reach task points 8 to 11 and complete the photo task. When all the tasks of the first tower
are performed, the inspection drone is raised to the termination point, and then it flies to
the starting point of the next tower. The inspection drone continues to perform the above
inspection actions according to the task data until it reaches the end of the mission; at this
point, the fine inspection task is completed.

1
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11
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Figure 3. The process of fine inspection.

3.2.2. Arc-Chasing Inspection and Channel Inspection

According to requirement 11 in Table 1 , the arc-chasing inspection scheme is designed
as shown in Figure 4a, and the 3D information of the task points can be obtained as
described in Section 3.2.1. By using inspection drones to perform arc-chasing inspection
tasks, operators can check whether the transmission lines are broken, damaged by by
foreign objects, etc. According to requirement 12 in Table 1, the channel inspection scheme
design is as shown in Figure 4b. Through the channel inspection task, operators can inspect
the high-voltage line channel, which affects tower and line safety.

The specific strategy for the execution of the arc-chasing inspection task is as follows:
The inspection task starts from the starting point, and since there is no demand for pho-
tography at the starting point, the inspection drone descends in altitude to task point 1.
Once the drone arrives at task point 1, the flight control system adjusts the camera pitch
angle to take pictures, while the inspection drone flies at a certain speed to the upper phase
conductor of the second tower, i.e., task point 2. When mission point 2 is reached, the on-
board camera is suspended at this point because there is no photo task at this mission point.
The height of the inspection drone is lowered to reach the mid-phase conductor, i.e., task
point 3. Then, the on-board camera equipment is turned on again and performs the same
action as above, to complete the inspection operation of the middle-phase transmission
lines at task points 3 and 4 and the lower-phase transmission lines at task points 5 and 6.
When reaching task point 6, the last one, the inspection drone is raised to the termination
point, so that the arc-chasing inspection task is completed.

The specific strategy for the execution of the channel inspection task is as follows:
The inspection task is executed from the starting point, and the starting task point is located
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at a fixed height directly above the first pole tower; when the inspection drone reaches the
starting point, the flight control system controls the on-board camera, which starts working
and takes pictures of the channel below at regular intervals. When the inspection drone
reaches the second point, it continues to fly to the subsequent task points until it reaches
the last termination point; then, the on-board camera stops working, the inspection drone
starts to return, and the channel inspection task is completed.

1 2

34

5 6

Start point

Current point

End point

Start point

Current point

End point
(a) (b)

Figure 4. (a) The process of arc-chasing inspection; (b) The process of channel inspection.

3.3. Sliding Mode Control Algorithm

The whole UAV control system adopts the structure of position control, speed control,
attitude control, and bottom stabilization control, as shown in Figure 5. With this approach,
complex control problems can be decomposed, thus facilitating the design and implemen-
tation of the overall controller. The control objects of the position controller include the
velocity controller, the attitude angle controller, the attitude angle rate controller, and the
robot’s power system. When the UAV receives the latitude and longitude of the target
point, sent by the ground station as the control input, it can perform position control by
combining the real-time latitude and longitude information during the inspection, thus
calculating the target value for speed control. Velocity control refers to the process of calcu-
lating the attitude angle target value in the UAV body coordinate system by the velocity
error in the N and E directions. Since both the attitude angle controller and the attitude
angle rate controller operate at a high frequency, the main characteristics of this data source
are the low amount of error and stable acquisition in all environments. Therefore, the
performance of the attitude angle controller as well as the attitude angle rate controller is
usually relatively stable, and the performance of the speed controller directly determines
the stability and accuracy of the flight process of the inspection robot.

Regarding the choice of control algorithm, the sliding mode control has strong ro-
bustness and can tolerate external disturbances well, so we chose the sliding mode control
algorithm to design the speed controller of the UAV.

u̇ = − 1
m
[(sinθcosϕ)

i=1

∑
n

CTΩ2
i − ρSCru2] (4)

Equation (4) is satisfied between the multi-rotor UAV motor speed Ω and the velocity
u̇, where m is the weight of the multi-rotor UAV; θ and ϕ denotes the pitch and roll angles
of the UAV, respectively; n denotes the specific number of rotors; CT is the lift coefficient;
ρ is the air density; S denotes the windward area of the UAV in flight; and Cr is the air
drag constant. {

ẋ1 = a1x1 + a2u
ẋ2 = −gx1 + a3x2

2
(5)
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Figure 5. The structure of the control.

Ignoring the coupling between the axes during the motion and considering only the
motion in a small angular range, the velocity model can be assumed as Equation (5), where
ẋ1 is the dynamic acceleration, ẋ2 represents the real-time velocity, and a1, a2, and a3 are
the model parameters, which can be obtained by debugging. Since the measurement result
of the speed sensor is usually accompanied by a measurement delay, we add the delayed
speed to the system as an extended state, and then Equation (5) can be expressed again as
Equation (6), where d is the delay factor. ẋ1

ẋ2
ẋ3

 =

 a1 0 0
−g 0 0
0 2

d − 2
d

 x1
x2
x3

+

 a2
0
0

u

= AX + Bu

(6)

Based on this model, the reference model for designing the speed control is shown in
Equation (7), where r is the original velocity target information and the output matrix in
the reference model is consistent with the real model, i.e., Cm = C, while the input matrix
Bm = B

(
−Cm A−1

m B
)−1, the specific calculation procedure of which is described in Ref. [30].

Am can be obtained by debugging.{
Ẋm = AmXm + Bmr
Ym = CmXm

(7)

By designing the reference model, the original velocity information can be transformed
into the target value corresponding to each state, and the error between the actual state and
the target state is noted as Equation (8), where us = −(K1X− K2r− u) and ε is the integral
of the velocity error. The design switching function is σ = Ses, and the derivative is shown
in Equation (9).



Remote Sens. 2023, 15, 865 9 of 24

ės =

[
ė
ε̇

]
=

[
Am 0
Cm 0

][
e
ε

]
+

[
B
0

]
us (8)

σ̇ = Sės

= SAmnes − SBm(K1X + K2r− u)
(9)

After each state converges and remains in the sliding mode plane, the switching
function and its derivative are zero, and then its equivalent control can be expressed as
Equation (10).

ueq = −(SBm)
−1SAmes + K1X + K2r (10)

unl = Kn f (σ) (11)

u = ueq + unl (12)

To avoid chattering, we chose to use the smooth function f (σ) = σ/(|σ|+ δ) instead
of the symbolic function in the traditional control, as shown in Equation (11). The total
output of the final sliding mode controller is shown in Equation (12).

3.4. Intelligent Machine Nest

To improve the efficiency and inspection time, this paper designs a mobile inspection
scheme, as shown in Figure 6. When the inspection drone starts to perform the task, the
operator drives the vehicle to the ready landing position in advance and waits to replace
the battery after the inspection drone work is completed. Transferring sites and putting
away the equipment are completed during the inspection time period. The intelligent
machine nest is able to charge the drone’s battery, which guarantees that the drone can
carry out long inspection missions.

Sensor bracket

Battery 

Tarmac

Universal Wheel

Support column

Gripper

Y-axis robot arm

Z-axis robot arm

X-axis robot arm

Intelligent 

machine nest

Drone inspection track

Vehicle trajectory

Battery compartment

Figure 6. Intelligent machine nest. Green is the drone inspection route and gray is the vehicle route.

The whole structure of the intelligent machine nest is shown in the lower right corner
of Figure 6. The upper surface is the apron, its structure with beveled edges on the left
and right can make up for the accuracy error of the inspection drone landing on the apron,
and four sensor brackets are installed on the apron to detect whether there is an inspection
drone on the apron. Four cylinders are installed on the lower surface of the apron, which is
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the power equipment for the homing and locking device of the inspection drone. Six battery
compartments are installed underneath the cylinders, which are fixed on two crossbeams.
The space underneath the battery compartments is reserved for the optional installation of
charging stewards, chargers, and air compressors. The robotic arm designed in this paper
has three degrees of freedom, which are the Z-axis robotic arm providing up and down
degrees of freedom, the X-axis robotic arm providing left and right degrees of freedom, and
the Y-axis robotic arm providing front and rear degrees of freedom; the battery gripper is
installed on the Y-axis robotic arm. Universal wheels are installed on the four corners of the
bottom of the intelligent machine nest to form a mobile and fixed device of the intelligent
machine nest.

3.5. YOLOX

YOLOX uses YOLOv3 as the baseline, with Darknet53 backbone architecture and
spatial pyramid pooling (SPP) layer. The main contribution of YOLOX is the introduction
of the “Decoupled Head”, “Data Augmentation”, “Anchor Free”, and “SimOTA Sample
Matching” methods. An anchor-free end-to-end object detection framework is built and
achieves top-level detection.

Decoupled Head is a standard configuration in object detection one-stage networks,
such as RetinaNet [31], FCOS [32], etc. The final bounding box in YOLOv3 is implemented
together with the confidence in a 1 × 1 convolution, while in YOLOX the confidence and re-
gression boxes are implemented separately by decoupling the header and being combined
into one at the prediction time. Decoupling the detection head increases the complexity of
the operation; in order to achieve a balance between speed and performance, the experi-
ments first used one 1 × 1 convolution to reduce the dimensionality and then used two
3 × 3 convolutions in each of the classification and regression branches, which ultimately
allowed the model to increase the parameters only a little and brought a 1.1 percentage
point improvement in AP on the COCO dataset. YOLOX uses the Mosaic and MixUp
data enhancements, which add 2.4 percentage points to YOLOv3. It should be noted that
these two data enhancements were turned off for the last 15 epochs of training; before
that, Mosaic and Mixup data enhancements were turned on. It was found that ImageNet
pre-training would be meaningless due to a stronger data enhancement approach, so all
models were trained from scratch. YOLOX uses the Anchor Free method to reduce the
model parameters. From the original three groups of anchors predicted by one feature map
to one group, the coordinate value of the upper left corner of the grid and the height and
width of the predicted box are predicted directly. The main role of SimOTA is to assign
a ground truth box to each positive sample in the output prediction box of the network
and let the positive sample fit that ground truth box. This replaces the previous anchor
scheme to fit the anchor, thus achieving anchor free. SimOTA enables YOLOX to improve
2.3 percentage points on the COCO dataset.

3.6. Improved YOLOX

In order to improve the accuracy of the model, the following improvements are made
in this paper based on the YOLOX_m network structure. Firstly, coordinate attention
(CA) [33] is introduced after the output feature map of backbone, which embeds the
location information of the feature map into the channel attention. Then, the binary cross
entropy (BCE) Loss in the confidence loss is changed to the varifocal loss (VFL) [34], to solve
the problem of the low confidence of the box where the location prediction is very accurate,
i.e., the problem of unbalanced positive and negative samples. Finally, the SCYLLA-IoU
(SIoU) [35] loss function is introduced to improve the capability of the bounding box
regression. We also tried to add adaptively spatial feature fusion (ASFF) [36] after the
output feature map of the neck, but the accuracy improvement on the validation set
was very small and added a larger computational effort, so the trick was not increased.
The structure of the improved YOLOX is shown in Figure 7.
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Figure 7. The structure of the improved YOLOX.

3.6.1. Coordinate Attention

In the field of object detection, attention mechanism is a very common trick. The more
commonly applied attention mechanisms are squeeze-and-excitation networks
(SENet) [37], the convolutional block attention module (CBAM) [38], efficient channel
attention (ECA) [39], and coordinate attention (CA). The main idea of SENet is to refine the
values on the long-width dimension into a single value and then multiply it by the original
value on top of the long-width, thus enhancing the useful information and suppressing the
less-useful information [40]. CBAM can be considered as an enhanced version of SENet,
where the main idea is to perform attentional operations on features in space and on chan-
nels. ECA builds on the SENeT module by changing the use of the fully connected layers
in SENet to learn the channel attention information for the 1 × 1 convolutional learning
of channel attention information. This avoids channel dimensionality reduction when
learning channel attention information, while reducing the number of parameters.

Coordinate attention is mainly divided into coordinate information and coordinate
attention generation. The specific structure is shown in Figure 8. For the input feature map
x, the channels are first encoded along the horizontal and vertical coordinate directions
using pooling kernels of dimensions (H, 1) and (1, W), respectively. Therefore, the outputs
in two different directions are shown in Equations (13) and (14), respectively. The above
two transformations not only return a pair of direction-aware attention graphs but also
allow the attention module to capture the dependencies in one direction, while preserving
the position information in the other direction, which allows the network to localize the
target more accurately.

Residual X Avg Pool

Y Avg Pool
Concat

+ 

Conv2d

BatchNorm

+ 

Non-linear

Conv2d

Conv2d

Sigmoid

Sigmoid Re-weight

Input C × H × 1

C × H × W

C × 1 × W C/r × 1 × (W+H) C/r × 1 × (W+H) C × 1 × W C × 1 × W

Split
C × H × W

Output

Figure 8. The structure of the coordinate attention.

zh
c (h) =

1
W ∑

0≤i≤W
xc(h, j) (13)

zw
c (w) =

1
H ∑

0≤i≤H
xc(j, w) (14)
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To make full use of the above information, the two feature maps generated by the
previous module are first cascaded and then a shared 1 × 1 convolutional transform F1 is
used, as shown in Equation (15). The generated f ∈ R C

r ×(H+W) is an intermediate feature
map of the spatial information in two directions, and denotes the downsampling scale.

f = δ
(

F1

(
zh, zw

))
(15)

Then, f is divided into two separate tensors, f h ∈ R C
r ×H and f w ∈ R C

r ×W , along the
spatial dimension. Next, the number of channels of f h and f w are transformed to match
the number of channels of input X using two 1×1 convolutions Fh and Fw, as shown in
Equations (16) and (17).

gh = σ
(

Fh

(
f h
))

(16)

gw = σ(Fw( f w)) (17)

Finally, gh and gw are expanded as weights, and the output of the final CA module
is shown in Equation (18). It is important to consider that when the model introduces the
attention mechanism, the number of input and output channels on the feature map should
be consistent with the original network.

yc(i, j) = xc(i, j)× gh
c (i)× gw

c (j) (18)

3.6.2. Varifocal Loss

The confidence loss in YOLOX is the binary crossentropy (BCE) loss, and the BCE
is defined as in Equation (19), where yi is the binary label value 0 or 1, and p(yi) is the
probability of belonging to the yi label value. When the label value yi = 1, BCELoss =
−logp(yi), the label value yi = 0, and BCELoss = −logp(1− yi). It can be seen that the
loss is small when the predicted value is close to the labeled value and large when the
predicted value is far from the labeled value.

BCELoss = − 1
n

n

∑
i=1

[yi · log p(yi) + (1− yi) · log(1− p(yi))] (19)

However, BCE does not solve the problem of unbalanced sample classification very
well, so focal loss was proposed based on BCE. Focal loss adds a moderator to reduce
the weight of easy-to-classify samples based on the balanced BCE loss function, which
focuses on the training of difficult samples. It is defined as Equation (20), where α is the
weight used to balance positive and negative samples, (1− p)γ is the adjustment factor,
and γ is the adjustable focusing parameter. The larger the value of γ is, the smaller the
loss of the positive samples is, and the model’s attention is directed to the hard-to-classify
samples; and a large γ expands the range of samples for which a small loss is obtained.
This loss function reduces the weight of the easy-to-classify samples and focuses on the
hard-to-classify samples.

FL(p, y) =
{
−α(1− p)γ log(p) if y = 1
−(1− α)pγ log(1− p) otherwise

(20)

Based on this idea of weighting in focal loss, Zhang et al. used VFL to train the
regression continuous IoU-aware classification score (IACS). Focal loss is treated the same
for positive and negative samples, while VFL is not equivalent, and VFL is defined as
shown in Equation (21).

VFL(p, q) =
{
−q(q log(p) + (1− q) log(1− p)) q > 0
−αpγ log(1− p) q = 0

(21)

Here, p is the predicted IACS and q is the target IoU score. q is the IoU between
the prediction box and the ground truth box for positive samples, and q is 0 for negative
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samples. VFL attenuates only the negative samples with pγ, while the positive samples are
weighted using q. If the positive samples have a high IoU, the loss should be larger, so that
the training can focus on the samples with high quality. To balance the overall positive and
negative samples, VFL also used α for weighting the negative samples.

3.6.3. SCYLLA-IoU

Intersection over union (IoU) loss is the most common loss function in object detection.
The IoU loss defines the intersection ratio of the ground truth box and the prediction
box, and the loss is 1 when there is no intersection between the prediction box and the
ground truth box. However, when the prediction box is closer to the ground truth box,
the loss is smaller, and when the prediction box and the ground truth box intersection and
ratio are the same, the IoU loss cannot determine which prediction box is more accurate.
Generalized intersection over union (GIoU) [41] loss proposes an external rectangular box
and an intersecting rectangular box to better reflect the overlap between the two, which
solves these two problems to some extent. However, when the prediction box is parallel
to the ground truth box, GIoU loss degenerates to IoU loss. Distance-IoU (DIoU) [42]
loss introduces a penalty term to directly minimize the normalized distance between the
prediction frame and the center point of the ground truth box, which not only solves
the nonoverlapping problem but also converges faster. Complete-IoU (CIoU) [42] loss
adds a width-to-height ratio constraint over DIoU loss, which allows CIoU to have faster
convergence and a further improvement in accuracy.

None of the above loss functions consider the angle, but the angle can indeed affect
the regression, so the SCYLLA-IoU (SIoU) loss function was proposed by Gevorgyan et al.
The SIoU loss function consists of four cost functions: angle, distance, shape, and IoU.
The angle cost is shown in Figure 9a, where B is the prediction box and BGT is the ground
truth box. When the angle α ≤ π/4 from B to BGT converges to α, the opposite converges
to β. The maximum value is obtained at α = π/4. The specific definition is shown in
Equation (22).

Λ = sin(2α) (22)

B

BGT

α
β

σ

Cw1

Ch1

Ch2

Cw2

B

BGT

|H-HGT|

|W-WGT|

(a) (b)

Figure 9. (a) Graphical explanation of SIoU loss function; (b) The definition of IoU.

Distance cost is defined in Equations (23) and (24). Taking the horizontal direction
as an example, that is, when the two boxes are nearly parallel, α tends to 0, so that the
calculated angular distance between the two boxes is close to 0; at this time γ is also close
to 2, and then the distance between the two boxes for the overall loss of the contribution
becomes less. In addition, when α tends to 45°, the angle cost between the two boxes is
calculated to be 1; at this time γ is close to 1, and the distance between the two boxes should
be taken seriously and needs to account for a larger loss.

∆ = ∑
t=x,y

(
1− e−γpt

)
(23)
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px =

(
Cw1

Cw2

)2
, py =

(
Ch1
Ch2

)2
, γ = 2−Λ (24)

Shape cost is defined in Equations (25) and (26). Shape cost shows whether the
prediction box is consistent with the ground truth box in terms of length and width, using
θ = 4 in the experiment. In summary, the specific definition of the SIoU loss function is
given in Equation (27).

Ω = ∑
t=w,h

(
1− e−wt

)θ
(25)

ωw =

(
|W −WGT |

max(W, WGI)

)
, ωh =

(
|H − HGT |

max(H, HGI)

)
(26)

SIoU = 1− IoU +
∆ + Ω

2
(27)

4. Experiments

In this section, the dataset for the experiments, the evaluation metrics of the model, and
the training conditions are presented first. Then the ablation experiments are performed on
the YOLOX network model. Finally, a practicality validation test of the system is performed.

4.1. Dataset Establishment

The datasets in this paper were partly obtained by autonomous UAV flights and partly
collected from the Internet. Since there are fewer datasets for problems related to defects
such as displacement of the grading ring and defective locking pins, the current dataset
involved in this experiment is mainly about bird’s nests on electric towers. A total of
2822 images of bird’s nest data were collected, divided into a training set of 2430 images, a
validation set of 282 images, and a test set of 110 images. In our experiments, we found
that Mosaic data augmentation is not applicable to the dataset in this paper, so we turned
off Mosaic data augmentation during the model training. We also found that by adding the
L1 loss function at the beginning of the training, the model performs a little better on the
test set.

4.2. Evaluation Metrics

The evaluation metrics of the object detection model in this experiment are Precision,
Recall, mAP0.5 and mAP0.5:0.95. Precision is able to detect the performance of the network
model in predicting positive samples, i.e., how many of the positive samples predicted by
the network model are correct positive samples; the higher the Precision value is, the higher
the accuracy of the model detection is. Recall is the proportion of true positive samples
predicted as positive by the network model to the total positive samples. In general, the
values of Precision and Recall are mutually constrained: the higher the Precision is, the
lower the Recall is, and vice versa.

Precision =
TP

TP + FP
(28)

Recall =
TP

TP + FN
(29)

The area under the Precision-Recall curve is called AP, and the average value of each
category is mean Average Precision (mAP). APS is AP for small objects: area < 32 × 32,
APM is AP for medium objects: 32 × 32 < area <96 × 96, APL is AP for large objects:
area > 96 × 96. mAP0.5 is the average value of AP for each category when the value of in-
tersection over union (IOU) is 0.5. mAP0.5:0.95 is the average value of mAP for different IOU
thresholds (IOU = 0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, and 0.95). N is the total number
of each category, K is the range of values of IOU, and K denotes the current threshold of IOU.
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P(K) and R(K) represent the Precision and Recall of the network model when the threshold
of IOU is K, respectively.

AP =
N

∑
k=1

P(K)∆R(K) (30)

mAP =
1
C

N

∑
k=1

P(K)∆R(K) (31)

∆R(K) = R(K)− R(K− 1) (32)

4.3. Model Training

The experimental platform for model training in this paper is as follows: OS is Win-
dows 11, GPU is GeForce RTX3090, CPU is Intel(R) Core(TM) i9-12900K, application devel-
opment language is Python3.8, deep learning framework is Pytorchv1.11.0, and CUDA11.3.
The initial parameters of the model training are as follows: the input size of the image is
768 × 1280, the initial learning rate is 0.01, the epoch value of warmup is 5, the value of
weight decay is 0.0005, the L1 loss function is increased from the beginning of training, and
the epoch of training is 200.

4.4. Ablation Experiments

YOLOX has six different versions of the network model YOLOX_s, YOLOX_m,
YOLOX_l, YOLOX_x, YOLOX_tiny and YOLOX_nano. Among them, YOLOX_tiny and
YOLOX_nano are lightweight models that require little computing power from the hard-
ware platform and are very friendly for deployment on embedded platforms [43]. The
network model in this paper is deployed on a cloud server and is not particularly focused
on speed. Therefore, we compared the performance of four other models on the dataset,
and the results are shown in Table 2. As seen in Table 2, although the YOLOX_x model
had a deep network and a relatively large number of computations and parameters, the
accuracy was not the highest. YOLOX_m and YOLOX_l achieve almost the same accuracy,
but the number of parameters and computation of YOLOX_m was only half of that of
YOLOX_l, so we finally chose YOLOX_m as the baseline of the object detection model.

Table 2. Different versions of YOLOX performance comparison.

Methods Size Par Gflops mAP0.5(%) mAP0.5:0.95(%) APS APM APL

YOLOX_s 768 × 1280 8.94 M 64.22 97.7 70.05 / 77.6 69.6
YOLOX_m 768 × 1280 25.28 M 176.94 97.8 70.63 / 75.6 70.5
YOLOX_l 768 × 1280 54.15 M 373.61 97.9 70.65 / 74.9 70.6
YOLOX_x 768 × 1280 99.00 M 676.87 97.8 70.37 / 77.3 70.0

4.4.1. Attentional Mechanisms

In our experiments, we added different attention mechanisms after the feature maps
outputted by backbone, and the specific results are shown in Table 3, which shows that
the best results are obtained after adding CA. The improvement over the initial network is
0.62 percentage points in the mAP0.5:0.95 metric and 0.36 and 0.22 percentage points over
CBAM and ECA, respectively, with almost no increase in the number of parameters and
computational effort. We also tried to add the attention mechanism to the feature pyramid,
but the accuracy not only did not improve, but actually decreased. So, finally, only the CA
module was added after the output feature map of backbone.

4.4.2. Confidence Loss

The confidence loss function in YOLOX is the BCE loss function, and we replaced it
with the FL loss function and VFL loss function to verify the performance of the model,
respectively, and the results are shown in Table 4. The FL loss function not only did not
improve the accuracy of the network model but also made the model decrease by 0.39
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percentage points. The VFL loss function improved by 0.87 percentage points on the
mAP0.5:0.95 metric. Since the loss function is only used during model training and does
not change the structure of the model, it does not increase the computational effort or the
number of parameters of the model.

Table 3. Performance comparison of different attention mechanisms.

Methods Size Par Gflops mAP0.5(%) mAP0.5:0.95(%) APS APM APL

YOLOX_m 768 × 1280 25.28 M 176.94 97.8 70.63 / 75.6 70.5
YOLOX_m + SENet 768 × 1280 25.38 M 176.96 97.8 70.30 / 75.2 70.0
YOLOX_m + CBAM 768 × 1280 25.47 M 177.00 97.8 70.89 / 76.7 70.7
YOLOX_m + ECA 768 × 1280 25.28 M 176.95 97.8 71.03 / 76.7 70.8
YOLOX_m + CA 768 × 1280 25.36 M 177.03 97.8 71.25 / 76.8 71.0

Table 4. Performance comparison of different confidence loss functions.

Methods mAP0.5(%) mAP0.5:0.95(%) APS APM APL

YOLOX_m + BCE 97.8 70.63 / 75.6 70.5
YOLOX_m + FL 97.7 70.22 2.8 72.4 70.4

YOLOX_m + VFL 98.3 71.50 20.5 76.6 71.2

4.4.3. Bounding Box Regression

IoU and GIoU loss functions are provided in YOLOX for bounding box regression, and
we tried to verify the performance of DIoU, CIoU, and SIoU loss functions on our dataset;
the specific results are shown in Table 5. As can be seen from Table 5, the performance
of the SIoU loss function is optimal, with a 0.73 percentage point improvement over the
IoU loss function. However, different loss functions may perform differently on different
datasets, so it depends on the variation of mAP values on the validation set.

Table 5. Performance comparison of different regression loss functions.

Methods mAP0.5(%) mAP0.5:0.95(%) APS APM APL

YOLOX_m + IoU 97.8 70.63 / 75.6 70.5
YOLOX_m + GIoU 97.8 70.92 / 76.7 70.7
YOLOX_m + DIoU 97.8 71.12 / 76.7 70.8
YOLOX_m + CIoU 97.8 71.18 / 76.7 70.8
YOLOX_m + SIoU 97.9 71.36 / 76.7 71.1

The performance of the improved YOLOX_m network model is shown in Table 6,
where row 1 is the baseline and rows 2–4 are our improved model. On the mAP0.5:0.95
metric, the final model improves 2.22 percentage points over the original network model
YOLOX_m, with almost no increase in the number of parameters and computation.

Table 6. Performance of the improved YOLOX_m model.

YOLO_m CA VFL SIoU Par Gflops mAP0.5:0.95 (%)

3 25.28 M 176.94 70.63
3 3 25.36 M 177.03 71.25 (+0.62)
3 3 3 25.36 M 177.03 72.12 (+0.87)
3 3 3 3 25.36 M 177.03 72.85 (+0.73)

4.5. System Validation

In order to verify the effectiveness of the autonomous inspection system for high-
voltage transmission line drones, actual flight tests are very necessary. The actual flight test
was conducted with the team’s self-developed UAV as the hardware platform.
The experimental site was a high-voltage line in Xuzhou City, Jiangsu Province, China, and
the actual flight test was conducted after approval by safety management, as shown in
Figure 10. We not only verified the single UAV autonomous inspection operation but also
carried out a test of a multiple UAVs simultaneous autonomous inspection operation.
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(a) (b) (c) (d)

Figure 10. Actual flight environment. (a) Preparation stage of autonomous inspection operation
of UAV; (b) Intelligent machine nest test; (c) Single UAV for autonomous inspection operation;
(d) Multiple UAVs for autonomous inspection operations.

4.5.1. Flight Data

The inspection drone took off from an open area around the high-voltage tower and
completed its operational tasks according to the inspection plan described in Section 3.2.
To facilitate the viewing of the data, the latitude, longitude, and altitude of the inspection
drone flight were transformed into the true distance in the (N, E, D) coordinate system, as
shown in Figure 11. Taking Figure 11b as an example, the inspection drone took off from
(0,0,0) and conducted a single-side arc-chasing inspection of two high-voltage towers in
the distance, returning to (0,0,0) after the inspection task was completed. Its real flight
trajectory was consistent with the trajectory depicted in Figure 4a in Section 3.2, and the
flight trajectories in Figure 11a,c correspond to the planned trajectories in Figures 3 and 4b,
respectively. This shows that inspection drones are able to operate precisely according to
the tasks planned in the ground station.

As can be seen from Section 3.3, the speed control of the inspection UAV is the core
of the control system, and the tracking results of the speed control can reflect the stability
of the UAV flight well. The results of the speed tracking for the three inspection tasks are
shown in Figure 12. VelN, VelE, and VelD are the values of the speed in the N direction, E
direction, and vertical direction, respectively. Red dashed lines are the speed target values
and blue solid lines are the actual speed values. The flight data shows that the inspection
drone has good speed tracking performance and stable flight during the actual operation.
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Figure 11. (a) The trajectory of fine inspection; (b) The trajectory of arc-chasing inspection; (c) The
trajectory of channel inspection.The red points are mission points and the blue lines are the flight
paths of the drones.
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Figure 12. (a) Speed-tracking results for fine inspection; (b) Speed-tracking results for chasing
inspection; (c) Speed-tracking results for channel inspection.

4.5.2. Inspection Data Collection

The schematic diagram of fine inspection data collection is shown in Figure 13, which
shows the data pictures of arc-chasing wire, full tower, overhanging wire clip, grading ring,
and insulator. These data will be uploaded to the cloud server, making it more convenient
for operators to view.

Full 

tower

Arc-chasing 

wire

Pressure 

equalizing ring

The ground line 

above the tower

Insulator

Figure 13. Fine inspection task data collection.

A schematic diagram of the dataset collection for arc-chasing inspection and channel
inspection is shown in Figure 14, which illustrates the specific details and surroundings
of a high-voltage transmission line. The operator can check whether the high-voltage
transmission line is broken and/or damaged by foreign objects according to the arc-chasing
inspection data, and at the same time can observe whether there are ultra-high trees and
illegal buildings in the high-voltage transmission line channel.
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Full tower Full towerLeft side of the arc Right side of the arcMiddle of the arc

Figure 14. Arc-chasing inspection and channel inspection task data collection.

4.5.3. Results of the Bird’s Nest Detection

We compared the detection results of YOLOv3, YOLOX_m, and the improved
YOLOX_m model for bird’s nests, from which we selected representative detection re-
sults, as shown in Figure 15, where the red rectangular box is the result of model detection,
the interior of the yellow elliptical box is the result of model incorrect detection, and the
yellow rectangular box is a zoomed-in view at the location of the yellow ellipse; the interior
of the blue elliptical box is the result of model’s correct detection, and the blue rectangular
box is a zoomed-in view at the location of the blue ellipse. The detection sample in the
first image was relatively difficult, as the YOLOv3 model did not detect the bird’s nest in
the image, while the YOLOX_m model detected the real bird’s nest, but there was a false
detection. In the second image, both the YOLOv3 model and the YOLOX_m model had
false detections, while the YOLOX_m model had a relatively small range of false detections.
In the third image, there were three false detections in the YOLOv3 model and one false
detection in the YOLOX_m model. In the fourth image, both the YOLOv3 model and the
YOLOX_m model had a false detection, but the location of the false detection were different.
The improved YOLOX_m model made a correct detection for all four images. Although the
confidence level of some categories is lower than the original YOLOX_m model, no wrong
detections were made for any images. In conclusion, the generalization of the improved
YOLOX_m model was the best.

4.5.4. Comparison of Inspection Efficiency

After a large number of actual flight experiments, we summarized the relevant
technical indicators of this UAV inspection system and compared it with the combined
human-machine inspection scheme and the traditional manual inspection scheme, as
shown in Table 7. Compared with the human-machine combined inspection scheme,
this system inspection scheme’s fine inspection net time is only 5 min, saving about
10 min compared to the human-machine combined inspection scheme and saving about
40 min compared to the traditional manual inspection. The average number of pole towers
inspected in a single day is 40, and the maximum number of towers inspected in a single
sortie is 6, with the advantages of a duration of 42 min for a single sortie inspection and less
than 3 min of intelligent machine nests for a battery replacement, plus only one staff mem-
ber is needed for system monitoring. In summary, the data show that the UAS described in
this paper leads to a significant increase in inspection efficiency.
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(a) The original picture
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(1)

(1)

(1)

(b) The detection results of the YOLOv3
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(2)

(2)
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(3)
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(4)

(4)
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(c) The detection results of the YOLOX_m

(d) The detection results of the improved YOLOX_m

Figure 15. Comparison of the detection results of the different models. The red rectangular box is the
detection result of the model, inside the yellow border is the incorrect detection result, and inside the
blue border is the correct detection result.

Table 7. Comparison of performance indicators of different inspection schemes.

Inspection Scheme Technical Index Our Inspection Scheme Combined Human-Machine
Inspection Scheme

Traditional Manual
Inspection Scheme

Fine inspection net inspection time 5 min 10–20 min 50 min
Average number of towers inspected
per day 40 20 5

Maximum number of towers inspected
in a single sortie 6 2 1

Endurance of single sortie inspection 42 min 25 min /
Maximum inspection distance for a
single sortie 5000 m 2000 m /

Number of maximum waypoints inspected 1000 300 /
Battery replacement time <3 min 5 min /
Number of staff 1 3 6
Inspection report issuance time 1 day 2 days 3–4 days
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5. Discussion

The design of the system in this paper is mainly considered with the the engineering
application of high-voltage transmission line inspection. Compared with the existing in-
spection system, the advantages of the system in this paper are as follows: (1) It designed
and developed a ground station system integrating inspection path planning, task manage-
ment allocation, data management, intelligent fault diagnosis, and other multi-functional
functions, realizing the fully autonomous operation of the inspection process, improving
the autonomy of inspection, and saving the cost investment of professional inspection
operation training required by the existing inspection. (2) It independently developed a
flight control system and navigation system to achieve high robustness and high precision
flight control of the flying robot, solving the problem of poor stability of the existing in-
spection robot flight control. (3) It proposed a mobile inspection scheme, completing the
autonomous battery replacement of the inspection robot on the intelligent machine nest
and significantly improved the inspection efficiency. (4) It used a fusion YOLOX object
detection algorithm, combined with manual detection, accomplishing the rapid generation
of detailed inspection reports.

In Table 1, we list the many inspection requirements. At present, only the detection of
the bird’s nest is better, and the detection of other defects in the line cannot be detected by
applying the deployed algorithm yet. This still requires manual inspection, mainly because
of the limited dataset currently collected and the more complex detection of various defects,
which is the drawback of this paper. As shown in Figure 16, the grading ring is displaced,
the insulator string is tilted, the locking pin is defective, etc. More data need to be collected
and a reasonable data enhancement and neural network model needs to be applied to
detect the defects.

(a) (b) (c)

Figure 16. (a) The grading ring is displaced; (b) The locking pin is defective; (c) The insulator string
is tilted.

Regarding the backbone of YOLOX, we also tried some newer backbones such as
HorNet [44], EfficientFormer [45], RepVgg [46], MViT [47], etc. They have a good per-
formance in the field of image classification, but placing them into YOLOX was not very
satisfactory, as there was almost no improvement for the accuracy of the model, so we kept
the backbone of the original model. For the neck part of YOLOX, we also tried to add ASFF
after the neck output feature map to filter the interference information and improve the
amount of useful information. However, there was little improvement in the accuracy of
our dataset, and a large amount of computation was added. Therefore, in the end, ASFF
was not added.

6. Conclusions

In this paper, we designed an autonomous inspection system for high-voltage power
transmission line drones, which realizes the efficient inspection of high-voltage power
transmission lines. Based on the inspection demand of high-voltage power transmission
lines, three path planning schemes were designed, including fine inspection, arc-chasing
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inspection, and channel inspection, to achieve the all-around inspection of high-voltage
power transmission lines. In order to make the UAV perform stable operational tasks even
at high altitude, a reference model-based sliding mode control algorithm was designed
to improve flight stability. A mobile inspection solution was designed to complete the
transfer of equipment during the inspection and to complete the task of automatic battery
replacement at the same time, which greatly saves time and improves work efficiency.
Finally, a YOLOX-based high-precision object detection algorithm was designed. Firstly,
CA was added to the backbone output of the three feature maps to improve the ability
of the model to extract features. Then the VFL, SIoU loss function was used to further
improve the accuracy of the model. The improved YOLOX increased the mAP0.5:0.95 metric
by 2.22 percentage points for bird’s nest detection. In conclusion, after a large amount of
flight verification, the high-voltage transmission line UAV autonomous inspection system
designed in this paper greatly improves the inspection efficiency and reduces the cost of
inspection manpower and material input. It also combines object detection technology,
which makes the inspection system more intelligent.
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