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Abstract: The existing formulas for the synthetic aperture radar (SAR) Doppler centroid estimation
standard deviation (STD) suffer from various limitations, especially for a dynamic sea surface. In this
study, we derive an improved version of these formulas through three steps. First, by considering the
ocean wavenumber spectrum information, a new strategy for determining the number of independent
samples of the sea wave velocity field is adopted in the new formula. This is contrary to the method
used in the existing formulas, where the number of SAR geometric resolution cells is taken as the
number of samples assuming that adjacent SAR resolution cells are statistically uncorrelated. Second,
the pulse repetition frequency and Doppler bandwidth are decoupled in the new formula, unlike in
the existing formulas where they are unchangeably related to each other. Third, the effects of thermal
noise and Doppler aliasing are jointly quantified in a mathematically exact manner instead of being
treated separately, as in the existing formulas. Comprehensive SAR raw data simulations for the
ocean surface show that the new formula has a better performance in predicting the Doppler centroid
estimation STD than the existing formulas.

Keywords: synthetic aperture radar; SAR Doppler centroid estimation standard deviation; analytical
model; ocean current retrieval

1. Introduction

Ocean currents influence the movement of water on Earth by transporting and mixing
salts, gases, heat, and nutrients throughout oceans. Accurate repeated knowledge about the
presence, speeds, and directions of ocean currents is crucial to many commercial, societal,
and research applications (e.g., oil and gas exploration, route planning for ships, maritime
search and rescue, water pollution mapping, and containment [1,2]).

Synthetic aperture radar (SAR) has high resolution and wide coverage and is inde-
pendent of the operational time of day and weather conditions, thereby proving to be
an effective remote sensing tool for measuring ocean surface currents. Generally, two
SAR-based methods can be used to measure ocean surface currents. The first method
is SAR along-track interferometry (ATI), which measures ocean currents by forming an
interferogram based on two complex SAR images of the same scene, but with a short time
lag [3–10]. The second method is the Doppler centroid anomaly (DCA) technique. This
technique exploits the fact that the difference between a Doppler centroid estimated from
SAR data and a theoretical Doppler frequency predicted by the relative motion between a
satellite and the rotating Earth reflects the geophysical information about the ocean surface
motion. Unlike ATI, which uses two separated antennas (or two split antenna apertures)
along the flight track, the DCA technique exploits data from a single antenna, making it
applicable to various available SAR datasets without additional preparations [9]. In this
paper, we limit our discussion to the relevant issues of the DCA technique when retrieving
ocean surface currents.

The use of the DCA technique to measure ocean surface currents was first proposed
in the late 1970s [11]. The first demonstration of this technique using European Remote
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Sensing Satellite-1 SAR data was reported in 2001 [12]. Since then, the DCA technique
has been extensively investigated in several aspects. Since 2005, Chapron et al. [13–15]
have applied this technique to Envisat Advanced Synthetic Aperture Radar data and have
presented promising results. This technique was also applied to another spaceborne SAR,
TerraSAR-X, with the results demonstrating that DCA-derived currents are comparable to
short-baseline ATI-derived currents regarding quality [9]. Aside from result demonstration
and assessment, algorithm refinement for the DCA technique was studied. For example,
Hansen et al. [16] presented the necessary steps for correcting for two measurement bias
sources in the geophysical Doppler shift. One bias source was associated with the variation
of the normalized radar cross section (NRCS) along azimuth, and the other was linked to
an electronic radar beam mispointing and imperfectly known satellite orbit and attitude
parameters. Additionally, the expectation value of the radar-detected Doppler velocity
from the ocean surface (i.e., the first moment of a random variable) has been theoretically
modeled by several researchers [13,17–21]. Johannessen et al. [18] interpreted the mean
Doppler velocity as a sum of the radial velocity of ocean surface current, the velocity
contribution resulting from tilting and hydrodynamic modulation of scattering facets, and
the mean line-of-sight velocity of scattering facets, which is represented as a sum of the
phase speed of Bragg waves, advection speed of the specular mirror points, and speed
of wave breakers. Apart from theoretical work, an empirical model called the C-band
Doppler (CDOP) shift model was developed to characterize the relationship between the
wind-induced Doppler shift and the wind speed and direction relative to the radar look
direction [22].

In addition to modeling the first-order moment (i.e., mean) of the DCA-derived
Doppler velocity, the theoretical modeling of its second-order moment (i.e., statistical
fluctuation) is imperative in current-measuring accuracy assessment and error budget
computation when designing the instrumental parameters for a new SAR system. Unfor-
tunately, contrary to the comprehensive discussion of its first-order moment modeling,
publications on the analytical modeling of the SAR Doppler centroid estimation stan-
dard deviation (STD) are relatively few. To our knowledge, only two studies [23,24] have
addressed this issue until now. Bamler [23] pioneered the derivation of an analytical
expression for the SAR Doppler centroid estimation STD associated with a widely used
algorithm, called the average cross-correlation coefficient (ACCC) algorithm [25]. However,
Bamler’s derivation [23] was performed under the implication of a stationary observation
scene, without considering the possible motions of the scene or the quantitative effect of the
signal-to-noise ratio (SNR) on the Doppler centroid estimation STD. Liu et al. [24] advanced
Bamler’s work by considering the properties of a dynamic ocean scene and the effect of
the SNR. However, their derived formula for the SAR Doppler centroid estimation STD
was still subject to several limitations. First, the effect of ocean surface wave motions was
underappreciated in this STD formula because it did not consider the correlation in the
large-scale wave motion between two adjacent SAR range resolution cells. Second, in the
formula, the pulse repetition frequency (PRF) and Doppler bandwidth were coupled at a
fixed oversampling ratio, thereby limiting the use of this formula in practical applications.
Third, in deriving this formula, the overall effect of thermal noise and Doppler aliasing on
the Doppler centroid estimation STD was quantified as a product of their individual effects,
which is rather heuristic instead of being mathematically exact. This limited the ability of
the formula to reflect the actual situation. In summary, efforts must be made to improve
the generality of modeling the Doppler centroid estimation STD.

This study has two main objectives. The first objective is to derive an improved
formula for the SAR Doppler centroid estimation STD of the ACCC algorithm. Thus,
efforts are made in three aspects. First, when accounting for the effect of sea wave motions,
we adopt a new strategy for determining the number of independent samples of the sea
wave velocity field contributing to a Doppler centroid estimate by considering the range
correlation length, which is dictated by the sea wavenumber spectrum. This contrasts with
the method used in Liu’s formula [24], where the number of SAR geometric resolution



Remote Sens. 2023, 15, 867 3 of 25

cells was simply taken as the number of samples, assuming that adjacent SAR resolution
cells were statistically uncorrelated in terms of large-scale ocean wave motion, which
is not the case in the actual situation. Second, unlike the formulas derived in previous
studies [23,24], where the ratio of the PRF to the Doppler bandwidth was assumed as fixed,
these two quantities are decoupled in the newly derived formula such that the azimuthal
oversampling ratio can be taken as any value. Third, in deriving the new formula, the
effects of thermal noise and Doppler aliasing are jointly quantified in a mathematically
exact manner rather than heuristically, as in Liu’s formula [24]. The second objective is to
perform a validation of the newly derived formula for the Doppler centroid estimation STD
against various variables, including radar system and sea state parameters, with the help
of SAR raw data simulation for the ocean surface. In addition, we will comprehensively
compare the newly derived formula with Bamler’s [23] and Liu’s [24] formulas to show
that the Doppler centroid estimation STDs predicted by the newly derived formula are in
a better agreement with the measured values from Monte Carlo simulations than those
predicted using Bamler’s [23] and Liu’s [24] formulas.

The rest of this paper is organized as follows. Section 2 gives a detailed derivation
of the improved formula version for the SAR Doppler centroid estimation STD. Section 3
describes a method of Monte Carlo simulations for justifying the validity of the newly
derived formula. In Section 4, the new formula is compared with the other existing formulas
mentioned earlier. Final conclusions and remarks are provided in Section 5.

2. Derivation of an Improved Analytical Formula for the SAR Doppler Centroid
Estimation STD for a Dynamic Sea Surface

The SAR Doppler centroid, defined as the Doppler shift of the backscattered radar
signal at the antenna beam center, is related to the frequency of the return signal at the radar
beam center. This parameter is not only greatly important for SAR data processing (i.e.,
by affecting the noise and aliasing levels in the processed SAR image [26]) but also useful
in measuring geophysical parameters, such as ocean surface currents (Section 1). Due to
the azimuth aliasing, the absolute Doppler centroid can be divided into two components:
(1) the fractional PRF part that lies in the Doppler interval, ranging from −0.5 · PRF to

+0.5 · PRF, and (2) the integer PRF part. An estimate,
_
f Dc, of the fractional PRF part of

the Doppler centroid can be made from received SAR data using the widely used ACCC
estimation algorithm as follows [25,26]:

_
f Dc =

arg
{

∑
k

s∗[k] · s[k + 1]
}

2π
· Fprf, (1)

where Fprf denotes the PRF; s[1], s[2], · · · , s[k], · · · represent the demodulated azimuth
radar signals sampled at a time interval of 1/Fprf; (·)∗ denotes the complex conjugate; and
the operator arg{·}means taking the angle of a complex number. Note that the Doppler
centroid estimator shown in Equation (1) is equivalent to a correlation-based estimator that
works by correlating the observed Doppler power spectrum with a sine function [23].

An analytical formula for the STD of
_
f Dc estimated by Equation (1) was first derived

in [23] for a stationary observation scene. Another version of the formula was developed
in [24] to deal with the wave motions of a sea surface. However, the formula in [24] suffered
from some drawbacks, including the underappreciation of the effect of ocean wave motions.
Here, we derive an improved formula for the Doppler centroid estimation STD obtained
by Equation (1) to solve the PRF and Doppler bandwidth decoupling, joint quantification
of the effects of Doppler aliasing and thermal noise, and a full expression of the effect of
ocean wave motions (Section 1).
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For easy derivation, we decompose the overall Doppler centroid estimation variance

σ2
fDc

into two parts according to different random fluctuation origins in
_
f Dc:

σ2
fDc

=
(

σSAR
fDc

)2
+
(

σsea
fDc

)2
. (2)

where
(

σSAR
fDc

)2
denotes the component of the Doppler centroid estimation variance inher-

ent in the SAR that results from a combined consequence of the multiplicative speckle noise
linked to the backscattered radar signals, additive radar receiver thermal noise, along-track

antenna beam pattern, and radar motion.
(

σsea
fDc

)2
represents the variance component

resulting from the random motions of sea surface waves. Note that the σ2
fDc

partition in

Equation (2) assumes that the random process of the fluctuation in
_
f Dc due to the speckle

and thermal noises and the process associated with the ocean surface wave motions are

statistically uncorrelated. Additionally,
(

σSAR
fDc

)2
corresponds to a scenario where the radar

is in motion but the sea surface is assumed to be stationary. However,
(

σsea
fDc

)2
is related to

another scenario where the sea surface is in a random motion state but the radar is located
in a stationary fixed position. The following two subsections will give detailed derivations

of the analytical formulas for
(

σSAR
fDc

)2
and

(
σsea

fDc

)2
.

2.1. Derivation of the Formula for
(

σSAR
fDc

)2

Presently, we will assume a moving radar but a stationary sea surface. To begin with, we
repeat a formula derived in [23] for the ACCC-algorithm-associated Doppler centroid estima-
tion variance component pertaining to the speckle and thermal noises (Equation (36), [23]):

(
σSAR

fDc

)2
=

F2
prf · γ

rg
osr

Np · Nr
· 1

2π2 ·
(

1
m2 +

1
4

)
, (3)

where Np is the number of pulses contributing to the Doppler centroid estimate; Nr is
the number of range samples used to estimate the Doppler centroid using the ACCC
algorithm; γ

rg
osr is the range oversampling ratio; and m, called the spectrum sharpness

factor, characterizes the degree of sharpness of the expected Doppler power spectrum of
the received SAR data, which is defined according to [23] as follows:

m =
Pmax − Pmin

Pmax + Pmin
, (4)

where Pmax and Pmin represent the maximum and the minimum of the expected Doppler
power spectrum, respectively (Figure 1).
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troid estimate. Replacing prfF  and pN  in Equation (3) with prf′ = DF B  and eff
pN , respec-

tively, we have the following: 

( ) γ
σ

π
⋅  = ⋅ ⋅ + ⋅  Dc

rg2SAR osr
2 2

az

1 1 1
42

D
f

r

B
T N m

. (7) 

prf

2
F

− prf

2
F0

maxP

minP

( )dS f

df

max min

max min

P Pm
P P

−=
+

Doppler power 
spectrum

Figure 1. Doppler power spectrum of the SAR and the spectrum sharpness factor m.
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Note that the expression for
(

σSAR
fDc

)2
shown in Equation (3) was derived assuming

a stationary observation scene and with the expected Doppler power spectrum of the
received SAR data SSAR( fd) taking on the shape of a cosine wave on a pedestal [23]:

SSAR( fd) = 1 + m · cos
(

2π fd/Fprf

)
, (5)

where fd denotes the Doppler frequency variable, and m is the spectrum sharpness factor,
as in Equation (4). Note that this cosine-shaped SSAR( fd) is well approximated by the
first-order Fourier series of a sinc-quartic function [23]. In addition, the Doppler centroid
estimator using the ACCC algorithm shown in Equation (1) works by correlating the
observed Doppler power spectrum with a sine function [23], meaning that the choice of the
cosine-shaped Doppler spectral model is applicable. Equation (3) was derived assuming
that the PRF and the SAR Doppler bandwidth relate to each other at a fixed azimuth
oversampling ratio slightly larger than one, thereby limiting the application scope of this
formula. Subsequently, we attempt to solve this problem by extending the formula in
Equation (3) to the case where the PRF and Doppler bandwidth can take any value.

Let us consider a scenario where the PRF, Fprf, is much larger than the SAR Doppler
bandwidth BD. Here, two contiguous azimuth samples of the received SAR raw data are
not fully statistically independent of each other, meaning that redundancy occurs among
the azimuth signal samples. To eliminate this redundancy, we subsample the azimuth SAR
data by a factor Fprf/BD such that the equivalent PRF of the subsampled SAR data becomes
F′prf = BD, which is smaller than the original PRF, Fprf. After subsampling, the effective
number of independent azimuth samples contributing to the Doppler centroid estimate is
reduced from its original number Np to a smaller number Neff

p , expressed as follows:

Neff
p = Np ·

BD
Fprf

= Taz · BD, (6)

where Taz = Np/Fprf is the azimuth observation time contributing to the Doppler centroid
estimate. Replacing Fprf and Np in Equation (3) with F′prf = BD and Neff

p , respectively, we
have the following: (

σSAR
fDc

)2
=

BD · γ
rg
osr

Taz · Nr
· 1

2π2 ·
(

1
m2 +

1
4

)
. (7)

From Equation (7), we propose the following comments on the implications of the(
σSAR

fDc

)2
expression:

• Expressing
(

σSAR
fDc

)2
as a function of BD and Taz, rather than PRF, has the consequence

of decoupling the PRF and the Doppler bandwidth because they can each take any
value independently.

• How the four parameters of BD, Taz, m and Nr in Equation (7) govern the
(

σSAR
fDc

)2

value is explained as follows:

1. Given that the Doppler centroid estimator shown in Equation (1) is equivalent
to the Doppler centroid estimator that works by correlating the Doppler power
spectrum of the received SAR data with a sine function, the total amount of noise
incorporated into the correlation results reduces with a decrease in the Doppler
bandwidth; thus, the smaller the value of BD (or what is equivalent, the narrower

the radar beam in the azimuth direction), the lower the value of
(

σSAR
fDc

)2
.

2. An increase in the amount of the scene observation time, increases the accuracy
of the Doppler centroid measurement; hence, the larger the value of Taz, the

smaller the value of
(

σSAR
fDc

)2
.
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3. An increase in the sharpness of the shape that the Doppler power spectrum
exhibits facilitates the determination of the Doppler centroid in the presence of
speckle and thermal noises. Therefore, the larger the spectrum sharpness factor

m, the smaller the value of
(

σSAR
fDc

)2
.

4. It is a straightforward fact that the larger the number of range samples, Nr, the

smaller the value of
(

σSAR
fDc

)2
.

After
(

σSAR
fDc

)2
is expressed as a function of the SAR Doppler bandwidth and the

azimuth observation time, the issue of deriving an analytical expression for the spectrum
sharpness factor m involved in Equation (7) remains to be addressed. In the relevant
formula in [23] (Equation (36), [23]) or Equation (3) in this paper), the spectrum sharpness
factor was set to a fixed number (m = 0.7) without considering its variations with the
Doppler aliasing and receiver thermal noise levels. The effect of thermal noise on m was
considered in Liu’s formula (Equation (A5), [24]). However, in this formula, the overall
effect of the thermal noise and Doppler aliasing on m was quantified as a product of
their individual effects, a rather coarse method. Thus, the question of how to obtain the
expression for m in a mathematically exact manner arises.

To deal with the abovementioned problem, we first consider an ideal case where no
Doppler aliasing occurs. For this case, the expected Doppler power spectrum of the radar
echoes can be expressed as follows, assuming a sinc-squared two-way antenna beam pattern:

Suna( fd) = P0 · sin c4
(

fd
BD

)
, (8)

where the subscript “una” indicates the unaliased power spectrum, sin c(x) = sin(πx)/(πx)
is the sinc function, and the constant P0 represents the maximum value of Suna( fd). As most
SAR antennas are unweighted along the azimuth direction, the one-way beam pattern is
approximately a sinc function so that the two-way beam pattern is a sinc-squared function.
Due to the envelope of the SAR Doppler signal having the same shape with the two-way
beam pattern, the expexted Doppler power spectrum of the radar echoes, which is the square
amplitude of the SAR Doppler signal, can be expressed as a sinc-quartic function. Note that, as a
starting point for deriving an analytical expression for the spectrum sharpness factor m, Suna( fd)
can be expressed as a sinc-quartic function without requiring a cosine-shaped approximation.
The plot of Suna( fd) versus fd is drawn as a solid line in Figure 2. However, in practical
situations, a certain degree of Doppler aliasing is always present in the observed Doppler power
spectrum due to the discrete sampling of the azimuth SAR signal and the azimuth signal not
being band limited. Therefore, the Doppler spectral components that lie outside the Doppler
interval

[
−Fprf/2,+Fprf/2

]
will be folded into this interval, as illustrated by the dashed lines

in Figure 2. By referring to Figure 2 and considering only first-order ambiguities, we can easily
express the aliased part of the Doppler power spectrum Sali( fd) as follows:

Sali( fd) = Suna

(
fd + Fprf

)
+ Suna

(
fd − Fprf

)
, −

Fprf

2
≤ fd ≤

Fprf

2
. (9)

The thermal noise of the radar receiver is independent of the complex signal of the
radar echo, and the complex unaliased and aliased signal components are statistically
uncorrelated. Hence, the total observed SAR power spectrum SSAR( fd), defined over the
Doppler interval

[
−Fprf/2,+Fprf/2

]
, can be written as the sum of the unaliased spectrum

part, aliased spectrum part, and thermal noise spectrum:

SSAR( fd) = Suna( fd) + Sali( fd) + Pn, −
Fprf

2
≤ fd ≤

Fprf

2
, (10)
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where Pn is the expected power spectrum of the thermal noise, for which the thermal noise
has been considered to be white with a power spectral density proportional to a fixed
value [23]. The SSAR( fd) curve is represented by the dash–dotted line in Figure 2.
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Using Equation (4) and referring to Figure 1, the spectrum sharpness factor m can be
expressed as follows:

m =
max{SSAR( fd)} −min{SSAR( fd)}
max{SSAR( fd)}+ min{SSAR( fd)}

=
SSAR(0)− SSAR

(
Fprf/2

)
SSAR(0) + SSAR

(
Fprf/2

) . (11)

Substituting Equations (8)–(10) into (11), defining the azimuth oversampling ratio
as γaz

osr = Fprf/BD and the SNR as SNR = (P0/2)/Pn, and performing some trivial alge-
braic manipulations, we obtain the analytical formula for m as a function of the azimuth
oversampling ratio γaz

osr and the SNR:

m(γaz
osr, SNR) =

1− 2 · sin c4(0.5 · γaz
osr) + 2 · sin c4(γaz

osr)− sin c4(1.5 · γaz
osr)

1 + 2 · sin c4(0.5 · γaz
osr) + 2 · sin c4(γaz

osr) + sin c4(1.5 · γaz
osr) +

1
SNR

. (12)

Substituting the relevant radar system and configuration parameters into
γaz

osr = Fprf/BD, we can further express γaz
osr as follows [24]:

γaz
osr =

Fprf · Da

1.772 · vs · αt
b · α

r
b

, (13)

where Da is the along-track antenna length; vs is the effective radar velocity; and αt
b and

αr
b denote the beam broadening factors on transmit and receive, respectively. Relating the

SNR to the ocean surface environmental parameters, we have the following equation:

SNR =
σ0(U, φwind, θinc, pol)

σ0
NE

, (14)

where σ0
NE is the noise equivalent sigma zero (NESZ), an important radar system parameter

characterizing the radiometric sensitivity of a SAR system, σ0 is the NRCS, which is a function
of the wind speed at a height of 10 m, the wind direction angle φwind relative to the radar look
direction, the incidence angle θinc of the radar beam, and the polarization pol.
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Using BD = 1.772 · vs · αt
b · α

r
b/Da and inserting Equation (12) into Equation (7), we

can obtain the final form of
(

σSAR
fDc

)2
as follows:

(
σSAR

fDc

)2
=

0.886 · vs · αt
b · α

r
b · γ

rg
osr

π2 · Da · Taz · Nr
·
(

1
m2(γaz

osr, SNR)
+

1
4

)
, (15)

where the specific expression for m2(γaz
osr, SNR) can be found in Equations (12)–(14). Ac-

cording to the specific expression for the Doppler bandwidth, we find that the Doppler
bandwidth is proportional to the effective radar velocity with all the other parameters

constant; on the other hand, the
(

σSAR
fDc

)2
value is related to the Doppler bandwidth. There-

fore, the effect of the radar motion on
(

σSAR
fDc

)2
can be explained as follows: the Doppler

bandwidth reduces with a reduction in the effective radar velocity. Thus, the total amount
of noise incorporated into the correlation results reduces, so that the spectrum sharpness
factor increases. A combined consequence of the aforementioned processes induces the

decrease in
(

σSAR
fDc

)2
.

2.2. Derivation of the Formula for
(

σsea
fDc

)2

In deriving the formula for
(

σSAR
fDc

)2
in Section 2.1, the equivalent number of indepen-

dent range samples averaged to obtain the Doppler centroid estimate is taken as Nr/γ
rg
osr

[Equation (15)], which is the number of geometric range resolution cells. This is a valid
treatment because random noise processes, including the speckle and thermal noises, in
two different range resolution cells are statistically uncorrelated. In Liu’s formula (Equation
(A8), [24]), the effect of the sea surface motions was modeled as a broadening of the SAR
Doppler power spectrum before being directly combined with the noise effect. That is, the
processes of the sea surface motion in two adjacent range resolution cells were independent
of each other in their study, just as the speckle and thermal noises are treated. This means
that in Liu’s formula (Equation (A1), [24]), the number of independent range samples of the
sea wave velocity field was taken as Nr/γ

rg
osr, similar to that for the noise process. However,

in practical situations, doing so will underappreciate the effect of the sea wave motions
on the Doppler centroid estimation variance because the sea wave orbital velocities on the
sea surface always exhibit some patterns, instead of showing a white-noise-like feature.
Hence, the number of independent range samples of the sea wave velocity field may be
less than Nr/γ

rg
osr. In what follows, we will give a detailed derivation of the expression for(

σsea
fDc

)2
shown in Equation (2) using a new strategy, focusing on how to determine the

number of independent range samples of the sea wave velocity field.
To proceed with our derivations, we assume a scenario where the radar velocity is set

to zero, but the sea surface is in a dynamic state. We then consider a narrow strip on the sea
surface aligned parallel to the azimuth direction, with a length corresponding to the azimuth
size of the antenna beam footprint and a width the size of a single range resolution cell.

The general assumption that the sea surface can be described as a superposition of a
series of free sine waves with independent phases yields the fact that the sea wave velocity
field, VR(x, y), where x and y denote the azimuth and range coordinates, respectively, can
also be expressed as a superposition of a group of free sine functions [17]. This results in the
Doppler power spectrum of the moving sea surface confined within the aforementioned
narrow strip being represented by the probability density of a Gaussian-distributed sea
wave velocity field:

Ssea( fd) = a0 · exp

−1
2
·
(

fd − f d
Bsea

D

)2
, (16)
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where a0 is proportionality factor, f d is the mean Doppler shift of the moving sea surface,
and Bsea

D denotes the Doppler bandwidth of the moving sea surface.
Provided that the shape of the Doppler power spectrum of the moving sea surface

given in Equation (16) is highly similar to that of the Doppler power spectrum of the SAR
in Equation (5), we can resort to the same formula [Equation (7)] employed for computing(

σSAR
fDc

)2
to evaluate the component of the Doppler centroid estimation variance

(
σsea

fDc

)2

linked to the random sea surface motions by substituting the spectrum sharpness factor,
Doppler bandwidth of the sea surface, and the number of independent range samples of
the sea wave velocity field VR(x, y) into Equation (7). We then obtain the following:(

σsea
fDc

)2
=

Bsea
D

Taz · Nsea
r
· 1

2π2 ·
(

1
m2

sea
+

1
4

)
, (17)

where msea and Nsea
r are the spectrum sharpness factor of the Doppler spectrum of the

sea surface and the number of independent range samples of the sea wave velocity field,
respectively, and Taz is the radar observation time, which has the same value as that in
Equation (7). Thus, our task here is to obtain specific analytical expressions for msea, Bsea

D ,
and Nsea

r .
The PRF of a radar is typically far greater than the Doppler bandwidth of the sea surface;

therefore, the Ssea( fd) value at fd = ±Fprf/2 is approximately zero (i.e., Ssea

(
±Fprf/2

)
≈ 0).

According to the definition of the spectrum sharpness factor given in Equation (4), msea is
evaluated as follows:

msea = max{Ssea( fd)}−min{Ssea( fd)}
max{Ssea( fd)}+min{Ssea( fd)}

=
Ssea(0)−Ssea(±Fprf/2)
Ssea(0)+Ssea(±Fprf/2)

≈ 1

. (18)

By definition, the Doppler bandwidth Bsea
D of the sea surface is related to the root-mean-

square (RMS) radial velocity σsea
vr of large-scale gravity sea waves (contrary to small-scale

Bragg scattering waves) as follows:

Bsea
D =

2 · σsea
vr

λ
, (19)

where λ is the radar wavelength. The RMS radial velocity σsea
vr , according to [27,28], is

evaluated as follows:

σsea
vr =

√∫ {[
cos2(θinc) + sin2(θinc) · cos2(ϕ(k))

]
·ω2(k) · Fwave(k)

}
dk, (20)

where θinc is the incidence angle of the radar; k is the sea wavenumber vector; Fwave(k)
is the sea wave height spectrum; ω is the angular frequency of the sea wave, whose
wavenumber vector is k; and ϕ is the relative angle between the sea wave propagation
and radar look directions. Note that both ω and ϕ are functions of the sea wavenumber
vector k. Furthermore, the integration in Equation (20) is performed for wavenumbers up
to one-sixth of the Bragg wavenumber.

If we further assume a fully developed wind sea, the wavenumber spectrum Fwave(k)
in Equation (20) will take on the form of the well-known Pierson–Moskowitz (PM) spec-
trum [29–31], FPM(k, φ):

FPM(k, φ) =
0.016

3π
k−4 · exp

[
−5

4

( kpeak

k

)2]
· cos4

(
φ− φpeak

)
, (21)

where k and φ are the magnitude and the propagation direction angle of the wavenumber
vector k, respectively, and kpeak and φpeak are the peak wavenumber of the PM spectrum
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and the propagation direction angle of the peak sea wave component, respectively. kpeak is
expressed as follows [29,31]:

kpeak = 0.7
g

U2 , (22)

where g is the gravity acceleration, and U is the wind speed. Typically, the newly derived
formula for the SAR Doppler centroid estimation STD must be computationally efficient
and valid. Regarding efficiency, by inserting Equations (21) and (22) into Equation (20),
we can approximate the expression for σsea

vr to a rather simple form [28], which is simply a
function of the wind speed U:

σsea
vr (U) ≈ U

6
√

2π
. (23)

To demonstrate the validity of the approximation in Equation (23), Figure 3 plots
the curves of the RMS radial velocity variation against the wind speed and the relative
angle between the sea wave propagation and radar look directions, which are computed
using Equations (20) and (23), respectively. Figure 3a shows that the curve of the RMS
radial velocity computed using Equation (23) is in good agreement with that obtained from
Equation (20). Additionally, their variation trend against the wind speed is shown to be
significant, indicating that the approximate formula effectively characterizes the changes
in the RMS radial velocity against the wind speed. In contrast, as shown in Figure 3b, the
extent of the change in the RMS radial velocity computed using Equation (23) versus the
relative angle is relatively small compared with that of the approximate formula given in
Equation (23).
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the sea wave propagation and radar look directions.

Substituting Equation (23) into Equation (19) establishes the following relationship
between the Doppler bandwidth Bsea

D of the sea surface and the geophysical parameter U:

Bsea
D (U, λ) ≈ U

3
√

2π · λ
. (24)

Having derived the specific expressions for msea and Bsea
D , we now have only one

parameter involved in Equation (17) (i.e., Nsea
r ) whose specific expression remains to be

derived. As discussed in Section 2.2, the effective number of independent range samples of
the sea wave velocity field VR(x, y) should not be simply taken as the number of geometric
range resolution cells. Rather, the degree of spatial correlation between two different
locations on the sea wave velocity field should be considered when deriving the specific
expression for Nsea

r . Following this consideration, Nsea
r can be expressed as follows:

Nsea
r =

Ly

lcor
, (25)
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where Ly is the ground-range length of a sea surface region from which one single SAR
Doppler centroid estimate is obtained, lcor is the correlation length of the sea wave velocity
field defined such that if the spacing between two locations is larger than lcor, then the
velocities at both locations are considered statistically uncorrelated. lcor is evaluated
following the signal theory stating that the power spectral density of a random signal is the
Fourier transform of the autocorrelation function of this signal:

lcor =
2π

∆k
, (26)

where ∆k is the spectral width of the wavenumber power spectrum FVF(k, φ) of the sea
wave velocity field VR(x, y). The larger the value of ∆k the more the sea wave velocity field
distribution tends to be white noise, and thus the smaller the correlation length lcor of the
sea wave velocity field, as shown in Equation (26).

Next, we derive the analytical expression for ∆k. To do this, we still consider the case of
a fully developed wind sea. Using the relationship between the wave heights of large-scale
waves and their corresponding orbital velocities [17,28,32] and considering Equation (20)
again, we can relate FVF(k, φ) to the wave height spectrum FPM(k, φ) as follows:

FVF(k, φ) =
[
cos2(θinc) + sin2(θinc) · cos2(ϕ)

]
·ω2 · FPM(k, φ). (27)

Subsequently, the wavenumber spectral width ∆k of FVF(k, φ) can be equivalently
determined as the width of a two-dimensional (2D) rectangle function with a height equal
to the maximum value of FVF(k, φ) and a volume equal to that enclosed between the
surface of FVF(k, φ) and the 2D wavenumber-axis plane, as shown in Figure 4. If treated
mathematically, ∆k is determined as follows:

∆k =

√s
FVF(k, φ)kdkdφ

max{FVF(k, φ)} . (28)Remote Sens. 2023, 15, 867 13 of 27 
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Figure 4. Illustration of the wavenumber power spectrum of the sea wave velocity field and its
equivalent spectral width. (a) Top view; (b) Side view.

A numerical computation shows that ∆k in Equation (28) can be approximated by the
following equation:

∆k ≈ 1.87 · kpeak

≈ 1.31·g
U2

. (29)

To demonstrate the validity of the approximation in Equation (29), Figure 5 plots the
curve of the ∆k variation against the wind speed U computed using Equation (28) and that
obtained by the approximate formula given in Equation (29); as can be seen, they agree
excellently with each other. Equation (29) shows that the wavenumber spectral width ∆k of
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FVF(k, φ) is directly proportional to the peak wavenumber kpeak and inversely proportional to
the squared wind speed U2. Substituting Equation (29) into Equation (26) gives the following:

lcor ≈
2π

1.31 · g U2. (30)

Remote Sens. 2023, 15, 867 13 of 27 
 

 

  
(a) (b) 

Figure 4. Illustration of the wavenumber power spectrum of the sea wave velocity field and its 
equivalent spectral width. (a) Top view; (b) Side view. 

A numerical computation shows that kΔ  in Equation (28) can be approximated by 
the following equation: 

Δ ≈ ⋅
⋅

≈
peak

2

1.87
1.31

k k
g

U
. (29) 

To demonstrate the validity of the approximation in Equation (29), Figure 5 plots the 
curve of the kΔ  variation against the wind speed U  computed using Equation (28) and 
that obtained by the approximate formula given in Equation (29); as can be seen, they 
agree excellently with each other. Equation (29) shows that the wavenumber spectral 
width kΔ  of ( )VF ,F k φ  is directly proportional to the peak wavenumber peakk  and in-

versely proportional to the squared wind speed 2U . Substituting Equation (29) into Equa-
tion (26) gives the following: 

π≈
⋅

2
cor

2
1.31

l U
g

. (30) 

It is found from Equation (30) that the correlation length corl  of the radial sea wave 

velocity field ( ),x yRV  is proportional to the square of the wind speed 2U . 

 

xk

yk

0

kΔ

kΔ

2-D rectangle 
function

Wavenumber 
power 

spectrum of the 
sea surface 

velocity field

Sp
ec

tra
l w

id
th

 [r
ad

/m
]
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It is found from Equation (30) that the correlation length lcor of the radial sea wave
velocity field VR(x, y) is proportional to the square of the wind speed U2.

Let us now return to Equation (25), where Ly can be expressed as follows:

Ly = Nr ·
c

2Fs · sin(θinc)
, (31)

where Nr is the number of range samples of the SAR data. Inserting Equations (30) and (31)
into Equation (25) yields the following equation:

Nsea
r ≈ Nr ·

1.31 · g · c
4π · Fs · sin(θinc)

· 1
U2 . (32)

From Equation (32), the effective number of independent range samples of the sea
wave velocity field is found to be inversely proportional to the squared wind speed
U2. Additionally, Equation (32) shows that the effective number of independent range
samples of the sea surface velocity field can be expressed as Nr multiplied by a factor,
1.31 · g · c/

[
4π · Fs · sin(θinc) ·U2], which is usually considerably smaller than one for typ-

ical spaceborne SAR system parameters and sea wind speeds ranging from 5 to 28 m/s.
This indicates the significance of the effect of the correlation between two locations of the
sea surface velocity field on the Doppler centroid estimation variance.

Substituting Equations (18), (24), and (32) into Equation (17) yields the following

analytical expression for
(

σsea
fDc

)2
:

(
σsea

fDc

)2
≈ 0.636√

2π2g
· Fs · sin(θinc)

Taz · λ · c · Nr
·U3. (33)

Interestingly, the component of the Doppler centroid estimation variance originating
from the ocean surface wave motions is proportional to the third power of the wind speed U3.

In addition, the overall STD σfDc , of the SAR Doppler centroid estimate is expressed
as follows:

σfDc =

√(
σSAR

fDc

)2
+
(

σsea
fDc

)2
. (34)
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Here, the specific expression for
(

σSAR
fDc

)2
is presented in Equations (12)–(15), whereas

that for
(

σsea
fDc

)2
is given in Equation (33).

3. Method of Monte Carlo Simulations

To justify the effectiveness of the newly derived formula [Equation (34)] in characteriz-
ing the SAR Doppler centroid estimation STD for a moving sea surface, we consider using
the method of Monte Carlo simulations. In this section, we describe the main procedures
of this method. Section 4 will provide a detailed discussion on Monte Carlo simulation
results obtained from varying radar system and sea state parameters.

3.1. Procedures of Monte Carlo Simulations

Figure 6 presents a flowchart of Monte Carlo simulations used in this study. The flowchart
generally comprises the steps of SAR raw data simulation, Doppler centroid estimation, and
statistical analysis. The details of each step in this flowchart are provided below.
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The flowchart begins with a prescription of the input parameters, including the radar
system and sea environmental parameters, which are then employed to obtain a specific
PM wave height spectrum using Equation (21), as described in Step 1 in Figure 6. From the
resulting PM spectrum, we can generate a 2D wave height field, a 2D NRCS field, and a 2D
radial sea wave velocity field. The following explanations are specifically given:

• A 2D random discrete wave height field with a given grid cell spacing is generated
as a superimposition of a series of 2D sine harmonic waves (As discussed in [31],
at wavelengths more than 10 m in our simulation, the interactions between small-
and large-scale waves can be considered negligible. Consequently, the sea surface
can be defined by a Gaussian probability density function where the phases of each
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component are independent and equally distributed between 0 and 2π.), with each
harmonic wave component characterized by its amplitude, phase, and propagation
direction [31]. The amplitude of each harmonic wave component is generated by a
Rayleigh distribution random number generator with a variance set to the energy
contained in each spectral bin of the resulting PM wave height spectrum. The phase
of each harmonic wave component is generated by a random number generator
equally distributed between 0 and 2π. The phases of the individual harmonic wave
components are made to be statistically uncorrelated to obtain a Gaussian-distributed
sea surface.

• Once a 2D wave height field is realized, we can compute the local incidence angle
at each grid cell on the generated discrete 2D sea surface. Subsequently, these local
incidence angles are used as input parameters in a theoretical formula for the NRCS in
the Bragg regime [33] such that a 2D discrete NRCS field can be realized. Hydrody-
namic modulation is also considered in generating the NRCS field. Afterward, the 2D
random discrete complex reflectivity field can be generated using a Gaussian random
number generator, with the variance of the generated Gaussian-distributed number at
each grid cell equal to the NRCS value at the same grid cell. In this way, the speckle
noise is incorporated into the 2D complex reflectivity field.

• Given the generated 2D wave height field, we can also calculate a 2D radial velocity
field corresponding to large-scale sea waves with sizes greater than a grid cell using the
transfer function relating the radial orbital velocities of large-scale sea waves to the wave
heights [32,34]. Moreover, the spread of small-scale velocities within one single-grid cell
is modeled as a random perturbation of the local long-wave orbital velocity [35]. In this
way, the 2D random discrete radial sea wave velocity field can be realized.

In Step 2, the three obtained fields (i.e., 2D wave height, 2D complex reflectivity, and
2D radial sea wave velocity fields) are used as inputs and fed into a SAR raw data simulator
called the extended Omega-K (IOK) algorithm [35], developed especially for ocean surface
waves to obtain a SAR raw dataset for the moving sea surface. The following explanations
are presented regarding the SAR raw data simulation:

• The 2D radial sea wave velocity field generated in Step 1 enters both the envelope and
the phase of the 2D frequency (range and Doppler frequencies) complex spectrum
of the SAR signal, from which the extended IOK algorithm developed in [35] can be
implemented to simulate the SAR raw data for the moving sea surface. To account
for the spatial variation of the ocean motion parameters, this simulator adopts the
batch-processing operation, where a single implementation of the IOK algorithm will
simultaneously simulate a collection of ocean surface backscattering elements with
the same radial velocity, significantly raising the computational simulation efficiency.
Further details about this simulator can be found in [35].

• A sinc-squared function is assumed for the Doppler envelope of the 2D frequency
complex spectrum of the SAR signal.

• SAR raw data are first simulated with a relatively large PRF (e.g., twice the originally
prescribed PRF). The simulated SAR raw data are then subsampled in the azimuth
time domain by a factor of two to obtain the Doppler-aliased SAR raw data.

• A discrete grid of white thermal noise is added to the simulated SAR raw data such
that a certain prescribed SNR is achieved. The prescribed SNR is determined as the
ratio of the mean NRCS of the sea to the NESZ using Equation (14). The mean NRCS is
computed according to a geophysical model function (GMF) (e.g., the CMOD5 GMF [36],
the XMOD2 GMF [37], etc.), which directly relates the wind speed to the NRCS.

In Step 3, the SAR raw dataset simulated in Step 2 is processed using Equation (1) to
obtain an estimate of the SAR Doppler centroid. In Step 4, independent Monte Carlo runs are
performed, in which Steps 1–3 are repeated for NMC times using the same set of radar system
and sea environmental parameters to obtain NMC Doppler centroid estimates, with NMC
being an integer greater than at least 100. Finally, in Step 5, a statistical analysis is performed
on these NMC Doppler centroid estimates to obtain their estimation STD and bias.
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3.2. Example of Monte Carlo Simulations

The simulation results are provided to demonstrate how the Monte Carlo simulation
method outlined in Figure 6 works using the specific set of SAR system and sea state pa-
rameters listed in Table 1. It should be noted that the mean NRCS (−12 dB) was determined
by the XMOD2 GMF [37] for the incidence angle of 45◦, the relative wind direction of 45◦,
and the wind speed of 13 m/s. Based on these parameters, a PM wave height spectrum
was computed and shown as contour plots in Figure 7, where the color bar represents the
spectral density. Implementing Step 1 in Figure 6 yielded the 2D wave height, 2D NRCS,
and 2D radial sea wave velocity fields illustrated in Figures 7–9, respectively. The wave
patterns of a fully developed wind sea are observed in the figures. The noisy characteristic
observed in the 2D radial sea wave velocity field (Figure 10) originates from the random
distribution of small-scale radial velocities within one single-grid cell. The RMS radial
velocity of the wind sea measured from the resultant 2D radial sea wave velocity field
(Figure 10) is 0.469 m/s, which is highly consistent with the value computed using Equation
(23) (i.e., 0.4875 m/s). This result partially justifies the procedure of the sea wave velocity
field generation shown in Figure 6.

Table 1. Radar system and sea state parameters.

Parameter Value

Radar platform velocity 7600 m/s
NESZ −20 dB

Antenna length in azimuth 9.6 m
Chirp bandwidth 40 MHz

Pulse repetition frequency 1725 Hz
Doppler centroid estimation resolution 1.0 × 1.0 km

Doppler bandwidth 1403 Hz
Signal bandwidth 40 MHz

Significant wave height 2.8 m
Wind speed at a height of 10 m 13 m/s

Incidence angle 45◦

Squint angle 0◦

Relative wind direction 45◦

Dominant wavelength 155 m
Radar platform altitude 700 km
Radar carrier frequency 9.6 GHz

Range sampling rate 80 MHz
Polarization VV

Relative dielectric constant of ocean water 48–35 J
Mean NRCS −12 dB

Velocity component of current in azimuth −0.0 m/s
Velocity component of current in ground range +0.65 m/s

True Doppler centroid −29.3674 Hz
Number of averaged pulses 227
Azimuth observation time 0.1316 s

Number of averaged range samples 380
Number of independent Monte Carlo runs 390
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Figure 11 depicts the amplitude of the 2D frequency spectrum of the complex SAR
raw data obtained from Step 2 of Figure 6, clearly indicating its range frequency and
Doppler envelopes. Figure 12 presents the SAR image obtained from processing the
simulated SAR raw data. The wave-like patterns exhibited in Figure 12 are caused by the
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tilt, hydrodynamic, range bunching, and velocity bunching modulations. Averaging the
resultant 2D frequency power spectrum (Figure 11) along the range frequency dimension
resulted in the one-dimensional Doppler power spectrum shown in Figure 13, which
shows the speckle-and-thermal-noise-induced random fluctuations superimposed on a
sinc-squared profile, with a shape consistent with that given in Equation (5).
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In this simulation example, 390 independent Monte Carlo simulation runs (Step 4 in
Figure 6) were performed using the fixed set of the radar system and sea state parameters
summarized in Table 1. A total of 390 SAR Doppler centroid estimates were obtained and
shown as a scatter plot in Figure 14. This figure shows that these 390 Doppler centroid
estimates keep fluctuating around the mean value of −31.9343 Hz (red line). Originating
from the contributions of the wave-induced artifact Doppler velocities, the bias [17–19]
between the measured mean Doppler centroid and the true value is calculated as 2.5669 Hz.
The true value of the Doppler centroid is computed according to the function fDc = −2vr/λ,
where vr is the radial component of the current velocity vector for a zero-squint side-
looking radar in our paper. The STD of these 390 Doppler centroid estimates is measured
as 2.7668 Hz, whereas that computed from the newly derived formula [Equation (34)] in
this study is 2.7891 Hz. The relative difference between the simulation-derived Doppler
centroid estimation STD and the formula-predicted Doppler centroid estimation STD is
0.81%, which is low enough to indicate that the newly derived formula [Equation (34)]
performs well in characterizing the STD of the SAR Doppler centroid estimates from a
moving sea surface.
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4. Comparison of the New Formula with Other Existing Formulas

In Section 3, we introduced the method of Monte Carlo simulations and provided a
single case of SAR raw data simulation and Doppler centroid estimation for fixed radar
system and sea state parameters. Here, we present a comprehensive comparison of the
newly derived formula [Equation (34)] and other existing formulas to study their behavior
in predicting the SAR Doppler centroid estimation STD against varying values of SAR
system and sea state parameters, including the wind speed, the SNR, and the azimuth
oversampling ratio.

The compared formulas include Bamler’s formula (Equation (36), [23]) Liu’s formula
(Equation (18), [24]), our newly derived formula [Equation (34)], and a variant of Equation
(34) with the effective number Nsea

r [Equation (17)] of independent range samples of the sea
wave velocity field replaced by the number of geometric range resolution cells. This variant
of Equation (34) is included here to investigate whether the correlation length of the sea
wave velocity field affects the SAR Doppler centroid estimation STD. The performances of
the aforementioned formulas are compared using the method of Monte Carlo simulations
for the radar and sea surface motions, and the specific simulation procedures are outlined
in Figure 6 (more details can be seen in [35]).



Remote Sens. 2023, 15, 867 19 of 25

4.1. Doppler Centroid Estimation STD versus Wind Speed

We first present the simulation results for the first scenario, in which the wind speed
is varied over the 5 to 28 m/s interval, but the other radar system and sea state parameters
shown in Table 1 remain unchanged. For each wind speed value, the corresponding NRCS
is computed using the XMOD2 GMF [37]. For this scenario, 390 Monte Carlo runs are
conducted at each wind speed, and a value of the Doppler centroid estimation STD is
measured as described in the flowchart in Figure 6. Figure 15a plots the curve of the
measured Doppler centroid estimation STD versus the wind speed. Superimposed on this
plot are the curves of the Doppler centroid estimation STD predicted by the newly derived
formula [Equation (34)], Bamler’s formula (Equation (36), [23]), Liu’s formula (Equation
(18), [24]), and the variant of Equation (34), all against the wind speed.
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Figure 15. (a) Curves of the Doppler centroid estimation STD against wind speed; (b) Relative
prediction error (in percentages), defined as the absolute value of the difference between the predicted
and measured values of the Doppler centroid estimation STD divided by the latter.

Figure 15a shows that the Doppler centroid estimation STD measured from the Monte
Carlo simulations first decreases with an increase in the wind speed until the wind speed
reaches 13 m/s. Subsequently, the STD becomes larger with a further increase in the wind
speed. This phenomenon is explained as follows: when the wind speed ranges from 5 to
13 m/s, the NRCS and, thus, the SNR of the sea surface increases with an increase in the
wind speed. The Doppler centroid estimation STD then continuously becomes smaller.
However, the role played by the sea wave motions becomes increasingly significant when
the wind speed exceeds 13 m/s. The RMS radial velocity of the sea waves becomes larger
with an increase in the wind speed [Equation (23)]. Simultaneously, the correlation length of
the radial sea wave velocity field also becomes greater, indicating that the effective number
of independent range samples decreases [see Equation (32)]. As a combined result of the
aforementioned processes, the Doppler centroid estimation STD becomes larger.

From Figure 15, we make the following observations:

• Bamler’s formula (Equation (36), [23]) fails to characterize the changes in the Doppler
centroid estimation STD with the wind speed because it does not consider the SNR
variation with the wind speed or the sea wave motions.

• Liu’s formula (Equation (18), [24]) evidently underappreciates the effect of the sea
wave motions on the Doppler centroid estimation STD when the wind speed exceeds
13 m/s because it fails to consider the correlation in the sea wave motion between two
adjacent SAR range resolution cells. Instead, it takes the number of range resolution
cells as the number of independent range samples of the sea wave velocity field,
making the number of independent range samples of the sea wave velocity field used
in this formula (Equation (18), [24]) larger than it is in practical situations.

• In contrast, the newly derived formula in this paper [Equation (34)] does not suffer
from any of the aforementioned limitations. In Figure 15a, the curve of the Doppler
centroid estimation STD predicted by the newly derived formula [Equation (34)] is
more consistent with that obtained from the Monte Carlo simulations than the curves
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predicted by Bamler’s (Equation (36), [23]) and Liu’s (Equation (18), [24]) formulas.
The improvements in predicting the Doppler centroid estimation STD provided by
the newly derived formula [Equation (34)] result from the consideration of both the
SNR variation with the wind speed [see Equations (12) and (14)] and the variation of
the correlation length of the sea wave velocity field with the wind speed [Equation
(30)] derived in this work. These improvements can also be observed in Figure 14b.
The relative prediction error, defined as the absolute value of the difference between
the predicted and measured values of the Doppler centroid estimation STD divided
by the latter, for the newly derived formula [Equation (34)] is smaller than that for
Bamler’s (Equation (36), [23]) and Liu’s (Equation (18), [24]) formulas over most of the
wind speed region.

• The significance of including the correlation length of the sea wave velocity field
is further justified by observing the curve of the Doppler centroid estimation STD
predicted by the variant of Equation (34), in which Nsea

r [Equation (17)] is replaced by
the number of geometric range resolution cells. In Figure 15, this curve exhibits poor
agreement with that measured from the Monte Carlo simulations, especially for wind
speeds above 10 m/s.

4.2. Doppler Centroid Estimation STD Versus SNR

For the second scenario, in which the radar system parameter NESZ, σ0
NE, is varied

from −50 to −8 dB, the same parameter setting shown in Table 1 is used, except for the
NESZ. According to Equation (14), this NESZ variation region is equivalent to the SNR
varied from−4 to 38 dB. For this scenario, the value of the Doppler centroid estimation STD
is measured through 390 Monte Carlo runs at each SNR (Figure 6 in Section 3). Figure 16a
shows the curves of the measured Doppler centroid estimation STD and those predicted by
the newly derived formula [Equation (34)], Bamler’s formula (Equation (36), [23]), Liu’s
formula (Equation (18), [24]), and the variant of Equation (34) against the SNR.
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Figure 16. (a) Curves of the Doppler centroid estimation STD against the SNR; (b) Relative prediction error.

Figure 16a shows that the measured Doppler centroid estimation STD from the Monte
Carlo simulations decreases with the SNR increase until the SNR reaches 10 dB. This
is because the spectrum sharpness factor m [Equation (12)] becomes larger as the SNR
increases, meaning that the Doppler centroid can be determined with relative ease in the
presence of speckles and thermal noises, and the Doppler centroid estimation STD then
becomes continuously smaller. Figure 16a shows that, when the SNR exceeds 10 dB, the
curve obtained from the Monte Carlo simulations flattens out. This is because once the
SNR exceeds 10 dB, the spectrum sharpness factor m nears its maximum and tends to
converge, according to Equation (12), thereby exhibiting fewer effects on the Doppler
centroid estimation STD. Consequently, the Doppler centroid estimation STD tends to be a
fixed value.

Combining Figure 16a,b induces the following conclusions:
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• Bamler’s formula (Equation (36), [23]) cannot characterize the changes in the Doppler
centroid estimation STD against the SNR because it sets its spectrum sharpness factor
m to a fixed value of 0.7 (Equation (28), [23]) without considering the SNR variation.

• Within the SNR range of −4 to 8 dB, the curve predicted by Liu’s formula (Equation
(18), [24]) is inconsistent with the curve obtained from the Monte Carlo simulations.
This is because Liu’s formula (Equation (18), [24]) heuristically quantifies the overall
effect of the thermal noise and the Doppler aliasing on the Doppler centroid estimation
STD as the product of their individual effects (Equation (A5), [24]). Consequently, this
limits the ability of their formula to reflect the real situation.

• In Figure 16a, the curve of the Doppler centroid estimation STD predicted by the
newly derived formula [Equation (34)] is more consistent with that obtained from
the Monte Carlo simulations than those predicted by Bamler’s (Equation (36), [23])
and Liu’s (Equation (18), [24]) formulas. The improvement provided by the newly
derived formula [Equation (34)] in predicting the Doppler centroid estimation STD
is attributed to the inclusion of the SNR variation in Equation (34) and the effects
of Doppler aliasing and thermal noise on the Doppler sharpness factor m variations
being jointly quantified in a mathematically exact, rather than heuristic, manner, as
in Liu’s formula (Equation (18), [24]). The improvements can also be observed from
the relative prediction error versus the SNR, as shown in Figure 15b, for the newly
derived formula [Equation (34)], which is more stable as a whole than those errors
related to Bamler’s (Equation (36), [23]) and Liu’s (Equation (18), [24]) formulas.

4.3. Doppler Centroid Estimation STD Versus Azimuth Oversampling Ratio

For the third scenario, the along-track antenna length, Da, is varied from 6 to 15 m,
and the other parameters in Table 1 remain unchanged. Note that Da is a variable of the
Doppler bandwidth function; thus, the variation region of Da is equivalent to the azimuth
oversampling ratio, defined as γaz

osr = Fprf/BD, varied from 0.7 to 1.9. For this scenario, a
value of the Doppler centroid estimation STD is measured at each γaz

osr following the same
procedures in Sections 4.1 and 4.2. Figure 17a shows the curves of the measured Doppler
centroid estimation STD and those predicted by the newly derived formula [Equation (34)],
Bamler’s formula (Equation (36), [23]), Liu’s formula (Equation (18), [24]), and the variant
of Equation (34)) against γaz

osr.
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Figure 17. (a) Curves of the Doppler centroid estimation STD against the azimuth oversampling ratio;
(b) Relative prediction error.

Figure 17a shows that the measured Doppler centroid estimation STD decreases
sharply with an increase in γaz

osr before gradually leveling off when γaz
osr exceeds 1.2. This

behavior is explained as follows: as γaz
osr increases from 0.7 to 1.2, the SAR Doppler band-

width reduces, and thus the total amount of noise incorporated into the correlation results
reduces; conversely, the spectrum sharpness factor m [Equation (12)] increases. A combined
consequence of the aforementioned processes induces the decrease in the SAR Doppler
centroid estimation STD.

Based on a comparison of the curves in Figure 17, the following remarks can be made:
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• Bamler’s formula (Equation (36), [23]) visibly again fails to characterize the changes in
the Doppler centroid estimation STD with the azimuth oversampling ratio because it
uses a fixed azimuth oversampling ratio without considering the decoupling of the
PRF and the Doppler bandwidth.

• Liu’s formula (Equation (18), [24]) fails to accurately predict the variation of the
Doppler centroid estimation STD with the azimuth oversampling ratio, though a
mild change in the STD is found. This behavior can be explained as follows: Liu’s
formula (Equation (18), [24]) considers the effect of the Doppler bandwidth variation
on the overall speckle noise level but does not account for its effect on the Doppler
spectrum sharpness factor m (this formula sets the Doppler aliasing-related spectrum
sharpness factor to a fixed value of 0.7 regardless of its actual variation with the
azimuth oversampling ratio).

• From Figure 17, the newly derived formula [Equation (34)] performs better than the
other formulas in predicting the Doppler centroid estimation STD. These improve-
ments are obtained because the newly derived formula fully decouples the PRF and
Doppler bandwidth by considering the effect of the Doppler bandwidth variation
on the overall speckle noise level [see Equation (7)] and expressing the spectrum
sharpness factor m as a function of the azimuth oversampling ratio [see Equation (12)].
This means that the PRF and Doppler bandwidth can independently take any value,
as discussed in Section 2.1.

4.4. Overall Assessment of the Performance of the Newly Derived Formula

To assess the performance of the newly derived formula [Equation (34)] in predicting
the Doppler centroid estimation STD further, we evaluated the average relative prediction
errors over the variation regions of wind speed [Figure 14b], SNR [Figure 15b], and azimuth
oversampling ratio [Figure 16b], for each of the aforementioned four formulas. These
statistical quantities are listed in Table 2. The statistical measure of the correlation coefficient
is adopted to quantify the degree of the trend correlation between the curves of the predicted
and measured Doppler centroid estimation STDs. The correlation coefficient ρxy is defined
as follows:

ρxy =
∑N

i=1(xi − x)(yi − y)√
∑N

i=1(xi − x)
2 ·
√

∑N
i=1(yi − y)

2
,

(35)

where xi and yi are the sample points of two variables, and x and y are their mean values.
Table 2 presents the calculated correlation coefficients for the four formulas against wind
speed, SNR, and azimuth oversampling ratio.

Table 2. Average relative prediction errors and correlation coefficients of different formulas.

STD vs. Wind Speed Average Relative Prediction Error (%) Correlation Coefficient

Bamler’s formula (Equation (36), [23]) 16.10 ≈0

Liu’s formula (Equation (18), [24]) 19.10 0.2741

Variant of Equation (34) 22.69 0.2629

Newly derived formula [Equation (34)] 2.76 0.9764

STD vs. SNR Average Relative Prediction Error (%) Correlation Coefficient

Bamler’s formula (Equation (36), [23]) 15.99 ≈0

Liu’s formula (Equation (18), [24]) 7.92 0.9987

Variant of Equation (34) 8.26 0.9988

Newly derived formula [Equation (34)] 2.61 0.9991

STD vs. Azimuth Oversampling Ratio Average Relative Prediction Error (%) Correlation Coefficient

Bamler’s formula (Equation (36), [23]) 34.14 ≈0

Liu’s formula (Equation (18), [24]) 24.33 0.8653

Variant of Equation (34) 8.65 0.9993
Newly derived formula [Equation (34)] 4.69 0.9987
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Table 2 shows that the average relative prediction error of the newly derived formula
[Equation (34)] is always the smallest among the compared four formulas, whether against
the wind speed, SNR, or azimuth oversampling ratio. This result means that the newly
derived formula exhibits the highest average degree of agreement between the predicted
and measured Doppler centroid estimation STDs. Furthermore, the correlation coefficients
for the newly derived formula [Equation (34)] against different variables are above 0.9 and
mostly larger than those for the other three formulas. In other words, the newly derived
formula performs the best in capturing the variation trend of the measured Doppler centroid
estimation STD among all four formulas. Note that the correlation coefficients of Bamler’s
formula (Equation (36), [23]) versus each variable all close to zero is due to the constant
curve predicted by this formula; thus, it has a low vector similarity with the measured
values obtained from the Monte Carlo simulations.

5. Conclusions

In this study, we derived a new formula [Equation (34)] and verified its effectiveness
with the help of the Monte Carlo simulations. The results indicate that the Doppler centroid
estimation STDs predicted by the new formula are in a better agreement with the measured
values than those predicted by Bamler’s (Equation (36), [23]) and Liu’s (Equation (18), [24])
formulas, which is due to three contributions in this paper. First, we adopted a new
strategy for determining the number of independent samples of the sea wave velocity field
contributing to a Doppler centroid estimate by considering the correlation length in a range
dictated by the ocean wavenumber spectrum to account for the effect of large-scale ocean
wave motions. Second, the PRF and Doppler bandwidth were decoupled such that they
(including the azimuthal oversampling ratio) can take any value in the newly derived
formula [Equation (34)] to overcome the limitations in practical applications. Third, the
effects of the thermal noise and Doppler aliasing were jointly quantified in a mathematically
exact manner, improving the ability of the newly derived formula [Equation (34)] to reflect
the actual situation.

Our study will provide a reference for developing a new radar system and system
parameter design. In this study, we assume a fully developed wind sea, which means that
our formula did not consider the effect of ocean swells. Furthermore, our formula has not
been verified by the real SAR data. We consider leaving them as our future work.
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