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Abstract: Free-space detection plays a pivotal role in autonomous vehicle applications, and its state-of-
the-art algorithms are typically based on semantic segmentation of road areas. Recently, hyperspectral
images have proven useful supplementary information in multi-modal segmentation for providing
more texture details to the RGB representations, thus performing well in road segmentation tasks.
Existing multi-modal segmentation methods assume that all the inputs are well-aligned, and then
the problem is converted to fuse feature maps from different modalities. However, there exist cases
where sensors cannot be well-calibrated. In this paper, we propose a novel network named multi-
modal cross-attention network (MMCAN) for multi-modal free-space detection with uncalibrated
hyperspectral sensors. We first introduce a cross-modality transformer using hyperspectral data to
enhance RGB features, then aggregate these representations alternatively via multiple stages. This
transformer promotes the spread and fusion of information between modalities that cannot be aligned
at the pixel level. Furthermore, we propose a triplet gate fusion strategy, which can increase the
proportion of RGB in the multiple spectral fusion processes while maintaining the specificity of each
modality. The experimental results on a multi-spectral dataset demonstrate that our MMCAN model
has achieved state-of-the-art performance. The method can be directly used on the pictures taken in
the field without complex preprocessing. Our future goal is to adapt the algorithm to multi-object
segmentation and generalize it to other multi-modal combinations.

Keywords: autonomous vehicles; semantic segmentation; multi-spectral data fusion; uncalibrated sensors

1. Introduction

As electric vehicles gradually replace traditional gasoline vehicles, the popularity of
autonomous driving is also increasing year by year. People’s awareness of autonomous
vehicles has also shifted from science fiction to an everyday tool. Visual environment
perception is the first link of autonomous driving, which helps autonomous vehicles to
perceive and understand the surroundings [1]. Further, known as collision-free space de-
tection, free-space detection is a fundamental component of visual environment perception.
The approaches are generally semantic segmentation algorithms, which classify each pixel
in an image into road or non-road classes. The segmentation results are then used by
autonomous vehicles to navigate in complex environments and avoid obstacles.

In recent years, with the rapid development of computer technology, specifically
the graphics processing unit (GPU), and the emergence of large-scale labeled data, the
application of deep convolutional neural networks (DCNNs) has developed rapidly. It has
become the mainstream method for free-space detection tasks. Thanks to the abundant data
and accurate algorithms [2], it is convenient to train a segmentation DCNN. Even if the road
is concealed by vehicles or under poor lighting conditions, these algorithms can provide
a reliable result. Almost all standard road segmentation algorithms specifically support
urban roads, which show either prominent boundary lines or clear texture demarcations in
RGB images.
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However, the segmentation method for visible-light images has limitations because of
complex surface features in the wild or insufficient illumination at night. Such problems
may be overcome by introducing hyperspectral imaging (HSI) or near-infrared (NIR)
images. A spectral image with a resolution in the range of 10−2λ is called a hyperspectral
image [3]. Hyperspectral imaging is technology based on the continuous subdivision of
narrow-band spectrums to simultaneously image the target area. It has become a mature
technology that can capture detailed information for each pixel. Such a large amount
of reflectance information about the underlying material can be helpful in accurate HSI
segmentation. The hyperspectral images can help distinguish different substances, which
is difficult in RGB images. Hence, HSI is widely used in various areas, including precision
agriculture, military, surveillance, etc. [3,4]. Near-infrared is based on overtones and
combinations of bond vibrations in molecules, a spectroscopic method that uses the near-
infrared region of the electromagnetic spectrum. In NIR spectroscopy, light is absorbed in
varying amounts by the object at particular frequencies corresponding to the combinations
and overtones of vibrational frequencies of some bonds of the molecules in the object.
Therefore, the bands seen in the NIR are typically extensive, leading to spectra that are
more complex to interpret compared with RGB spectra. It generally penetrates deeper into
an object’s surface and can reveal the underlying material characteristics [5]. Thus, changes
in intensity in the NIR image are due to material and illumination changes but not to color
variations within the same material [6]. In the NIR image, the impact of the shadow on the
road will be effectively suppressed, and the road area remains distinguishable in the dark.
In order to achieve the segmentation task based on multiple spectral data, we believe that
multi-modal machine learning (MMML) is a practical approach.

A modality refers to how something happens or is experienced. In this article, we
regard modality as the data provided by sensors. Multi-modal perception aims to process
and understand information from multi-source modalities. Learning from heterogeneous
data brings the possibility of in-depth capturing correspondences. Examples are given in
Figure 1 to show the advantage of multi-modal learning.

Multi-modal LearningSingle-modal LearningInput Image

Figure 1. Example of real-world scenarios where current state-of-the-art single-modal approaches
demonstrate misclassifications. The first row shows an issue of misclassifications caused by puddles
that do not reflect the sky. The second row shows inconspicuous classes where roads and curbs are
constructed of the same material.

Most existing multi-modal semantic segmentation methods are based on pixel-level
aligned sensors, such as RGB and depth cameras, or multi-modal magnetic resonance
imaging (MRI). This method provides a reasonable solution for unifying information
from different modalities but is sensitive to the alignment of the input data. Unaligned
multi-modal data will confuse the features learned by DCNNs, leading to false judgments,
especially at low-dimensional layers. Today, public autonomous driving databases are
dedicated to providing data for urban highway scenarios, and many free-space detection
algorithms are customized based on such scenes. When these algorithms are transferred to
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some particular scenes, such as rural or mountain roads, it is often difficult for the same
effect to be achieved [7]. In order to achieve automatic driving tasks in these particular
environments, we need to build an automatic driving collection platform and a database
specific for rural or mountain roads. Different from the experiments performed on ready-
made databases, such as KITTI [8] or Cityscapes [9], only uncalibrated data can be collected
using a self-built experimental platform for multi-modal perception. In the data collection
of autonomous driving, due to the different installation positions of multiple sensors, it is
impossible to obtain completely aligned data from the source. The most common solution
is calibrating the sensors and then performing the segmentation task using the aligned
multi-modal information [10], while the mutual calibration of multiple sensors is complex
work. In our experimental platform, three different spectral band sensors are included.
Their field of view is adjusted to be as common as possible. The distortion of different
camera lenses and different imaging principles makes pixel-level alignment of these three
multi-spectral sensors impossible. Therefore, we explore a segmentation algorithm for
uncalibrated multi-modal data to avoid extensive data calibration work.

To conquer this problem, we propose a cross-model transformer in a U-shape multi-
modal semantic segmentation architecture, which fuses heterogeneous information and
supports dynamic weighted feature fusion. Instead of alignment, we draw inspiration from
representation and mapping methods that use uncalibrated sensors. Cross-attention [11]
can be used to combine two embedding sequences regardless of their heterogeneity. In the
cross-attention module, the similarity of the resulting points will reflect the semantic
proximity between their corresponding original inputs. The attention mechanism for
mixing two different embedding sequences in the transformer architecture requires that
the two sequences have the same dimensionality but can be of different modalities. One of
the sequences defines the output length as the query (Q), and the other sequence generates
the key (K) and value (V). In our model, RGB is always input as Q, while hyperspectral
sequences are always input as K and V. Since RGB road segmentation achieves satisfactory
results for most scenes, we hope to make the RGB modality lead the multi-modal perception.
Therefore, the features after embedding are then put into a gate fusion module [12]. After
calculating the attention maps of the input features, a triplet gate is applied to obtain the
adaptive RGB-guided fusion weights. Finally, the fused feature is sent into a segmentation
decoder for the prediction result. Comprehensive experiments on the multi-spectral dataset
HSI Road [13] show that our method provides excellent results in free-space detection tasks.

In this research, we directly exploit uncalibrated multi-modal data for the segmentation
task. Our contributions in this paper are four-fold:

1. We propose a multi-modal free-space detection algorithm in an autonomous driving
system with uncalibrated multi-spectral data.

2. We propose a cross-attention module that combines uncalibrated modalities. The
attention mechanism extracts the relevant information of multi-modal data without
pixel-wise alignment.

3. We design a multi-modal fusion architecture based on a triplet gate. In this structure,
the participation of one primary modality is strengthened while the contributions of
other modalities are maintained.

4. Experimental results on the HSI Road dataset demonstrate the effectiveness of the pro-
posed multi-modal segmentation network compared with other existing approaches.

The rest of the paper is organized as follows: Section 2 summarizes the existing
research on free-space detection and multi-modal feature fusion. Section 3 explains the
proposed approach in detail. Section 4 provides details of the dataset and explains our
experimental setup. Finally, Section 5 concludes the entire paper.

2. Related Work

We review some related work on free-space detection and multi-modal perception in
the deployment of autonomous vehicle technology.
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2.1. Free-Space Detection

Free-space detection is a binary pixel-level segmentation task. Popular single-modal
semantic segmentation networks, such as FCN [14], SegNet [15], U-Net [16], PSPNet [17],
DANet [18], etc., have achieved good performance for RGB free-space detection tasks.
Today, state-of-the-art free-space detection networks usually use multi-modal data to assist
RGB image segmentation and achieve excellent results, among which depth maps [19–26]
or LiDAR point clouds [27–29] are the most commonly used modalities as they contain
3D information. SNE-RoadSeg+ [30] is the most representative one; it fuses RGB and
dense disparity images and then obtains the segmentation result through a network with
densely-connected skip connections, which achieves the state-of-the-art performance on
the pioneering KITTI road [8] benchmark.

Although relatively rare, there are also some studies on multi-modal segmentation al-
gorithms only using various 2D images. Shivakumar et al. [10] established an autonomous
driving database containing RGB and thermal images, which is similar to the problem we
face, but they have a different solution. They first performed calibration and then the seg-
mentation process. Therefore, they also designed a two-stream segmentation architecture
for the two modalities.

Due to its particular spectral range, NIR images often substitute RGB images for seg-
mentation tasks under low-illumination conditions [31]. Before deep learning became popu-
lar, there were studies on combining NIR and RGB images for semantic segmentation [32,33].
In recent years, there have been studies on RGB+NIR for autonomous driving, using a
dual-channel CNN model to perform semantic segmentation tasks for urban [34] and
forest [35] scenes. Both of them used pixel-level aligned image data.

HSI images are mainly used for remote sensing tasks [36,37], but the algorithms for
autonomous driving scenarios have not been well exploited. Huang et al. [38] applied HSI
to semantic segmentation in cityscape scenes for the first time. They generated coarse labels
with HSI images and utilized them to assist weakly supervised training with RGB images
instead of fusing the two modalities.

2.2. Multi-Modal Feature Fusion

Multi-modal machine learning has been applied to various tasks, including speech
synthesis [39,40], visual-audio recognition [41], sentiment analysis [42–44], image/video
captioning [45–47], etc. As a part of multi-modal perception, most of the research on multi-
modal segmentation [48–50] focuses on the feature fusion problem. Early works [19–21]
on multi-modal learning concatenated calibrated images in different input channels to
improve segmentation, which only required the training of a single model, making the
training pipeline easy to construct. Other aspects [51,52] used single-modal decision values
and fused them with a fusion mechanism.

Most commonly, multi-modal fusion is performed on latent features [22–24]. Dolz et al. [53]
even proposed a densely connected network to connect and combine features from dif-
ferent layers of different modalities. This strategy of fusing pixels and features simulta-
neously allows the model to learn complex combined features between modalities freely.
Chen et al. [54] introduced the method of feature gate fusion into multi-modal learning,
which reduced the noise information in multi-modal data and allowed the incorpora-
tion of sufficiently complementary information to form discriminative representations for
segmentation. However, these methods are all aimed at pixel-aligned feature maps.

Unfortunately, misalignment between multi-modal images is very common, but cur-
rently, no work can achieve multi-modal fusion from uncalibrated data for segmentation.
In such conditions, Zhuang et al. [55] adopted a new label fusion algorithm for multi-
modal images, which provided different levels of the structural information of images for
multi-level local atlas ranking, utilized the information-theoretic measures to compute
the similarity between modalities and performed the segmentation task after aligning the
modalities. Chartsias et al. [56] corrected image misalignment with a Spatial Transformer
Network and reconstructed the image to enable semi-supervised learning, thus bypass-
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ing the problem of modal alignment. Joyce et al. [57] achieved MR image synthesis by
encouraging the network to learn a modality invariant latent embedding during training to
automatically correct misalignment in the input data, which has inspired us a lot. The study
of modality embedding in this work inspired our approach to unaligned multi-modal data,
but we believe that performing an image synthesis task is too complicated to guarantee
high real-time ability in autonomous driving scenarios.

In the above research, although people are interested in using multi-spectral images
and RGB images together for road detection tasks, the step of multi-modal image alignment
is generally ignored since the images are preprocessed in the public dataset. However, in
the actual autonomous driving scene, the installation method and imaging method of the
sensors determine that multi-spectral images are difficult to align at the pixel level. We
explore a model that could directly use unaligned multi-modal images so that it could be
used on autonomous vehicles.

3. Method

To address the uncalibrated multi-modal free-space detection problem, we propose a
novel network structure named multi-modal cross-attention network (MMCAN). To aug-
ment uncalibrated multi-spectral images with RGB data, we build a cross-modal encoder to
enhance the modalities through multiple stages alternatively. The encoder utilizes a cross-
attention module to project RGB features onto hyper-spectral features, which facilitates
information propagation between modalities that are not aligned at the pixel level. We also
applied a three-gate fusion strategy for multi-modal fusion to maintain the specificity of
each modality.

In this section, we will first present the overall topology and training methods of
the multi-modal free-space detection network. Secondly, we will introduce the proposed
multi-modal cross-attention module. At last, we will describe the feature fusion details of
the triplet gate.

3.1. Network Architecture

In our multi-modal free-space detection task, three kinds of data from different modal-
ities as a group are input into the network, which are 3-channel RGB, 16-channel HSI, and
25-channel NIR images. Each group of multi-modal data corresponds to the same scene,
but only the RGB image has ground truth. Therefore, our research focuses on extracting
information from unaligned multi-modal images for the free-space detection task.

There are five research interests in multi-modal learning [58]: representation, trans-
lation, alignment, fusion, and co-learning. Multi-modal representation learning refers
to summarizing the complementarity and eliminating the redundancy between multiple
sensory modalities, including two representation methods. Joint representation means that
the information of multiple sensory modalities is mapped to a unified multi-modal vector
space. Coordinated representation means that each modality is mapped to its respective
representation space, but the mapped vectors match certain relevance constraints. Transfor-
mation, also called mapping, is to transform the information of one modality into another.
Alignment is to find the correspondence between elements of different modalities from
the same instance. The alignment can be reflected in time and space. In image semantic
segmentation tasks, the spatial alignment is reflected in each pixel of the picture corre-
sponding to a semantic label. Multi-modal fusion is the combination of the information
of multiple sensory modalities to perform a prediction, which is one of the earliest and
most widely researched directions of multi-modal machine learning. According to the
fusion level, multi-modal fusion has three categories: pixel level, feature level, and decision
level, corresponding to the fusion of original data, the fusion of abstract features, and the
fusion of decision results. Our studies usually focus on feature-level fusion. It includes
early, middle, and late fusion approaches, which represent that the fusion occurs in the
different stages of feature extraction. Co-learning is the transformation of knowledge
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between different modalities. It can assist in the studies of multi-modal mapping, fusion,
and alignment problems.

Multi-modal fusion is the key point in our research, which integrates information from
different modalities into a stable multi-modal representation. The reason why multiple sen-
sory modalities are needed to be integrated is that different modalities behave differently in
the same scene, as there exist overlapping and complementarity, and even multiple differ-
ent interactions between modalities. With well-processed multi-modal information, more
abundant features can be obtained than single-modality, and the influence of redundant
information will be reduced.

In this paper, we adopt the middle fusion strategy as the basis for our network design,
which is to fuse the information at the feature level. Referring to the commonly used
encoder-decoder structure, we design a separate encoder for each modality, which converts
the input images into high-dimensional feature expressions, then integrates them before
sending them into the segmentation decoder. As the selection of encoder, ResNet with
residual block as a layer of feature extraction unit is our preferred structure. Its excellent
feature extraction ability has been confirmed in numerous experiments. In order to fully
preserve multi-scale features in segmentation, we design a U-shaped structure to connect
the features to the decoder layer by layer. This is beneficial to the network’s identification
of segmentation edges.

We usually believe that in deep neural networks, the low-level features such as edges,
contours, and colors contain visual information with less semantics but accurate location
information, while the high-level features have rich semantic information, but their location
is sketchy. Therefore, we place the feature fusion stage in the high-level layers of the encoder
in order to prevent the network from learning pixel perturbations caused by misalignment
in high-resolution images. Specifically, in the first two layers of the network, only RGB
features are connected to the decoder through skip connections. While in the last three
layers, RGB features are first used to aggregate with HSI and VIS features, respectively, then
gate fused with the aggregated HSI and VIS features that are sent to the decoder in the end.
The first two layers are more sensitive to details due to the smaller range of receptive fields;
therefore, learning only RGB features with ground truth is sufficient for the network to
predict the segmentation edges. For the last several layers with a larger range of receptive
fields, the joint multi-modal features can effectively help the model learn high-dimensional
semantic information and avoid misjudgments in road areas.

The overall structure of our MMCAN is depicted in Figure 2a. After the three types
of spectra, images are passed through the ResNet [59] encoders. The feature maps of the
HSI and NIR spectra are embedded in the RGB features, respectively, for heterogeneous
information aggregation. The aggregated HSI and NIR feature maps will then be fused
with the ResNet-encoded RGB feature in the last three layers through a triplet gate and sent
to the U-shape decoder. The entire network is trained end-to-end, driven by cross-entropy
loss defined on the segmentation benchmarks.

3.2. Multi-Modal Cross-Attention

Our multi-modal semantic segmentation needs to aggregate features from a group of
uncalibrated multi-spectral images. The images in the same group correspond to different
ground-truth. Learning features from a mismatching label confuses the representation
learning system, resulting in convergent failure or wrong results. However, although each
image in the same group is different in detail and size, the corresponding road scenes
are almost the same. In the road segmentation task, our purpose is to minimize the
misclassification of areas of the road rather than distinguish the edge details. Therefore, an
effective cross-modality aggregation scheme should be able to extract effective segmentation
information from this group of multi-modal data. We put forward a multi-modal cross-
attention (MMCA) fusion to solve the problem. The framework of the proposed approach is
shown in Figure 3. The fusion involves the RGB feature of one branch and HSI/NIR feature
of the other branch. In order to fuse multi-modal features more efficiently and effectively,
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we utilize the RGB feature at each branch as an agent to exchange information among the
multi-spectral feature from the other branch. The proposed operation can be precisely
described in the Q-K-V language, namely matching a query from one modality with a
set of key-value pairs from the other modality and thereby extracting the most critical
cross-modality information. The MMCA operation consists of a set of queries Q ∈ RHW1×d,
and a set of keys K ∈ RHW2×d and values V ∈ RHW2×d, where HW1 is the pixel number of
the query, HW2 is the pixel number of key-value pairs, and d is the common dimensionality
of all the input features. We calculate the dot products of the query with all keys, divide
each by

√
d and apply a softmax function to obtain the attention weights on the values.

The MMCA operation can be mathematically expressed as:

Z = MMCA(Q, K, V) = so f tmax(QKT/
√

d)V, (1)

where Q ∈ RHW1×d is the query, K ∈ RHW2×d is the key, and V ∈ RHW2×d is the value, and
Z ∈ RHW1×d corresponds to the attended features of the queries.

(a) Overview of our network

(b) Details of the MMCA module

MMCA

MMCA

MMCA

NIR Image RGB Image HSI Image Segmentation Result
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Figure 2. (a) Pipeline of the proposed segmentation network. An encoder-decoder architecture is
employed. The input of the network is a group of RGB, HSI, and NIR images. They are processed by
three encoders. In each group, the HSI and NIR features are weighted by the RGB feature separately,
then fused by a triplet gate. The fusion result is propagated to a U-shape segmentation decoder
for the final prediction. (b) Details of MMCA, including the implementation of two multi-modal
cross-attention blocks and a triplet gate-fusion module.
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Figure 3. Cross-attention module for multi-modal features. The RGB feature map X1 serves
as a query token to interact with the patch tokens from multi-spectral features X2.

⊗
denotes

matrix multiplication.

In comparison with self-attention, which only pays attention to intra-modality, our
proposed cross-modal attention allows the model to attend to diverse information from
different modalities. Suppose X1 ∈ RHW1×C and X2 ∈ RHW2×C are from the feature maps
of a specific stage of ResNet with dimension C. Q, K, and V are given as follows:

{Q, K, V} = {X1 ·Wq, X2 ·Wk, X2 ·Wv}, (2)

where Wq, Wk, Wv ∈ RC×d are learnable parameters of 1× 1 convolutions. To prevent the
model from becoming too large, we set d = C/n, where n is the reduction rate of the
input dimension.

Implementation of multi-modal cross-attention. Figure 2b presents an example of
the MMCA block with two cross-attention fusion streams. One stream is the aggregation of
the HSI and RGB features, the other is for NIR and RGB. The two streams share the same
structure but have independent training parameters.

Since the RGB image is the only annotated modality we have, Q comes from the RGB
branch, and V, K come from the multi-spectral branches. This allows the RGB branches to
participate in the overall position in the multi-spectral branch at a specific stage. As a result,
it can selectively obtain more valuable information from possibly misaligned multi-spectral
branches. The MMCA block can be added anywhere in CNNs because it can feed any value
or key shape and ensure the same output shape as Q. This flexibility allows us to fuse
richer layered features between uncalibrated modes. Thus, through the cross-attentional
fusion operation, the latent features of the three modalities are aligned to HW1 × C.

3.3. Triplet Gate Fusion

The multi-spectral features are highly complementary, not only on the good side but
also on the bad side. As the most widely used modality in free-space detection, RGB images
provide rich and robust features for segmentation tasks. In fact, although multi-spectral
images can provide more segmentation information than RGB images in some specific
scenarios, segmentation using HSI or NIR modality alone cannot achieve the performance
of an RGB modality-only network on the entire dataset. General fusion strategies, such
as concatenation or summation, fuse the feature maps together without considering the
disambiguation among modalities. For multi-modal learning, multi-source features of the
same instance are mixed with each other, which may cause cross-modality ambiguity. In
order to make full use of the complementarity of multi-modal information and filter the
ambiguous features, we will selectively use them for fusion according to the presentation
capabilities of different modalities. To this end, we design a triplet gate structure to measure
the effectiveness of each modality and to fuse these features accordingly. The triplet gate
is designed based on a concatenation-based fusion with a controlled information flow,
which is visualized in Figure 2. The general idea of a gate fusion is that each feature map
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xi ∈ RC×H×W is associated with a gate map Gi ∈ [0, 1]H×W . A concatenation-based gate
fusion can be defined as:

x = [xi ∗ Gi|i ∈ [1, M]], (3)

where M = 3 is the number of feature maps. Specifically, we generate the triplet gate
with the aggregated feature maps in the previous chapter, which are RGB ∈ RC×H×W for
RGB input, HSI ∈ RC×H×W for HSI input, and NIR ∈ RC×H×W for NIR input. The first
step is to concatenate these three feature maps so as to collect their features in a specific
dimension. The concatenated feature is then mapped to three different gate vectors with
three convolutional layers Frgb, Fhsi and Fnir:

Vrgb = Frgb([RGB, HSI, NIR]) ∈ R1×H×W , (4)

Vhsi = Fhsi([RGB, HSI, NIR]) ∈ R1×H×W , (5)

Vnir = Fnir([RGB, HSI, NIR]) ∈ R1×H×W , (6)

where Vrgb, Vhsi, and Vnir are three gate vectors of RGB, HSI, and NIR features, respec-
tively. The three gate vectors are then concatenated to calculate the gate maps through a
softmax function:

Grgb =
eVrgb

eVrgb + eVhsi + eVnir
∈ R1×H×W , (7)

Ghsi =
eVhsi

eVrgb + eVhsi + eVnir
∈ R1×H×W , (8)

Gnir =
eVnir

eVrgb + eVhsi + eVnir
∈ R1×H×W , (9)

where the purpose is to normalize the gate maps Grgb, Ghsi, and Gnir to meet the condition
Grgb + Ghsi + Gnir = 1, which represents the weights assigned to each position in the feature
maps. The gate vectors are produced by a fully connected layer with a sigmoid function
that adaptively controls the flow at the input. Therefore, the final fused feature X can be
formulated as:

X = Fmap([RGB ∗Grgb, HSI ∗Ghsi, NIR ∗Gnir]), (10)

where we join a 1× 1 convolutional layer to map the feature vector X from R3C×H×W to
RC×H×W . Through this gate fusion module, the network has a robust feature retention
mechanism to ensure that the decoders can learn complete information while eliminating
the noise brought by the multi-modal data.

4. Experiments

Dataset. We evaluate our approach on the multi-spectral free-space detection dataset
HSI Road [13]. It contains 3799 scenes with RGB, HSI, and NIR modalities, including
1811 rural scenes and 1988 urban scenes. All the modalities are respectively annotated, but
we only use the RGB labels as the ground truth. The RGB modality used in the experiments
is 3-channel 704 × 1280 pixel pictures, the HSI modality is 16-channel 256 × 480 pixel
pictures, and the NIR modality is 25-channel 192× 384 pixel pictures. Figure 4 shows the
imaging characteristics of these spectra. Experiments are deployed on three sets, which
are rural-only, urban-only, and all the datasets. Due to the small amount of data (less than
10,000), we set the ratio of the training set, test set, and validation set to 6:2:2. Therefore, for
each experiment, we randomly use 60% data as the training set, 20% as the testing set, and
the remaining 20% as the validation set.
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Figure 4. Example of multi-spectral images in HSI Road dataset [13]. (a–c) show three different
scenes, and each scene includes three images that are from RGB, HSI, and NIR, respectively (from up
to down). The images on the bottom represent the ground truth, which is annotated according to the
RGB spectrum.

Implementation Details. Our network is implemented by Pytorch and trained on
NVIDIA Tesla V100 (Nvidia, CA, USA) platform using CUDA10.0. Our batch size is set to
6, the initial learning rate is set to 1 × 10−4, and the Adam solver is used to optimize the
network. We train the network over 100 epochs and decay the learning rate linearly at a
rate of 0.99.

Evaluation Metrics. Free-space detection is a two-class segmentation problem. Follow-
ing recent methods, we employ two metrics to evaluate the performance of our networks,
such as pixel accuracy and mIoU. The metrics are computed as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
, (11)

mIoU =
2TP

TP + FP + FN
+

2TN
TN + FN + FP

, (12)

where TP, TN, FP, and FN represent the number of true positive, true negative, false
positive, and false negative pixels. The results from these formulas are dimensionless. The
Accuracy will show the ratio of correct predicting pixels, and the mIoU will show the ratio
of intersection and union of ground truth and predicted results.

4.1. Experimental Results

In our experiments, we compare our MMCAN with SOTA semantic segmentation
approaches. We use the dataset to train ten DCNNs, including five single-modal networks
and four multi-modal networks. The approaches are tested under three settings: (a) training
with urban scenes, (b) training with rural scenes, and (c) training with mixture scenes.
The single-modal experiments are conducted with RGB images only. The multi-modal
experiments are conducted with two fusion strategies: early fusion and middle fusion.

For single-modal experiments, we implemented two baseline segmentation approaches,
i.e., U-Net [16] and DeepLab-v3 [60], and deployed three SOTA methods, i.e., DANet [18],
HRNet [61] and Self-Regulation [62]. The backbone of HRNet is set to HRNetV2-W48,
and the others are ResNet-50. In the task of multi-modal learning, early fusion methods
indicate a U-Net with a concatenation of images as input, middle fusion methods include
HAFB [50] and a multi-encoder U-Net baseline called MU-Net [63], which consists of three
independent ResNet-50 encoders for the three modalities and the feature maps of each
layer are concatenated to fuse as the skip connections of a U-Net decoder. To compare
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the performances between our proposed method and other SOTA DCNNs, we train our
MMCAN with the same setup as for the multi-modal networks.

We evaluate the performance of our proposed MMCAN qualitatively and quantita-
tively. The comparisons of accuracy and mIoU scores on the validation set are shown in
Table 1. It can be observed that the results show that the score in rural scenes is lower
than that in urban scenes, while the score is between them under the entire dataset. The
scores of SOTA multi-modal learning are similar to that of the SOTA single-modal network
in the urban scene and increase by 0.5–5% in the rural scene, which indicates that the
multi-modal data can indeed make up for the deficiencies of the RGB modality. Our pro-
posed MMCAN outperforms the RGB-based single-modal methods and also multi-modal
methods designed for aligned images for both urban and rural scenarios, with a score gain
of 1.2–4.5%.

Table 1. Performance on the HSI Road validation set, divided into three conditions: urban scenes,
rural scenes, and all scenes.

Methods
Accuracy mIoU

Urban Rural All Urban Rural All

Single-Modal
(RGB)

U-Net [16] 95.88 93.82 94.39 92.87 90.25 92.12
Deeplab-V3 [17] 95.86 93.87 94.33 93.18 90.74 92.90
DANet [18] 97.03 94.86 95.52 94.96 91.89 93.33
HRNet [61] 97.49 94.74 96.42 94.46 91.77 93.20
Self-Regulation [62] 98.05 96.00 97.32 95.40 92.48 94.68

Multi-Modal

U-Net [16] 97.08 96.38 97.14 94.16 93.04 94.18
MU-Net [63] 97.88 95.82 97.39 95.70 92.48 94.88
HAFB [50] 98.10 95.95 97.32 96.64 93.98 95.29
MMCAN 98.68 97.78 98.29 97.36 95.35 96.41

Examples of the experimental results on the HSI Road dataset are shown in Figure 5. We
can clearly observe that single-modal methods with RGB images as inputs can usually generate
pretty accurate segmentation results, but it also suffers from occasional misclassification due
to poor shadow and lighting conditions. Early fusion and intermediate fusion strategies using
aligned data can effectively improve performance, recovering rough road shapes but with
inaccurate segmentation boundaries. Our approach takes into account the above two points,
not only presenting more accurate free-space estimations but also ensuring the details of
the boundaries.

Ground Truth (a) RGB Only (b) Early Fusion (c) Concate Fusion (d) Ours

Figure 5. Examples on the HSI road dataset, where (a–d) show the segmentation results obtained
by single-modal HRNet, early fusion U-Net, concatenate fusion MU-Net, and our proposed
MMCAN, respectively.
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The experimental results show that our method has three advantages. First, in the
urban environment, the method is as good as the SOTA RGB single-modal method, with
slightly higher accuracy; by 0.63%. Secondly, in the rural environment, the method has
obvious advantages compared with the RGB single-mode method, with a 1.78% higher
score. This is because the rural environment is unstructured; thus there are many features
that cannot be perceived by RGB cameras, and the task can only be completed with the
supplement of multi-spectral information. Thirdly, compared with other multi-modal meth-
ods, the method uses multi-modal cross-attention to solve the problem of data alignment
and can directly process unaligned multi-spectral data. However, the method also has
some disadvantages. It is insufficient in the accuracy of segmentation edges, and, at the
same time, it has defects in recognition of small targets, which needs further research and
exploration in the future.

4.2. Ablation Study

To validate the effectiveness of every component in the proposed MMCAN, we per-
formed ablation experiments on the HSI Road dataset.

First, we investigate the impact of concatenation fusion and our proposed triplet gate
fusion by replacing the gate fusion blocks with concatenation operators. As shown in
Table 2, the gate fusion strategy significantly outperforms the simple concatenation fusion
strategy for multi-modal free-space detection, the performance is increased by 0.61 points
in urban scenes and 1.32 points in the whole dataset, which can be attributed to the fact that
the gate reduces noise in the modalities, and useful information is emphasized as a result.

Table 2. Ablation study on fusion strategies.

Accuracy mIoU
Methods

Urban Rural All Urban Rural All

MMCAN + concatenation 98.19 97.83 97.52 96.75 95.56 95.09
MMCAN + triplet gate 98.68 97.78 98.29 97.36 95.35 96.41

Then, we remove the inputs from MMCAN to evaluate its performance on single-
modal vision data. We conduct three experiments: (a) training with RGB images, (b) training
with HSI images, (c) training with NIR images, (d) training with RGB + HSI modalities,
and (e) training with RGB + NIR modalities. From Table 3, we can observe that our choice
outperforms the single-modal architecture concerning different modalities of training data,
proving that the data fusion via a three-encoder architecture can benefit from free-space de-
tection. It should be noted that although in the single-modal condition, our approach cannot
provide competitive results, the network still achieves sufficiently reliable segmentation.

Table 3. Ablation study on different modalities.

Methods Modalities
Accuracy mIoU

Urban Rural All Urban Rural All

U-Net

RGB 95.88 93.82 94.39 92.87 90.25 92.12
HSI 84.37 85.76 89.00 86.58 82.22 88.59
NIR 87.27 89.94 92.53 84.64 85.52 87.40

RGB + HSI 95.48 92.79 96.33 91.25 88.73 92.94
RGB + NIR 94.73 94.17 95.52 91.21 89.53 92.12

RGB + NIR + HSI 97.08 96.38 97.14 94.16 93.04 94.18

MMCAN

RGB 95.08 94.38 95.14 92.16 90.04 92.18
HSI 85.85 82.45 91.23 84.42 84.26 86.17
NIR 87.41 81.88 88.57 82.32 85.17 87.56

RGB + HSI 98.48 96.45 97.12 94.48 93.20 94.85
RGB + NIR 98.24 91.72 96.57 95.67 92.50 93.89

RGB + NIR + HSI 98.68 97.78 98.29 97.36 95.35 96.41
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To further validate the effectiveness of our choice, we add the MMCA module to the
low-dimensional layers of the network. Table 4 verifies the superiority of deploying MMCA
modules in high-dimensional layers, which helps to alleviate feature confusion to generate
accurate free-space detection results.

Table 4. Ablation study on MMCA module.

Layers
mIoU

Urban Rural All

1 + 2 + 3 + 4 + 5 95.78 92.73 94.91
2 + 3 + 4 + 5 96.44 94.24 95.27
3 + 4 + 5 (ours) 97.36 95.35 96.41
4 + 5 97.18 94.92 96.03
5 96.65 93.71 94.97

5. Conclusions

In this paper, we have presented a cross-modality embedding aggregation network
that can be used for free-space detection tasks on uncalibrated multi-spectral images, which
is a combination of sensors deployed on autonomous vehicles. Unlike existing multi-
modal segmentation methods, this network does not rely on pixel-wise aligned images;
therefore, a lot of preprocessing work, such as calibration and labeling, can be reduced.
The network is able to correct the erroneous results of RGB single-modal segmentation in
specific scenarios. Meanwhile, the joint triplet gate fusion can eliminate the ambiguous
information of multi-modal data. The experimental results on HSI, NIR, and RGB tri-modal
dataset show that our model not only has a significant improvement in rural and mountain
scenes but also achieves SOTA in multi-scene training. The model provides a solution
for multi-modal perception in autonomous driving without data preprocessing, which
greatly alleviates the computational cost. There are still deficiencies in our work. The
model predicts segmentation edges imprecisely and performs poorly in the detection of
tiny objects. Our future work focuses on two points. The first one is to extend the algorithm
to other autonomous driving tasks, such as multi-target segmentation, prediction, and
3D segmentation. The other is to explore solutions to misaligned modalities in other
multi-modal vision problems.
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