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Abstract: Natural disturbances like hurricanes can cause extensive disorder in forest structure,
composition, and succession. Consequently, ecological, social, and economic alterations may occur.
Terrestrial laser scanning (TLS) and deep learning have been used for estimating forest attributes with
high accuracy, but to date, no study has combined both TLS and deep learning for assessing the impact
of hurricane disturbance at the individual tree level. Here, we aim to assess the capability of TLS and
convolutional neural networks (CNNs) combined for classifying post-Hurricane Michael damage
severity at the individual tree level in a pine-dominated forest ecosystem in the Florida Panhandle,
Southern U.S. We assessed the combined impact of using either binary-color or multicolored-by-
height TLS-derived 2D images along with six CNN architectures (Densenet201, EfficientNet_b7,
Inception_v3, Res-net152v2, VGG16, and a simple CNN). The confusion matrices used for assessing
the overall accuracy were symmetric in all six CNNs and 2D image variants tested with overall
accuracy ranging from 73% to 92%. We found higher F-1 scores when classifying trees with damage
severity varying from extremely leaning, trunk snapped, stem breakage, and uprooted compared to
trees that were undamaged or slightly leaning (<45◦). Moreover, we found higher accuracies when
using VGG16 combined with multicolored-by-height TLS-derived 2D images compared with other
methods. Our findings demonstrate the high capability of combining TLS with CNNs for classifying
post-hurricane damage severity at the individual tree level in pine forest ecosystems. As part of this
work, we developed a new open-source R package (rTLsDeep) and implemented all methods tested
herein. We hope that the promising results and the rTLsDeep R package developed in this study for
classifying post-hurricane damage severity at the individual tree level will stimulate further research
and applications not just in pine forests but in other forest types in hurricane-prone regions.

Keywords: 3D point cloud; artificial intelligence; conifer forest; disturbance; lidar

1. Introduction

The forest is an ecological and dynamic system influenced not only by topography,
geographic location, and anthropogenic disturbances, but also by natural disturbances,
such as those caused by windstorms. Disturbance affects the forest structure and the compo-
sition of species [1–3], and in this way has an effect on biodiversity and plant regeneration
by increasing the light intensity in the understory [4], as well as altering water and carbon
cycles [5]. These natural disturbances and their consequences are essential components of
forest dynamics and are important for a forest’s health and development. However, fre-
quent disturbance episodes caused by tropical storm events may cause negative outcomes
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where the forest cannot recover from the consequent damage. The resilience of the forest
may be affected by extreme and constant disturbance, subsequent insect outbreaks, invasive
species, intense wildfire due to the woody debris [6–10], alteration of forest demography,
and tree injuries that reduce harvested timber value [11,12].

Hurricanes are one of the major natural disturbances to forest ecosystems in the South-
eastern United States (US). A severe hurricane can extensively influence forest structure,
composition, and succession [13], and can consequently cause related ecological, social, and
economic damage [14]. Hurricanes with winds classified as Category 4 (119–253 km/h) or 5
(>253 km/h) generally have ‘catastrophic’ effects on forests [15]. On 10 October 2018, Hurri-
cane Michael caused landfall in the panhandle of Florida as a Category 5 hurricane [16] and
caused an estimated $15 billion in damages, including more than $5.18 billion in losses to
the agriculture and timber industries. In Florida alone, Hurricane Michael damaged more
than 1.1 M ha of forest, with over 560,000 ha severely or catastrophically damaged (>75%
of the forest downed). In the Florida Panhandle, due to extraordinary winds, Hurricane
Michael led to a recorded tree mortality rate as high as 80% in some areas, and the single
event affected 28% of all extant longleaf pine forests [17]. The storm continued inland,
causing a tree mortality rate exceeding 20% as far as 150 km inland, where it continued
to be classified as a Category 2 storm [16] and caused catastrophic effects in forests in
Georgia and Alabama. Hurricane Michael changed the overall structure of the present
forests, modifying the forest canopies by creating large gaps and downed trees where
it passed [18].

High-frequency and -intensity hurricane events can create different types and amounts
of tree damage, potentially affecting pathogen outbreaks, fire regimes, and the subsequent
availability of seed sources for regeneration [12,19]. Trees that are twisted or bent by strong
winds could lose vascular connection to root systems, making them susceptible to insect
or pathogen attacks. Fire regimes could be altered if downed trees are lying entirely on
the ground where higher moisture contents would reduce fire intensity, or if they are
‘hung up’ and elevated aboveground in some manner where tissues would more easily
dry out. In the latter case, hanging tree crowns could facilitate ground fires climbing into
the canopy, where the resulting fires are more difficult to control and more likely to kill
the mature remaining live trees. Tree mortality from either wind or any resulting factors
(insects/pathogens, fire) could affect tree regeneration, especially for species, like longleaf
pine (Pinus palustris Mill.), that mast or infrequently produce seeds. The devastated area
in the Florida Panhandle includes a longleaf pine habitat that is classified as a global
biodiversity hotspot and endangered [14,15]. Although longleaf pine forests have, for over
millennia, been exposed to frequent storm events and wildfires, making them resistant
to these disturbances [20,21], maintaining longleaf pine ecosystems requires a significant
amount of management.

Measuring forest damage and other factors, such as carbon storage, tree diseases, and
fuel amount, provides a basic quantification of a forest’s potential scenarios and consequent
forest management practices [22]. The most accurate way to evaluate forest damage is by
doing forest inventory in situ as a method to conduct a quality and quantitative diagnosis
as a guide to forest management. The forest attribute data may be collected by a trained
team using ground assessments. However, forest inventory is expensive and requires a lot
of time [23], and it is not possible to assess each tree and access all landscapes that will be
evaluated, particularly post-hurricane. Remote sensing has proven to have a high potential
and capacity to map and estimate forest attributes, e.g., species structure, canopy height,
carbon and fuel amount, etc. [24].

Remote sensing tools and techniques offer the possibility to monitor and assess the
impacts of forest disturbances like windstorms at the landscape level. One of the first
and most notorious studies using remote sensing to assess hurricane damage was the
study from [25], which used Landsat and MODIS optical data to assess the damage from
Hurricane Katrina, which affected the US Gulf Coast back in 2005 [25]. Besides using the
remote sensing data, they also inventoried the affected areas to train their models. The
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parameters of vegetation structure are arduous and onerous to measure in the field, and it is
a challenging task, especially after a hurricane, for example. More recently, light detecting
and ranging (lidar) data from terrestrial, airborne, or spaceborne systems have proven to
be useful in mapping forest structure and canopy cover [26], determining forest health [27],
stem detection [28], tree diameter [29], and biomass [30], and extracting tree variables such
as height [31] and crown diameter [32]. The importance of the terrestrial lidar system,
known as terrestrial laser scanning (TLS), has grown in view of its ability to provide 3D
point cloud data with high precision, the fact that it is relatively easy to interpret, and the
fact that parameter extraction can be automated [33–35]. However, most of the previous
research has been conducted on stands and single trees [36], and none of the research relates
to the damage to single trees after a natural disturbance by hurricanes.

In recent years, deep learning methods have become important in remote sensing [37]
and are gaining popularity in the forestry field [38–40]. For instance, Ferreira et al. [41] pro-
posed the species classification of Amazonian palms using convolutional neural networks
(CNNs) in UAV images. CNNs in an input image (e.g., acquired from UAV) automati-
cally perform feature extraction of target objects (e.g., trees, buildings, etc.) and, based on
specific features, they can classify objects within the input image (e.g., tree species) [37].
Nezami et al. [42] used hyperspectral and RGB imagery with CNNs to facilitate tree species
classification. Implementing deep learning to 3D data from lidar brings unique challenges
and could provide the highest performance development in classifying image compo-
nents [43]. Directly using the lidar points often requires prohibitive effort, as shown by
Xi et al. [44], who assessed the effectiveness of machine learning and deep learning for
wood filtering and tree species classification from TLS. In the case of airborne lidar data,
one possibility is simply to use the canopy height model (CHM), therefore an image show-
ing the top of the crowns, as has been done in a study segmenting palm trees across the
Brazilian Amazon forests using a U-Net model [40]. Another way of working with the point
data is through a methodology named SimpleView, which takes snapshots of the 3D trees
over different viewpoints and uses those to train deep learning models [43]. This method
has been recently used to identify tree species with TLS data and a ResNet model [45]. In
general, classification from image or scan datasets is still a challenge due to the uncertainty
over classifier selection.

TLS and deep learning combined could provide an efficient way of assessing post-
hurricane damage severity at the individual tree level. For instance, deep learning algo-
rithms can be used to analyze images derived from TLS data, while TLS data can be used
to provide information about forest structure, allowing the deep learning algorithm to
accurately classify damage severity. Therefore, the aim of this study was to assess the
capability of TLS and CNNs to classify post-Hurricane Michael damage severity at the indi-
vidual tree level in a pine-dominated forest ecosystem in the Florida Panhandle, Southern
U.S. More specifically, we assessed the combined impact of using either binary-color or
multicolored-by-height TLS-derived 2D images along with six CNN architectures for post-
hurricane damage severity classification at the individual tree level, as well as to support
and enhance TLS-based forest inventory, monitoring, and conservation initiatives. As part
of this study, we developed rTLsDeep, a new open-source R package for post-hurricane
individual tree-level damage severity classification using TLS and CNN architectures [46].

2. Materials and Methods
2.1. Study Area

Forests of the Southeastern U.S. are highly biodiverse (e.g., the longleaf pine (Pinus
palustris Mill.) ecosystem), and productive (e.g., Loblolly pine (Pinus taeda L.) forest planta-
tions), and natural disturbances by hurricanes are well-known to be an important source
of mortality. For this study, we focused on the northwestern panhandle area in Florida,
near Apalachicola National Forest—ANF (30◦19′15.74′′N, 84◦52′0.02′′W), where Hurricane
Michael caused severe to moderate destruction in November 2018 (Figure 1). This region
includes the national forest, the nearby state forest, and some private forests that are man-
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aged for timber, recreation, and/or wildlife purposes. The United States Forest Service
(USFS) has a network of permanently fixed area plots as part of a RESTORE Act-funded
project with objectives including restoring hydrologic function in the zone. Further, this
region was classified as a “hotspot” in North America, and threatened and endangered
species were observed and studied. The topography is relatively flat, and either the Gulf of
Mexico or the Apalachicola River receives the water from existing small streams in large
quantities. The predominant tree species are pines (Pinus spp.), though hardwoods and
bald cypress (Taxodium distichum (L.) Rich.) can be found. A highly diverse understory of
grasses, forbs, and shrubs is found in pine forests, where low-intensity fires are common.
The majority of fauna and flora species in this zone are adapted to fire, and prescribed
fires are used for fuel management as a way to reduce a wildfire’s negative impacts and to
promote the development of desired understory plants. The mean elevation is 5 m, while
the mean annual precipitation is 1395.8 mm. The average temperature annually ranges
from 15 to 25 ◦C.
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Figure 1. Hurricane Michael path and category in the Southern US and study sites located within 
the area impacted by Michael within the Apalachicola National Forest (ANF) and private forests 
Figure 1. Hurricane Michael path and category in the Southern US and study sites located within the
area impacted by Michael within the Apalachicola National Forest (ANF) and private forests areas (a).
Area impacted by Hurricane Michael (36,218.00 km2) and study sites location (b). The timber damage
severity map was produced by the Georgia Forestry Commission and Florida Forest Service [47].

2.2. TLS Data Acquisition and Processing

TLS data were obtained in November 2021 across longleaf pine and sand pine (Pinus
clausa (Chapm. ex Engelm.)) forest stands within public and private lands in the Panhandle
area affected by Hurricane Michael. The sites were pre-selected after the disturbance event
based on a visual assessment of pre- and post-disturbance Google Earth aerial images. In
the field, we visited the pre-selected areas and selected the final sites, covering the entire
range of damage severity (light, moderate, severe, and catastrophic; see Figure 1). Within
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12 16.92-m fixed radius plots (900 m2) distributed in three sites, five TLS scans (four in
the edge—north, south, east, and west; one in the center) were obtained using Riegl VZ
400 i coupled with a NIKON D850 45.7 MegaPixel digital camera and a differential GNSS
RTK Receiver. The scan configuration was set to panorama 20 and frequency 1200 Hz. The
point cloud pre-processing, including point cloud registration, noise removal, and clipping,
was carried out using RiSCAN Pro® [48] (Figure 2a). Using CloudCompare® [49] a total
of 90 individual trees were randomly and manually extracted from the point cloud with
15 trees per class of damage severity (Figure 2b): C1—no damaged tree (intact tree, no visual
damage), C2—leaning tree, C3—beading tree with a trunk like a bow, C4—trunk snapped
with stem or crown broken, C5—stem breakage (no crown), C6—fallen or uprooted tree.
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Figure 2. TLS-derived 3D point cloud at plot level (a) and extracted individual trees (b): C1—no damaged
tree (intact tree, no visual damage), C2—leaning tree, C3—beading tree with a trunk like a bow, C4—trunk
snapped with stem or crown broken, C5—stem breakage (no crown), C6—fallen or uprooted tree. The
damage severity classification was adapted from previous studies (e.g., Rutedge et al. [15]).

Using the a priori damage severity classification, we derived 12 (1500 × 1500 pixels)
2D images from the 3D point cloud for every single individual tree extracted using the
tlsrotate3d function from the rTLsDeep package in R developed in this study [46] (see
Supplementary Material, Figures S1–S6). Each of the 12 images corresponds to a different
viewing angle according to the rotation in the Z-axis at each 30◦ increment (from 30◦ to
360◦) (Figure 3). We created two sets of 2D images, one using binary colors (black and
white) and the other being multicolored by tree height (0–30 m) (Figure 3). In total, we
created 1080 2D images per color class (in binary color and multicolored by height) that
were then used as inputs in six CNN architectures (Figure 3).

2.3. CNN Models and Accuracy Assessment

In this study, we used six of the most used CNN architectures for damage severity
classification at the tree level as follows:

(i) Densenet201, a densely connected convolutional network (DenseNet), was pro-
posed by Huang et al. [50] and introduced a novel framework to connect the layers of a
CNN. In a DenseNet, each layer takes all preceding feature maps as input and passes its
own feature maps to all subsequent layers. Here, we used a DenseNet architecture that is
201 layers deep and has been widely used in vegetation remote sensing [51].

(ii) EfficientNet_b7 [52]—EfficientNets are a family of CNNs that have achieved
outstanding performances with a reduced number of parameters. They were introduced
by Tan et al. [52] and rely on the so-called compound coefficient that uniformly scales all
dimensions (depth, width, and resolution) of the network. EfficientNet_b7, used in this
work, has a compound coefficient that equals 7 and achieved the best results among all
EfficientNet variants tested by [52].
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(iii) Inception_v3 [53]—The Inception architecture was first proposed by
Szegedy et al. [53,54] in a network called GoogLeNet. It allowed GoogLeNet to have
a reduced set of parameters (e.g., 12 times fewer parameters than AlexNet [55]) and still
provide outstanding classification results. However, its architecture and design are com-
plex and changes to the network are prohibitive and often hamper computational gains.
Szegedy et al. [54] proposed a set of modifications to the Inception architecture, such as
factorizing convolutions with large filter sizes, factorization into smaller convolutions,
and spatial factorization into asymmetric convolutions. These modifications allowed a
significant improvement in classification accuracy while maintaining network complexity
and keeping computational costs low [53,54].

(iv) Resnet152v2 [56]—Previous research on CNNs (e.g., [57,58]) showed that in-
creasing the number of layers (the depth) of a CNN can improve feature extraction and,
consequently, classification accuracy. However, the experimental analysis showed that an
increase in the network depth leads to an increase in the training error [58]. He et al. [59]
proposed a novel framework that allowed training models with many layers, thus improv-
ing feature extraction while maintaining the trade-off between classification accuracy and
computational cost. This framework is based on residual blocks with skip connections that
forward the feature maps of a given layer to a deeper layer in the network, giving rise to
the residual network (ResNet) family. Many ResNet variants exist that differ from each
other by the number of residual layers. Here, we used the variant Resnet152v2 [56], which
is composed of 152 layers with identity mappings as skip connections. Identity mappings
reduce the difficulty of network convergence by transferring to deep layers feature maps
from shallow layers.

(v) VGG16 [58]—The VGG16 model, proposed by Simonyan et al. [58], was one of
the first networks to overcome AlexNet [55] in the large-scale visual recognition chal-
lenge (ILSVRC), a renowned international competition that evaluates algorithms for object
detection and image classification. VGG16 is a simple model composed of only 16 layers.

(vi) A simple CNN variant composed of two convolutional layers and one max pooling
layer. We have laid out our approach in Figure 4. First, an input image was passed through
a set of convolutions, pooling, and fully connected layers for feature extraction (Figure 4b).
Then, the softmax classifier was applied to retrieve class membership probabilities, and the
input image was classified according to the class that achieved the highest probability score
(Figure 4c). The parameters of all networks were initialized with pre-trained values of the
ImageNet database [60] except the simple CNN variant, which was trained from scratch.
During training, to update the network hyperparameters (weights and biases), we used the
adaptive moment estimation (ADAM) optimizer [61].

We have implemented all CNN models in our rTLsDeep package [42]. From the total
of 1080 TLS-derived 2D images per color class (in binary color and multicolored by height),
80% of them (n = 864) were used for training, and the remaining 20% (n = 216) were used
for testing. During the construction of the training and testing sets, the tree identity was
respected. This means that if a given tree was selected for training, all of its 12 images
(corresponding to different viewing angles) were used to train the model and not used for
testing. For assessing the classification accuracy, we computed the overall accuracy (OA),
F1-score, and the Kappa index (Equations (1)–(3)). Moreover, we computed the confusion
matrices for each model. The diagonal cells of a confusion matrix show the amount of
correctly classified samples, while the off-diagonal cells show the misclassification rate.

OA = (TP + TN)/(TP + TN + FP + FN) (1)

F1-score= (TP)/(TP +
1
2
× (FP +FN)) (2)
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Kappa = (po − pe)/(1 − pe) (3)

where TP is the true positive, FP is the false positive, FN is the false negative, TN is the
true negative, and ns is the total number of samples. po is the proportion of trees correctly
classified and pe is the expected proportion of trees correctly classified by chance [62].
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Figure 4. Damage severity classification approach using convolutional neural networks (CNNs). The
input image (a) passes through a set of convolutions, pooling, and fully-connected layers (b) that
perform feature extraction. At the end of the process (c), the softmax classifier is applied to retrieve
class membership probabilities. The input image is then classified according to the class that achieved
the highest probability.

3. Results

Based on the six deep learning architectures, we had a mean overall accuracy of
87.34% for the binary-colored images and 86.59% for the images multicolored by height for
classifying damage level severity at the tree level from TLS data (Table 1). In general, all
CNN classifiers had similar Kappa statistics and mean F1-score values, except in the simple
CNN architecture with multicolored-by-height 2D images, whose values were 20% less
than general (Table 1). Considering the overall accuracy for binary-color images, VGG16
attained a slightly higher accuracy compared to the other CNN architectures. For the
multicolored-by-height images, VGG16, Inception_v3, and ResNet152v2 showed higher
overall accuracy, F1-scores, and Kappa values compared to other CNN architectures.

A detailed F1-score by individual classes reveals a higher accuracy for predicting
damage severity in classes C3 to C6 compared to the accuracy in classes C1 and C2 (Figure 5).
In general, when using images multicolored by height, CNN architectures show better
performance based on the F1-score. VGG16 and EfficientNet_b7 had superior F1-score
values in all six CNN architectures when using binary color images. For the multicolored-
by-height images, VGG16 and Inception_v3 had the highest F1-score in all classes assessed
(Figure 5).
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Table 1. Summary of overall accuracy, kappa statistics, and mean F1-score for six models’ approaches
within image type (colored by height and black) from the validation dataset. The best results by
image type are shown in bold.

Validation Data Architecture Overall
Accuracy (OA) Kappa Statistic Mean F1-Score

Binary color
(Black and

white)

DenseNet201 0.8725 0.84631 0.87107

EfficientNet_b7 0.8435 0.85814 0.88065

Inception_v3 0.8774 0.85228 0.87754

ResNet152v2 0.8725 0.84631 0.87027

Simple CNN 0.8823 0.85828 0.88307

VGG16 0.8922 0.86995 0.89321

Multicolored by
height

DenseNet201 0.8725 0.84637 0.87253

EfficientNet_b7 0.8627 0.83403 0.84620

Inception_v3 0.9020 0.88166 0.89777

ResNet152v2 0.9012 0.88182 0.90512

Simple CNN 0.7353 0.67936 0.70929

VGG16 0.9216 0.90556 0.92337
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Based on the confusion matrices (Figure 6), both within the binary-color and multicolored-
by-height 2D images, we found many samples that were mistakenly classified in classes C1
and C2. Commonly, C1 is misunderstood as C2 and C3. The trees in C2 are also confused
with trees in C1 and C3. The confusion matrices show that all models had accurately classified
damage severity levels in C3 (95.7% to 100%), C4 (92.3% to 100%), C5 (90% to 100%), and
C6 (94.6% to 100%) when using binary-color images and in C3 (100%), C4 (59.0% to 100%),
C5 (90.9% to 100%), and C6 (100% correct) when using multicolored-by-height images. For
the best overall CNNs, VGG16, Inception_v3, and DenseNet201 were the most frequently
accurate. The simple CNN variant, compared with all the other CNN architectures, showed
the lowest accuracies on both sets of 2d images.
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4. Discussion

We tested six CNN architectures for classifying post-hurricane damage severity at
the individual tree level using 2D images derived from 3D point clouds acquired by TLS.
Previous research demonstrated the potential of lidar data and deep learning methods
for leaf and wood separation and tree species classification [14,40,44]. However, as far
as we know, this is the first study demonstrating the potential of combining TLS with
deep learning models for classifying damage severity at the tree level after a hurricane
disturbance. The results showed that CNN architectures in our study had satisfactory
performances. An accurate estimation of the damage severity after a major disturbance
event is very important for prioritizing forest management practices. For land managers,
damage severity classification can be used in response to future hurricanes, for economic
timber evaluation, and to manage potential wildfires. In this section, we discuss the results
and highlight future research needs.

The TLS dataset is from an environment with a stressor, which induces significant
changes to the tree structure. The transformation of 3D point clouds to images allowed
the usage of powerful and established techniques of image classification based on CNNs,
while the direct use of 3D point clouds would have been computationally onerous [63].
The summary of the accuracy results from all the architectures tested in our approach was
promising (overall accuracies ranging from 67.9% to 92.3%). Although overall accuracy can
indicate performance, it could be, to a certain degree, inaccurate in a situation where there
is an unbalanced number of samples in the training dataset [42]. Hence, the F-1 score and
Kappa value were also used to assess damaged trees by class and by the type of model that
was tested.

Our results show that damaged trees in classes C3, C4, C5, and C6 could be classified
with high accuracy rates (F1-score > 0.94). When comparing the confusion matrices, we can
see that classes C3, C4, C5, and C6 were accurately classified. This classification success
is attributed to the distinct architecture of these four classes. The shape of C4 looks like
a triangle, C5 has no crown, and C6 is horizontally arranged. In contrast, C1, C2, and
C3 have in common the presence of trunks and crowns, and the inclination of the whole
tree is used as a parameter for dissimilarity among them. The image representation of the
point clouds multicolored by height is also more distinguished in classes C4, C5, and C6
compared to in C1, C2, and C3. C1 and C2 used all established ranks of colors in most of
the samples, which is the opposite scenario in classes C4, C5, and C6 as these trees are not
tall as in C1 and C2. For example, C6 is horizontally laid out and will not achieve a mean
height value. The capability of CNNs models to learn the tree architecture characteristics in
2D images is inspired by the human visual cortex [64], and both CNNs and human vision
are susceptible to errors. For example, we observed relatively high rates of misclassification
among C1, C2, and C3 (C1 to C2 ~28% and C2 to C3 ~11%). The classification errors among
these classes may have resulted from a different point of view depending on the rotation in
the x-y plane. For instance, the C2 trees might have been misclassified as C1 because the
trunk inclination of this is less than 45◦, and in a different position it could have appeared
to be a straight trunk. However, trees with no damage (C1) and leaning (<45◦) (C2) stems
are feasible for forest harvest since these trees can still be merchandised as sawlogs [16].

Regarding the performance of all the CNN architectures tested in our study, the
VGG16, DenseNet201, and Inception_v3 approaches yielded results with less confusion
and high accuracy values than the other methods. The simple CNN model showed an
overall weaker performance in three out of the six tested damaged tree classes. One
potential explanation for the difference in accuracy between the simple CNN and the
remaining models is that all the other models were pre-trained with ImageNet data and
then fine-tuned with the labeled training data, while the simple CNN relied entirely on
our small training data to adjust the model weights. Therefore, all models but the simple
CNN leveraged transfer learning, that is, the previous weights that were trained with other
images helped to better identify the tree damage classes. A direct and specific cause of
the difference in prediction accuracy associated with the six CNN models is complex to
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determine, and many factors might have impacted the accuracy, including the selection of
the training and test datasets [63], data resolution, and attribution [44]. Additionally, small
samples (<40 trees) may explain the poor performance of CNN models, but limited sample
sizes are not unusual for TLS research in many ecosystems [64]. Further, classification
accuracy is not only affected by data resolution and sample size but also by the choice of
classifiers. In methods of classification based on deep learning, convolution, and pooling
layers will vary among the architectures and will affect these. The pooling can be used to
remove anomalous pixels, and it is a process of down-sampling to obtain an average or
maximum value in a near portion [65]. Deep learning classifiers, i.e., VGG, ResNet, and
DenseNet, have different parameter sizes and each one will respond in accuracy, rapidness,
and stability in a distinct way. As such, DenseNet was drawn to have a small parameter
size and to be a weightless model [44].

In this study, the whole procedure of using plot scans to classify damage severity at the
tree level was not totally computerized, and the segmentation of individual trees by damage
severity class was executed manually. However, the general high accuracy rates found
herein set out the advantages of our proposition—the application of deep learning and TLS
data in disturbed areas—and they are an important first step in prompting an automated
forest inventory for after hurricanes that would provide wood and carbon storage estimates,
as well as support research based on the ecological process. In this way, a deep learning
approach may be used in future applications due to the potential performance to solve
segmentation problems. Also, the direct use of 3D point clouds in the damage severity
classification procedure might be considered for improving performance accuracy and
assisting with the quantification and qualification of the trees after a disturbance for forest
management practices, however, the trade-off between accuracy and computation must be
further investigated.

5. Conclusions

In this study, we assessed the capability of TLS and deep learning for classifying
post-hurricane damage severity at the individual tree level in a pine-dominated forest
ecosystem in the Florida Panhandle. Combining TLS with six types of CNNs was shown to
be efficient for classifying post-hurricane damage severity at the individual tree level with
a high accuracy. However, VGG16 and multicolored-by-height TLS-derived 2D images
outperformed all the other methods tested. This is the first attempt to combine TLS and
deep learning for classifying damage severity at the tree level. Despite the promising results
found herein, there is still a long path to run until the proposed method can be applied at an
operational scale. Improvements are needed not only in damage severity classification, but
also in the efficiency and automation of methods for individual tree extraction, especially
fallen trees, from TLS data. We hope the open-source rTLsDeep R package developed in
this study for classifying post-hurricane damage severity at the individual tree level will
stimulate further research and applications not just in longleaf pine but other forest types
in hurricane-prone regions.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/rs15041165/s1, Description of the rTLsDeep R package (Figures S1–S6).
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