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Abstract: Efficient, fast, and accurate crop lodging monitoring is urgent for farmers, agronomists,
insurance loss adjusters, and policymakers. This study aims to explore the potential of Chinese GF-1
PMS high-spatial-resolution images for corn lodging monitoring and to find a robust and efficient
way to identify corn lodging accurately and efficiently. Three groups of image features and five
machine-learning approaches are used for classifying non-lodged, moderately lodged, and severely
lodged areas. Our results reveal that (1) the combination of spectral bands, optimized vegetation
indexes, and texture features classify corn lodging with an overall accuracy of 93.81% and a Kappa
coefficient of 0.91. (2) The random forest is an efficient, robust, and easy classifier to identify corn
lodging with the F1-score of 0.95, 0.92, and 0.95 for non-lodged, moderately lodged, and severely
lodged areas, respectively. (3) The GF-1 PMS image has great potential for identifying corn lodging
on a regional scale.
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1. Introduction

Lodging is a major disaster for the crop, resulting in yield reduction and quality
degradation [1,2]. The strong winds or heavy rain/hail will lead to different lodging,
including stem lodging, which is the bending of the crop stem from their upright position,
and root lodging, which is the failure of the root–soil anchorage system [3,4]. Concerning
stem lodging, the corn plants may be recovered by their self-recovery ability. The yield
reduction and quality degradation are inevitable for severe or root lodging, especially in the
mature period. So, the farmers, agronomists, insurance loss adjusters, and policymakers
need fast and accurate information on the location and severity of crop lodging on a
regional scale.

The traditional method of acquiring information on the location and severity of crop
lodging relies on the measurement in field campaign, which is time-consuming, laborious,
and subjective and cannot be performed on a regional scale. Fortunately, remote sensing
provides a timely and reliable method, including high-spatial-resolution and multi-spectral
features, for acquiring crop lodging information across large areas [4–6]. The earliest study
can be traced back to the identification of winter wheat lodging using microcomputer-
assisted video images [7]. Subsequently, there are many studies using ground-based,
space-borne, and airborne remote sensing images to monitor crop lodging. The studies
monitoring crop lodging using ground-based images provide a valuable identification of the
behavior of the remote sensing signal on crop lodging using small-scale experiments [8–10].
With the development of remote sensing and unmanned drone techniques, unmanned
vehicle (UAV) images are used are identifying crop lodging with high spatial resolution
on a farm or many field plots [11–15]. The space-borne satellite images have superiority
in monitoring crop lodging on a regional scale. Two satellite images are used for crop
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lodging monitoring, including active SAR and passive optical images. Yang et al. [16], Chen
et al. [17], and Zhao et al. [18] explore Radarsat-2 quad-polarimetric images to monitor the
lodging of wheat and sugarcane. Chauhan et al. [2] classify the wheat lodging severity using
Radarsat-2 and Sentinel-1 images, and they found that the SAR-based metrics can capture
the crop lodging severity on a regional scale. Furthermore, there is an obvious difference
between crop lodging and non-lodging areas based on spectral reflectance and its derived
vegetation indexes and texture metrics [19–21]. Guan et al. [22] explore the potential of
aggregating Sentinel-2 metrics, including selected spectral bands and vegetation indexes
with a spatial resolution of 10 m. Referenced by these works, we want to know if the
high-spatial-resolution optical image with a meter-level resolution has greater potential for
crop lodging monitoring. Therefore, in this study, we explore the potential of Chinese GF-1
PMS images for crop lodging identification.

Gaofen1 (GF-1, launched on 26 April 2013) is the first satellite of the China High-
resolution Earth Observation System (CHEOS) project. One major application of GF-1
images is in agricultural monitoring. Two sensors are carried on the GF-1 satellites, includ-
ing wide field view (WFV) and panchromatic multispectral sensors (PMSs) cameras [23,24].
Zhou et al. [25], Chen et al. [26], and Qu et al. [27] used the GF-1 WFV image with 16 m
spatial resolution to monitor crop lodging. The panchromatic band of the GF-1 PMS has a
spatial resolution of 2 m. Therefore, the GF-1 PMS image is used to explore the potential of
a satellite image with a meter-level resolution for crop lodging monitoring in this study.
There is severe corn lodging in the middle of September when the mature period was hit
by three consecutive typhoons, including Bawei, Mesak, and Poseidon, in Lishu County, Jilin
Province, China. Therefore, corn lodging identification in Lishu County using GF-1 PMS
images is performed in this study. The objectives are as follows:

(1) Exploring the potential of texture features calculated from GF-1 PMS images for corn
lodging classification, including non-lodged, moderately lodged, and severely lodged
areas.

(2) Finding the optimized spectral bands, vegetation indexes, and textural features to
improve corn lodging classification accuracy.

(3) Improving the efficiency and robustness of corn lodging classification based on GF-1
PMS images using an optimized machine learning approach.

2. Study Area and Data Sources
2.1. Study Area and In Situ Measurements
2.1.1. Study Area

The study area is located in Lishu County, Jilin Province, China, ranging from 123◦45′E,
43◦02′N to 124◦53′E, 43◦46′N, covering 4209 km2 (Figure 1). The annual average precipita-
tion is 614 mm, and the annual average temperature is 6.9 ◦C belonging to the continental
monsoon climate zone with distinct seasonal changes. The cropland area is 2649 km2, and
90% is the corn planted area. The growing season of corn ranges from the end of April to
the end of September. Black soil dominates the whole study area, and conservation tillage
is performed to protect the black soil. Jilin Province was hit by three typhoons, including
Bawei, Mesak, and Poseidon, from August to early September 2020. Thus, there was lodging
of the corn plants in Lishu County.
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Figure 1. The study area (a,b), mosaic GF-1 PMS image (c) acquired before the typhoon (R: Band1, 

G: Band2, B: Band3), location of measured plots (d), and photographs (e) taken during a field cam-

paign. 

2.1.2. In Situ Measurements 

For modeling and validating the lodging area, we measured the lodged area using a 

Huace LT700H real-time kinematic (RTK) GPS receiver (Huace Ltd., Shanghai, China) and 

DJI Inspire2 UAV with (R, G, B) bands from the 11th to 17th September 2020. Every lodged 

corn planted area was located using a Huace LT700H RTK GPS receiver. The inclinometer 

is used to measure the corn lodging angle. The measured plots are shown in Figure 1d 

with photographs taken during the field campaign (Figure 1e). There are 37 plots with 

severe lodging, 37 plots with moderate lodging, and 14 plots with non-lodging. The lodg-

ing angle is used to classify the lodging severity as severe lodging (𝛼 ≥ 60°), moderate 

lodging (30° < 𝛼 < 60°), and non-lodging, where 𝛼 is the measured lodging angle using 

an inclinometer. 

2.1.3. UAV Collection 

Because the lodged area cannot be reached by walking, we used the DJI Inspire2 

drone to collect the high spatial UAV images for the visual interpretation of samples in 

conjunction with the ground survey points. A ZENMUSE X5S camera is carried on the DJI 

Inspire2 drone for collecting high spatial visible images, including blue, green, and red 

bands. The GJI GO 4 software on an iPad platform is used to set the flight route and flight 

parameters for corn lodging identification before shooting. The acquisition parameters for 
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Figure 1. The study area (a,b), mosaic GF-1 PMS image (c) acquired before the typhoon (R: Band1, G:
Band2, B: Band3), location of measured plots (d), and photographs (e) taken during a field campaign.

2.1.2. In Situ Measurements

For modeling and validating the lodging area, we measured the lodged area using
a Huace LT700H real-time kinematic (RTK) GPS receiver (Huace Ltd., Shanghai, China)
and DJI Inspire2 UAV with (R, G, B) bands from the 11th to 17th September 2020. Every
lodged corn planted area was located using a Huace LT700H RTK GPS receiver. The
inclinometer is used to measure the corn lodging angle. The measured plots are shown in
Figure 1d with photographs taken during the field campaign (Figure 1e). There are 37 plots
with severe lodging, 37 plots with moderate lodging, and 14 plots with non-lodging. The
lodging angle is used to classify the lodging severity as severe lodging (α ≥ 60◦), moderate
lodging (30◦ < α < 60◦), and non-lodging, where α is the measured lodging angle using an
inclinometer.

2.1.3. UAV Collection

Because the lodged area cannot be reached by walking, we used the DJI Inspire2
drone to collect the high spatial UAV images for the visual interpretation of samples in
conjunction with the ground survey points. A ZENMUSE X5S camera is carried on the
DJI Inspire2 drone for collecting high spatial visible images, including blue, green, and red
bands. The GJI GO 4 software on an iPad platform is used to set the flight route and flight
parameters for corn lodging identification before shooting. The acquisition parameters for
UAV image collection are presented in Table 1.
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Table 1. Acquisition parameters for UAV image collection.

Parameters Value

Flight height/m 50
Speed of flight/(m · s−1) 5

Before-and-after overlap/% 80
Side overlap/% 65

Spatial resolution/(cm · px−1) 1.4

Many pictures are acquired after the drone flight is finished, and the advanced agri-
culture mapping software Pix4Dfields for aerial crop analysis and digital farming is used
to perform image mosaic and geographical registration. Examples of the processed UAV
images are shown in Figure 2: the light fields are lodged corn-planted areas, and the varied
green fields are the non-lodged areas. The field in Figure 2a is oriented north–south, and
the field in Figure 2a is oriented east–west. We can see that the textural characteristics and
textural orientations of the lodged areas differ for the different fields in Figure 2a,b.
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Figure 2. UAV images collected during the field campaign. The field of North-south (a) and east-west
(b) orientations.

2.2. GF-1 PMS Images and Pre-Processing

The high-spatial-resolution GF-1 PMS images are used to identify corn lodging areas.
Image preprocessing for radiometric calibration, atmospheric correction, orthorectification,
fusion, and stitching is performed before lodging area classification. The characteristics
of the GF-1 PMS images used for corn lodging identification in this study are shown in
Table 2. In this study, we use four machine-learning methods, including support vector
machine, random forest, naive Bayesian, and BP neural network, to identify lodged corn-
planted areas using the GF-1 PMS images. There should be adequate samples for machine
learning methods. Therefore, we collect three samples using the visual interpretation
method combining ground-truth points and UAV imagery data: non-lodging, moderate
lodging, and severe lodging areas. There are a total of 4526 samples, and each kind of
sample is randomly divided into training samples (70%) and validation samples (30%). The
number of these three kinds of samples used for training and validation is presented in
Table 3.
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Table 2. Characteristics of GF-1 PMS images used for corn lodging identification.

No. Name Acquisition Date

1 GF1_PMS1_E124.0_N43.9_20200926_L1A0005087667

26 September 2020

2 GF1_PMS1_E124.0_N43.6_20200926_L1A0005087679
3 GF1_PMS1_E123.9_N43.3_20200926_L1A0005087685
4 GF1_PMS2_E124.5_N43.8_20200926_L1A0005087811
5 GF1_PMS2_E124.4_N43.5_20200926_L1A0005087820
6 GF1_PMS2_E124.3_N43.2_20200926_L1A0005087822

Table 3. Number of training and validation samples used for machine learning.

Code Type Training
Samples/Pixel

Validation
Samples/Pixel Total/Pixel

0 Non-lodging 972 433 1405
1 Moderate lodging 1152 501 1653
2 Severe lodging 1045 423 1468

3. Methodology

The flowchart for identifying corn lodging in the mature period using GF-1 PMS
images is illustrated in Figure 3. We collected samples using UAV imagery and measured
data from field, and the samples served as training and validation data for the model. After
the pre-processing of GF-1 PMS images, three kinds of image features including spectral
bands, vegetation indexes, and textural features are built. All these features are ranked by
importance and the sensitive features are optimized and combined. There are four groups
of optimized features that will be input into five machine learning classifiers including
the support vector machine (SVM), random forest (RF), naive Bayesian (NB), BP neural
network, and Extreme Gradient Boosting (XGboost). Lastly, the optimized model will be
used for corn lodging identification and mapping.
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3.1. Image Features

Three image features are used to identify corn-lodged areas, including spectral bands,
vegetation indexes, and textural features. Their definiens and applications for identifying
corn lodged area using GF-1 PMS high-spatial-resolution images are as follows.

3.1.1. Spectral Features

The four spectral bands, including visible and NIR bands of the GF-1 PMS images,
are used for identifying lodged and non-lodged areas in this study. There are obvious
color and tone differences between lodged and non-lodged areas, as shown in Table 4. The
visual interpreting flags in Table 4 show that the color of the lodged area is brighter than
the non-lodged area. This may result from the brightness of the back side of corn leaves.
Comparably, the non-lodged corn planted area is dark green or dark red, the moderately
lodged area is bright green or bright red, and the severely lodged area is brighter green or
red. These color and tone differences are used for identifying lodged and non-lodged areas.

Table 4. Spectral features of non-lodging, moderate lodging, and severe lodging from GF-1 PMS
images.

Code Type True Color Image False Color Image

1-4
1 Non-lodging
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3.1.2. Vegetation Indexes

The vegetation index can quantify the growing condition and vegetation coverage,
improving the identification of non-lodged, moderately lodged, and severely lodged
areas [28]. There are 13 vegetation indexes used to identify lodged and non-lodged areas in
this study. The expression and reference of these 13 vegetation indexes are presented in
Table 5.

There will be redundancy within these 13 vegetation indexes, and the redundancy
will result in big computing and does not help to improve the accuracy of identification.
So, we analyze the importance of these vegetation indexes using the Gini index before the
lodged area identification. The vegetation indexes with major importance are used, and
the vegetation indexes with minor importance will be removed during the lodged area
identification. The Gini index is calculated as follows:

Gini = 1−∑K
k=1 p2

k (1)
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where K is the number of classes and pk is the probability of class k. The Gini value ranges
from 0 to 1, which can be used to quantify the importance of image features. A larger Gini
coefficient suggests an important image feature, and a smaller Gini coefficient indicates
that the analyzed feature is less different from other features and less important. The
importance-ranked results of the 13 vegetation indexes are presented in Section 4.2.

Table 5. Vegetation indexes for corn lodging identification.

Abbreviations Full Names Expressions References

NDVI Normalized Difference
Vegetation Index NDVI = ρrir−ρred

ρrir+ρred
[29]

EVI Enhanced Vegetation Index EVI =
2.5×(ρnir−ρred )

ρnir +6×ρred −7.5×ρblue+1
[30]

RVI Ratio Vegetation Index RVI = ρnir
ρred

[29]

DVI Difference Vegetation Index DVI = ρnir − ρred [29]

TVI Triangular Vegetation
Index

TVI =
60×

(
ρnir − ρgreen

)
−

100×
(
ρred − ρgreen

) [4]

ARVI Atmospheric Resistant
Vegetation Index ARVI = ρnir −2×ρred +ρblue

ρnir +2×ρred −ρblue
[29]

GNDVI Green Normalized
Difference Vegetation GNDVI = ρnir−ρgreen

ρnir+ρgreen
[4]

GRVI Green Ratio Vegetation
Index GRVI = ρnir

ρgreen
− 1 [4]

VDVI Visible-Band Difference
Vegetation Index VDVI = 2×ρgreen −ρred−ρblue

2×ρgreen +ρred +ρblue
[4]

SAVI Soil Adjusted Vegetation
Index SAVI = (ρnir−ρred)×(1+L)

ρnir+ρred+L [29]

NLI Nonlinear Vegetation Index NLI = ρ2
rir−ρred

ρ2
nir+ρred

[31]

RDVI Renormalized Difference
Vegetation Index RDVI = ρnir−ρred√

ρnir+ρred
[4]

SIPI Structure Insensitive
Pigment Index SIPI = ρnir−ρblue

ρnir+ρred
[4]

In order to determine the optimal combination of vegetation indices, according to the
importance ranking results of the vegetation indices, the features are combined one by one
to construct a model, and the OOB error of the random forest model for each combination
is obtained [32], the number of image features is determined by comparing the OOB errors
of each combination. We determine the optimal vegetation index combination through the
importance ranking results and the OOB error.

3.1.3. Textural Features

Figures 2 and 3 show the prominent textural characteristics within the lodged area,
and the textural orientation corresponds to the lodging direction of corn plants. Therefore,
we explore the protentional textural features of the GF-1 PMS images to identify the
lodged corn planted area. Referencing our previous work about textural features for
land cover classification [33], the GLCM approach is used to produce textural features for
identifying lodged and non-lodged areas in this study. The GLCM approach was developed
by Haralick [34], which can fully take into account the spectral and spatial pattern of
image grey values [35,36]. There are eight popular GLCM textural features, including
Mean, variance (VAR), correlation (COR), contrast (CON), dissimilarity (DIS), homogeneity
(HOM), angular second moment (ASM), and entropy (ENT) [30]; these features were used
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in this study. When selecting optimal texture features for classifying corn lodging, the
Jeffries–Matusita (J.M.) distance indices are used to measure the separability of non-lodged,
moderately lodged, and severely lodged areas from the texture features. The J.M. distance
is calculated as follows:

JMij = 2
√

1− e−B (2)

JMijB =
1
8
(
mi −mj

)T
(Ci + Cj

2

)−1(
mi −mj

)
+

1
2

ln

∣∣∣Ci+Cj
2

∣∣∣√
|Ci| ×

∣∣Cj
∣∣ (3)

where, B is the Bhattacharyya distance between class i and class j; mi and mj are the mean
distances between class i and class j, respectively; and Ci and Cj are the covariance matrixes
of class i and class j, respectively.

3.2. Machine Learning Algorithms

Five machine learning methods are used to identify the lodged area in this study,
including support vector machine (SVM), random forest (RF), naive Bayesian (NB), BP
neural network, and Extreme Gradient Boosting (XGBoost).

The SVM is a popular algorithm for solving the problem of pattern recognition with
clear connections to the underlying statistical learning theory [37]. The classification results
of the SVM model are affected by many parameters, and the two most important parameters
are the error penalty parameter C and the kernel function [38]. The choice of the kernel is
vital for the pattern recognition accuracy using SVM, which links the problems they are
designed for with a large body of existing work on kernel-based methods. Three kernel
functions are used to identify the lodged area, including the polynomial kernel function
(poly), RBF kernel function (rbf), and Sigmoid kernel function (sigmoid).

A random forest is an ensemble of trees that lets them vote for the most popular class,
bringing significant improvements in classification accuracy [39]. So, the random forest
approach is used for identifying the lodged area. For the random forest method, forests
are a combination of tree predictors. Each tree depends on the values of a random vector
sampled independently with the same distribution for all trees in the forest [40]. During
the lodged area identification, two vital parameters should be optimized: the number of
decision trees and the maximum number of features used for generating each decision tree.
The number of decision trees is decided from 1 to the number of training samples. There
are 3169 training samples in this study. Therefore, the range of the number of decision
trees is set as (13,200) in this study. The maximum number of image features is decided by
comparing classification accuracy using 50, 100, 500, 1000, and 2000 decision trees.

The Naive Bayesian classifier is based on Bayesian theory [41], which assumes that
the predicted variables are Gaussian-distributed and all are independent. For the lodged
area identification, there are n-dimensional features for each sample of a lodged area which
can be set as X = {x1, x2, · · · , xn}. There are three kinds of classes set as Ci(1 ≤ i ≤ 3) for
the non-lodged areas, moderately lodged areas, and severely lodged areas. The analyzed
sample should be predicted as the class with the highest posterior probability. The lodged
area classification can be calculated as:

P(Ci|X) =
P(Ci)∏n

k=1 P(xk | Ci)

P(X)
(4)

where P(xk | Ci) is calculated using the training samples of non-lodged, moderately, and
severely lodged areas. X will be predicted to be Ci only if P(Ci | X) > P

(
Cj | X

)
, 1 ≤ j ≤

3, j 6= i. The advantage of the Naive Bayes classifier is that no super parameters should be
set, which is easy to complete.

The BP neural network is a multilayer feedforward neural network that corrects
network parameters by backpropagating produced errors. The BP neural network has
three layers: input, hidden, and output. In addition to determining the number of layers,
the number of neural nodes in each layer is a vital parameter. For the corn lodged area
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classification, the number of nodes in the input layer is determined by the number of
features in the feature set of the non-lodged area, moderately lodged area, and severely
lodged area. The number of output layer nodes is set to 3. Therefore, only the number of
nodes in the hidden layer should be determined, which is set using the following equation:

s =
√

0.43mn + 0.12n2 + 2.54m + 0.77n + 0.35 + 0.51 (5)

where s is the number of nodes in the hidden layer, m is the number of nodes in the input
layer, and n is the number of nodes in the output layer. The number of nodes in the input
layer, hidden layer, and output layer for the combination of spectral features, spectral
features + vegetation indexes, spectral + textural features, and spectral + textural features
+ vegetation indexes are presented in Table 6. Within the training process of BP neural
networks, the training cycle is set at 500, the optimizer is set at Adam, the learning rate is
set at 0.001, and the batch size is set at 100.

Table 6. The number of nodes for four kinds of feature combinations.

Feature Combinations Nodes in the Input
Layer

Nodes in Hidden
Layer

Nodes in the
Output Layer

spectral features 4 5 3
spectral features +
vegetation indexes 13 8 3

spectral + textural features 9 7 3
spectral + textural features

+ vegetation indexes 18 9 3

XGBoost is a novel implementation of gradient-boosted decision trees [42]. It is based
on augmented ensemble techniques that combine a set of weak learners to develop a strong
learner with an additive strategy. XGBoost takes the direction of the gradient descent of
the loss function as the optimization goal, and the new learner is built on the direction
of the gradient descent of the loss function of the previous learner. The main parameters
determining the model structure include the number of gradient-boosted trees and the
maximum tree depth [43]. The optional parameters for the number of gradient-boosted
trees are 50, 100, 150, and 200, respectively. The maximum tree depth options are 5, 7, 9, 12,
15, 17, and 25. Parameter selection will be determined using a grid search method based on
cross-validation.

The confusion matrix validates the classification results of non-lodged, moderately,
and severely lodged areas, and the overall accuracy (OA), Kappa coefficient (k), and F1
score are used to assess the classification accuracy.

4. Results and Analysis
4.1. Spectral Difference Analysis

To clearly show the spectral difference between the lodged and non-lodged areas
quantitatively, the boxplot and spectral difference of the non-lodged, moderately lodged,
and severely lodged areas within visible and NIR bands are presented in Figure 4. From
Figure 4a, we can see that there is an obvious reflectance increase and a broadened standard
deviation range for the lodged area in all four spectral bands including the blue, green,
red, and NIR bands compared with the reflectance of the non-lodged area. The reflectance
increase in the NIR band is the highest. Figure 4b shows that the reflectance of the blue,
green, red, and NIR bands increases from the non-lodged areas to the moderately lodged
and severely lodged areas. This result is consistent with the findings for the UAV image
labels in Figure 3 and the spectral features on the GF-1 PMS images in Table 4.
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severely lodged areas within four spectral bands.

4.2. Vegetation Index Difference Analysis

The Gini index is calculated to rank the 13 vegetation indexes in Table 5. The ranking
results in Figure 5a shows that the feature with the highest importance is ARVI. In addition,
the four features of DVI, NDVI, RVI, and TVI were ranked high in importance, and the
remaining eight features (NLI, SIPI, VDVI, GNDVI, SAVI, EVI, GRVI, and RDVI) have
relatively low scores. In order to determine the optimal combination of the vegetation
indexes, the image features are combined one by one according to the ranking results of
importance. The out-of-bag (OOB) error of the random forest classifier is used to determine
the number of image features. Figure 5b is the line chart of the number of vegetation
indexes with the OOB error. Firstly, the OOB error decreases quickly from 0.516 to 0.177
after the first important ARVI feature is joined. Secondly, the OOB error decreases slower
from 0.177 to 0.115 after the second important DVI feature is joined. Next, the OOB error
decreases from 0.115 to 0.113 with a decreased value of only 0.002. Subsequently, the OOB
error decreases slowly with the joining of more vegetation indexes. The OOB error reaches
a minimum of 0.069 when the number of vegetation indexes reaches nine. After that,
the OOB error is stabilized despite more vegetation indexes being joined. Therefore, the
optimized vegetation index combination is ARVI, DVI, NDVI, RVI, TVI, NLI, SIPI, VDVI,
and GNDVI.
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4.3. Textural Difference Analysis

The gray level of a GF-1 PMS image for calculating the GLCM, the direction and
window size for textural features calculation, and the combination of optimized textural
features are vital for the classification [33,35,44]. Therefore, this study aims to explore
the optimized textural parameters, including the quantization of the gray level, textural
directions, window size, and feature selection for the corn lodged area classification.

4.3.1. Quantization of Gray Level

The gray level of a GF-1 PMS image determines the size of the GLCM, and a GLCM
with the size of 256 × 256 will be produced from one band only with 256 gray levels.
Therefore, there will be a huge computational and time-consuming effort using the original
256 gray levels to calculate the GLCM. So, the optimization of compressing grayscale is
performed first. Figure 6a–c depicts the corn lodged area with the gray level of 8, 16, and 32
in the GF-1 PMS image, respectively. The boxed area in Figure 6 is the moderately lodged
area, which has been confused with a severely lodged area (bright white area) in an image
with eight gray levels. This confusion problem is relieved when the gray level increases to
16 gray levels, after which these three kinds of lodged areas can be distinguished clearly.
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Figure 6. Comparison of gray level with 8 (a), 16 (b), and 32 (c) levels in GF-1 PMS images.

With increasing the image gray level to 32 levels, the distinction between the non-
lodged, moderately, and severely lodged areas is almost similar. Figure 7 shows the
statistical variation of gray values in the non-lodged area, moderately lodged area, and
severely lodged area with the gray levels of 8 (a), 16 (b), and 32 (c). We can see that there is
obvious spectral confusion with a gray level of 8 (Figure 7a), and this problem is relieved
with a gray level of 16 (b) and 32 (c). There is almost no difference in boxplots shown in
(b) and (c). Based on the results of Figures 6 and 7, we use the gray level of 16 for the GLCM
textural features calculation.
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4.3.2. Analysis of Textural Directions

There are varied directions for cropland, including east to west (Figure 8a), south to
north (Figure 8b), northeast to southwest, northwest to southeast, and other directions.
There are four kinds of directions developed in the GLCM algorithm, including 0◦, 45◦,
90◦, and 135◦. For analyzing the difference in the textural direction for the textural features
calculation, the optimized eight popular textural features are all calculated in four directions,
including 0◦, 45◦, 90◦, and 135◦. The lined plots and dotted plots in Figure 9a–h are the
calculated statistical eight textural features in four directions for the corn planted area with
the direction of east to west and south to north. Figure 9c–e shows that (1) there is an
obvious textural difference in the different directions of the textural features, including
correlation (COR), contrast (CON), and dissimilarity (DIS); (2) the COR value is the highest
when the direction of calculating the COR feature is the same as the cropland direction;
(3) the values of CON and DIS are the smallest when the directions of calculating the CON
and DIS features are the same as the cropland direction. In addition to these three textural
features, there is no obvious difference within the different directions. The results of the
statistical analysis show varied directions in the cropland of the study area. To cover all
the textural characteristics in the study area, we calculated the mean values for all textural
features in four directions for classifying the corn lodged area.
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4.3.3. Window Size for Texture Computation

Window size is essential for texture features, and windows with different sizes can
capture textural information on different scales. A small window cannot cover the complete
textural features of the cropland, and a too-large window will create a spectral and textural
mixture. So, the window size should be determined. The window size is expressed as
(2N + 1) × (2N + 1), where N = 1~25 in this study. Therefore, there are 26 window sizes
used for calculating the textural features. Figure 10 shows the calculated Mean (a), VAR (b),
COR (c), CON (d), DIS (e), HOM (e), ASM (f), and ENT (g) using window sizes from 3 × 3
to 51 × 51, respectively. Figure 10 shows a noticeable textural difference with the window
size of 3 × 3 for the non-lodged area, moderately lodged area, and severely lodged area in
addition to the textural features of VAR (b) and COR (c).
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For quantitating the differences in the eight textural features with different window
sizes, the J.M. distance introduced in Section 3.1.3 is calculated. The valid J.M. distance
value lies in the range of [0.0, 2.0]. There is good separability between the two analyzed
classes when the J.M. distance lies in the range of [1.9, 2.0]. A J.M. distance within [1.0, 1.9]
means moderate separability, and there will be many pixels that should be classified
wrongly. A J.M. distance value within [0.0, 1.0] means poor separability. Figure 11 shows
the J.M. distance of the non-lodged, moderately lodged, and severely lodged areas for the
textural features using window sizes from 3 × 3 to 51 × 51, where G1 is the J.M. distance
between the non-lodged and moderately lodged area, G2 is that between the non-lodged
and severely lodged area, and G3 is that between the moderately and severely lodged area.
Figure 11 shows that the J.M. distance of G2 and G3 with a window size of 3 × 3 is bigger
than 1.9 with good separability. When the window size increases, the J.M. distance of G2
and G3 decreases. So, the window size of 3 × 3 is determined as the optimal size for corn
lodging identification using GF-1 PMS images. Comparably speaking, the separability
of G2 and G3 is better than that of G1, which means that there is more textural mixture
between the non-lodged and moderately lodged areas.
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Figure 10. The textural difference with window sizes from 3 × 3 to 51 × 51 for the non-lodged area, 
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Figure 10. The textural difference with window sizes from 3 × 3 to 51 × 51 for the non-lodged area,
moderately lodged area, and severely lodged area. And (a–h) represent the textural features of mean,
variance, correlation, contrast, dissimilarity, homogeneity, angular second moment, and entropy,
respectively.
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4.3.4. Selection of Textural Features

Considering the redundancy and the consumption of time and computing resources,
we use the Gini index introduced in Section 3.1.2 to optimize the textural features. The
importance of the eight textural features is ranked as shown in Figure 12a, which reveals
that the Mean feature has the highest importance, and the importance of other textural
features is ranked as COR, VAR, CON, ENT, ASM, DIS, and HOM successively. In line
with the ranking of importance, one more textural feature is joined one by one for the corn
lodging identification using a random forest classifier. The OOB error of the corn lodging
identification is as shown in Figure 12b, which reveals that the classification error decreases
to the smallest value of 0.3918 when the number of textural features reaches five. Therefore,
five textural features are joined for the corn lodging identification, including Mean, COR,
VAR, CON, and ENT.
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From these four experiments, we determined that the optimized textural features for
corn lodging identification using GF-1 PMS images are calculated with the gray level of 16,
the average textural features using the directions of 0◦, 45◦, 90◦ and 135◦, a window size
of 3 × 3, and the combination of textural features including Mean, COR, VAR, CON, and
ENT.

4.4. Optimization of Machine Learning Methods

Based on the optimized combination of the spectral bands, vegetation indexes, and
textural features introduced in Sections 4.1–4.3, the optimization of five machine-learning
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classifiers is performed here. As mentioned in Section 3.2, the Naive Bayes classifier is easy,
and no super parameters should be determined. The number of nodes in the hidden layer
of BP neural networks has been optimized. Therefore, the classifier of SVM, the random
forest, and XGBoost are optimized here.

Two essential SVM parameters should be optimized: the penalty parameter C and
kernel function [38]. Figure 13a shows the overall accuracy using different kernel functions
and C values. For the kernel function, the overall accuracy value using the sigmoid kernel
function is lower than that of the poly and rbf. For the C value, there is almost no change in
overall accuracy using the poly kernel function when the C value changes, which means
the C value is insensitive to the poly kernel function. Therefore, the rbf kernel function is
used for the corn lodging identification. Based on Figure 13a, we determined that the rbf
kernel function and a C value of 104 are the optimized parameters of SVM. In addition, we
optimize the gamma parameter of the rbf kernel function, and the gamma parameters to
be selected are 0.1, 1, 3, 5, 7, and 9 respectively. The best gamma parameter compared by
cross-validation is 7.
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The number of decision trees is vital for the random forest classifier. Figure 13b shows
the change in accuracy when changing the number of the random forest classifier. The
overall accuracy is only 81.80% when the number of decision trees is one. The overall
accuracy increases to 87.41% when the number of decision trees reaches 11. Then the overall
accuracy is stabilized after the number of decision trees reaches 351, and the overall accuracy
reaches a maximum of 88.92%. Therefore, the number of decision trees is configured as 351
for the corn lodging identification in this study.

In order to obtain the optimal parameters of XGboost, we used a grid search algorithm
based on 10-fold cross-validation to compare the model accuracy of different parameter
combinations. Then, we compare the accuracy of different parameter combinations to
obtain the optimal parameter combination. The number of gradient boosted trees is 150
and the maximum tree depth is 7.

4.5. Classification Results of Non-Lodged, Moderately Lodged, and Severely Lodged Areas

Using the optimized image features and machine-learning classifiers, we classify the
study area’s non-lodged, moderately, and severely lodged areas. Tables 7 and 8 show the
quantitative accuracy assessment results, including the OA, Kappa, and F1 scores for the
corn lodging identification. Table 7 shows that OA and Kappa are all improved when
joining the vegetation indexes to four spectral bands for the SVM, RF, BP, and XGBoost
classifiers. The OA and Kappa are improved further when the textural features are joined to
the four spectral bands for all four classifiers, including SVM, RF, NB, BP, and XGBoost. The
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highest OA and Kappa values are reached for the combinations of spectral bands, vegetation
indexes, and textural features using the SVM, RF, BP, and XGBoost classifiers. Comparably
speaking, the OA and Kappa by NB classifiers are the lowest for all combinations. The
lower accuracy of the NB classifier may result from the hypothesis that the NB classifier
assumes that input features are independent of each other. Unfortunately, the vegetation
index is computed from spectral bands, which are highly correlated. Therefore, the NB
classifier is not suitable when using remote sensing images to identify corn lodging.

Table 7. OA and Kappa coefficients using different classifiers and a combination of image features.

Combination of Features
SVM RF NB BP XGBoost

OA Kappa OA Kappa OA Kappa OA Kappa OA Kappa

Spectral 89.23% 0.8382 89.24% 0.8384 0.7549 0.6935 83.64% 0.7549 88.59% 0.8283
Spectral + vegetation index 91.09% 0.8663 90.86% 0.8628 0.7858 0.6438 85.7% 0.7858 91.23% 0.8685

Spectral + texture 91.16% 0.8674 91.97% 0.8792 0.8085 0.7285 87.25% 0.8085 92.33% 0.8850
Spectral + vegetation index

+ texture 93.23% 0.8991 93.81% 0.9069 0.8383 0.6890 89.24% 0.8383 93.37% 0.9005

Table 8. F1 scores using different classifiers and a combination of image features.

Classifier Combination of Features
Non-

Lodged
Area

Moderately
Lodged

Area

Severely
Lodged

Area

SVM

Spectral 0.9167 0.8547 0.9097
Spectral + vegetation index 0.9313 0.8831 0.9208

Spectral + texture 0.9208 0.8822 0.9326
Spectral + vegetation index + texture 0.9358 0.9107 0.9532

RF

Spectral 0.9152 0.8539 0.9130
Spectral + vegetation index 0.9370 0.8800 0.9122↓

Spectral + texture 0.9285 0.8936 0.9412
Spectral + vegetation index + texture 0.9503 0.9182 0.9492

NB

Spectral 0.8394 0.6961 0.8503
Spectral + vegetation index 0.8367↓ 0.6469↓ 0.8204↓

Spectral + texture 0.8273↓ 0.7369 0.8972
Spectral + vegetation index + texture 0.8186↓ 0.6923↓ 0.8691

BP

Spectral 0.8787 0.7658 0.8682
Spectral + vegetation index 0.8876 0.7966 0.8904

Spectral + texture 0.8809 0.8265 0.9198
Spectral + vegetation index + texture 0.9101 0.8557 0.9164

XGBoost

Spectral 0.9079 0.8433 0.9095
Spectral + vegetation index 0.9468 0.8819 0.9115

Spectral + texture 0.9388 0.8929 0.9404
Spectral + vegetation index + texture 0.9485 0.9052 0.9490

Note: The symbol ‘↓’ indicates that when using the same classification method, the classification accuracy of this
feature combination is lower than that of only spectral feature combination.

Table 8 shows that the F1 scores using the RF classifier are the highest for all non-
lodged and moderately lodged areas. In the severely lodged area, the F1 score of SVM is the
highest. Based on the results in Tables 7 and 8, the RF classifier performance is the best. For
the feature combination, all the combinations improve the F1 scores using the BP classifier.
Secondly, the combinations of spectral + texture and spectral + vegetation index + texture
improve the F1 scores using RF classifier with a slight decrease using the combination of
spectral + vegetation index. For the NB classifier, the joining of the textural features and
vegetation index decreased the F1 scores for the classification of the non-lodged, moderately
lodged, and severely lodged areas.
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The mapping of corn lodging in the study area using GF-1 PMS images is performed
using the feature combination of spectral + vegetation index + texture and the RF classifier.
Figure 14 shows the masked result of the non-lodged, moderately, and severely lodged
area mapping. The corn plants in the middle of Lishu County are tall and dense, and there
are more severely lodged areas in the middle of Lishu County. Conversely, the corn plants
in the west of Lishu County are short and sparse, so most areas are subsequently classified
as non-lodged.
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Figure 14. Mapping of corn non-lodged, moderately lodged, and severely lodged areas in the study
area using GF-1 PMS images.

5. Discussion

There are challenges in identifying crop lodging using remote sensing images due to
the spatial heterogeneity of the cropland and crop growth [15]. We explore the potential
of Chinese GF-1 PMS images for identifying corn lodging using optimized features and
optimized machine learning methods in this study. Due to lodging incidence and the
coverage ability of GF-1 PMS images, there is no image collected in the southeast of Lishu
County, although there are six covered and collected after lodging. Therefore, there is no
identified result within the southeast of our study area in Figure 14. Our findings can cover
the whole of Lishu County if there are cloudless GF-1 PMS images in the white null area.
In addition, we will perform comparative experiments and validations when we collect the
matched cloudless GF-1 PMS image where the corn lodging occurred.

Image features optimization and machine learning methods optimization are methods
to finely depict the spatial heterogeneity of corn lodging in high-spatial-resolution GF-1
PMS images. For the textural features optimization, the moving step size when calculating
the GLCM is vital in addition to the gray level, textural direction, window size, and textural
features analyzed in Section 4.3. Step size refers to the interval between the base window
and the moving window. Considering most lodged patches are small, crowded together,
and scattered, the step size for calculating textural features is set at 1. Most of the corn
lodged area is less than 5 m2 in the study area, which is the size of about three pixels. In
addition, the optimized 3 × 3 window size with a step size bigger than 1 will miss many
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details of the lodged area. So, we use the 3 × 3 window size with the step size of 1 for
identifying corn lodged areas in this study.

Machine learning algorithms rely on a set of parameters to construct models and make
predictions. The choice of these parameters can greatly impact the accuracy of the model,
and finding the optimal set of parameters is essential for achieving the best performance.
In this study, we focused on the high-precision identification of corn-lodged regions and
optimized the hyperparameters of the SVM, RF, and XGBoost models. For example, in the
case of SVM, in addition to the main parameters of the penalty factor C and kernel function,
the gamma parameter of the RBF kernel function also has a significant impact on the model’s
performance. In this study, we specifically adjusted the gamma parameter of the kernel
function to obtain the best model. Our results showed that the optimal value of gamma can
improve the overall classification accuracy of SVM by approximately 1% compared to the
default value. To find the optimal parameter combination, we used a cross-validation-based
grid search method, which is a commonly used technique for hyperparameter optimization.
This method allows us to quickly explore different combinations of parameter values and
select the one that provides the best results. However, it should be noted that as the number
of parameters to adjust increases, this method becomes less efficient. In future research,
alternative techniques such as random search may be considered to improve the efficiency
of parameter adjustment.

6. Conclusions

Identifying corn lodging using Chinese GF-1 PMS images is vital for finding an
efficient and fast way to classify a corn lodged area and for exploring the potential of
Chinese GF series satellite images in crop growth monitoring. This study aims to find an
automatic and simple machine learning method to explore how to classify stagnation areas
in maize by optimizing the image features of high-spatial-resolution multispectral images
of GF-1 PMS. This study evaluates and screens the importance of a large number of image
features such as vegetation index and texture, and tries different feature combinations
of the spectral band, spectral band + vegetation index, spectral band + texture feature,
and spectral band + vegetation index + texture feature. Five machine learning algorithms
including support vector machine, random forest, Bayesian, backpropagation network, and
XGBoost were used to identify lodging areas of corn in combination with different feature
combinations. The results of this study are as follows:

(1) The optimized textural features for corn lodging identification using GF-1 PMS images
are calculated with the gray level of 16, the average textural features using the direction
of 0◦, 45◦, 90◦, and 135◦, a window size of 3 × 3, and the combination of textural
features including Mean, COR, VAR, CON, and ENT.

(2) The combination of spectral bands, optimized vegetation index, and textural features
can improve the classification accuracy of high-spatial-resolution GF-1 PMS images
for corn non-lodging, moderate lodging, and severe lodging areas compared with the
other three feature combinations.

(3) Compared with the other four classifiers, random forest has excellent performance.
It is efficient, robust, and easily identified corn non-lodging, moderate lodging, and
severe lodging areas.
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