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1. Introduction

Accurate building extraction from remotely sensed images is essential for topographic
mapping, urban planning, disaster management, navigation, and many other applica-
tions [1]. The easily available very-high resolution 2D/3D dataset and the rapid develop-
ment of image processing techniques, especially the convolutional neural networks (CNN)
and deep learning techniques have further boosted the research on building-extraction-
related topics. Especially in recent years, many research institutes and associations have
provided open-source datasets and annotated training data to meet the demand for ad-
vanced artificial intelligence models, which brings new opportunities to develop advanced
approaches for building extraction and monitoring. Hence, there are higher expectations
of the efficiency, accuracy, and robustness of building extraction approaches. They should
also meet the demand of processing large datasets at the city, national, and global levels.
Moreover, challenges remain on transform learning and dealing with imperfect training
data, as well as unexpected objects in urban scenes such as trees, clouds, and shadows.

As a follow-on Special Issue of “Remote Sensing based Building Extraction”, this
Special Issue “Remote Sensing based Building Extraction II” has further collected the
cutting-edge approaches for automatic building segmentation [1–4], vectorization [5,6], and
regularization [7], dense matching [8], 3D reconstruction [9–11], and road detection [12].
The proposed methods fall into two main categories depending on the use of the input
data sources: 2D building extraction and 3D reconstruction/segmentation.

2. 2D Building Extraction

Deep learning (DL) shows remarkable performance in extracting buildings from high-
resolution remote sensing images. How to improve the performance of DL methods,
especially the perception of spatial information, is worth further study. Paper [2] proposed
a building extraction network (B-FGC-Net) with a feature highlighting, global awareness,
and cross-level information fusion to achieve improved profitability of accurate extraction
and information integration for both small- and large-scale buildings. Focusing on the
promotion of the robustness of the interactive segmentation, Shu et al. [1] propose one
Progress Guidance Representation Net (PGR-Net) to utilize the distance of newly added
clicks to the boundary of the previous segmentation mask as an indication of the interactive
segmentation progress, and this information is employed with the previous segmentation
mask and positive and negative clicks to form a progress guidance map. This progress
guidance map is then fed into a CNN with the original RGB image. Furthermore, they
propose an iterative training strategy for the training of the network and adopt an adaptive
zoom-in technique during the inference stage for further performance promotion. Farmland
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constitutes an important resource for human survival and development. With complex
ground features and scattered distribution, building extraction from farmland remains
a challenging topic. To this end, Paper [3] proposes an attention-enhanced U-Net for
building extraction from farmland based on Google and WorldView-2 remote sensing
images. First, a Resnet unit is adopted as the infrastructure of the U-Net network encoding
part, then the spatial and channel attention mechanism module is introduced between
the Resnet unit and the maximum pool and the multi-scale fusion module is added to
improve the U-Net network. Second, the buildings are extracted from WorldView-2 and
Google images through farmland boundary constraints. Third, boundary optimization
and fusion processing are carried out to further refine the building extraction results. In
order to investigate the photovoltaic potential of urban buildings, Paper [4] proposed a
pseudo-label-guided self-supervised learning (PGSSL) semantic segmentation network
structure to extract building information from high-resolution remote sensing images. The
pseudo-label-guided learning method allows the feature results extracted by the pretext
task to be more applicable to the target task and ultimately improves segmentation accuracy.

To further close the gap between airborne images and vector representation, Van
den Broeck and Goedemé [5] propose a fully automated end-to-end workflow for large-
scale roof-part polygon extraction from UHR orthoimagery (0.03 m GSD). Their workflow
comprised three steps: (1) An multitask fully convolutional network (FCN) was utilized
for the semantic segmentation of roof-part objects and edges; (2) A bottom–up clustering
algorithm was used, given the predicted roof-part edges, to derive individual roof-part
clusters, where the predicted roof-part object area distinguish roof from non-roof; and
(3) The roof-part clusters were vectorized and simplified into polygons. The methodology
is trained and tested on a challenging dataset comprising of UHR aerial RGB orthoimagery
(0.03 m GSD) and LiDAR-derived digital elevation models (DEMs) (0.25 m GSD) of three
Belgian urban areas (including the famous touristic city of Bruges). Li et al. [6] explore
the idea of combining three deep learning models, each model performing specific tasks,
for automated extraction of building footprint polygons from very high-resolution aerial
imagery. Their approach uses the U-Net, Cascade R-CNN, and Cascade CNN models
to obtain building segmentation maps, building bounding boxes, and building corners,
respectively, thus allowing for the direct production of building maps in a vector format. A
polygon construction strategy based on Delaunay triangulation is designed to integrate
the outputs from the deep learning models effectively, as well as to generate high-quality
vector data. To solve the problem of edge discontinuity and incompleteness generated
by semantic edge detection, Xia et al. [7] propose a multitask learning Dense D-LinkNet
(DDLNet), which adopts full-scale skip connections and edge guidance module to ensure
the effective combination of low-level information and high-level information.

3. 3D Reconstruction/Segmentation

The use of 3D building models is essential and provides realistic data for spatial and
environmental analysis for various applications such as creating digital, generating simu-
lations to predict and prepare for future scenarios, and creating various urban analytical
processes, especially those that consider environmental impact, which is a growing global
concern. To obtain a precise 3D model with lower cost, dense stereo matching has been
studied persistently in the field of computer vision, remote sensing, and photogrammetry.
Along with the development of deep learning, the Guided Aggregation Network (GA-Net)
achieves state-of-the-art performance via the proposed Semi-Global Guided Aggregation
layers and reduces the use of costly 3D convolutional layers. To solve the problem of
GA-Net requiring large GPU memory consumption, Xia et al. [8] propose an efficient
end-to-end network GA-Net-Pyramid for dense matching a pyramid architecture to modify
the model. Starting from a downsampled stereo input, the disparity is estimated and
continuously refined through the pyramid levels. Thus, the disparity search is only applied
for a small size of stereo pair and then confined within a short residual range for minor
correction, leading to highly reduced memory usage and runtime. Manual modelling of
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urban buildings is very time-consuming and costly. Due to the complexity of the dense
urban regions, research oriented toward the automatic reconstruction of buildings is still
an open topic. In the manuscript titled “Parameter-Free Half-Spaces Based 3D Building
Reconstruction Using Ground and Segmented Building Points from Airborne LiDAR Data
with 2D Outlines” [9], the authors propose a new half-spaces based algorithm for building
reconstruction from airborne laser point clouds. In contrast to the related algorithms, which
divide 2D outlines of buildings into smaller parts and then process them while taking
only convex shapes into account, the proposed algorithm performs reconstruction without
division, while also considering concave parts of the rooftops. The method works in two
stages, where the input data is processed first to obtain the definition of the base model of
each building and the corresponding half-spaces. In the second stage, a building shape is
generated by performing 3D Boolean operations over the analysed half-spaces.

A major challenge of large-scale building reconstruction from airborne LiDAR point
clouds is the reconstruction of missing vertical walls. Paper [10] provided a fully automatic
building reconstruction approach to infer vertical walls based on the connection between
planar segments of both roofs and walls. The reconstruction model is obtained by using
an extended hypothesis-and-selection-based polygonal surface reconstruction framework.
Experimental results demonstrated that the proposed method is superior to the state-
of-the-art methods in terms of reconstruction accuracy and robustness. The study also
generated a new dataset consisting of the point clouds and 3D models of 20k real-world
buildings which can stimulate research in urban reconstruction and the use of 3D city
models in urban applications. To further refine the extracted building boundaries, Hui
et al. [11] propose a multi-constraints graph segmentation method for building extraction
from airborne LiDAR data and achieve satisfactory results. The graph structure is generated
using the three-dimensional spatial features of points. To reduce computational cost the
point-based building extraction is transformed into an object-based building extraction
and geometric morphological features are computed for each segmented object. Finally, a
multi-scale progressively growing optimisation method is employed to recover the omitted
building parts.

Besides buildings, digital maps of road networks are a vital part of digital cities
and intelligent transportation. This study [12] provided a comprehensive review of road
extraction based on various remote sensing data sources. It is divided into three parts.
Part 1 provides an overview of the existing data acquisition techniques for road extraction,
including data acquisition methods, typical sensors, application status, and prospects.
Part 2 underlines the main road extraction methods based on four data sources. Part 3
presents the combined application of multisource data for road extraction. It can provide a
comprehensive reference for research on existing road extraction technologies.
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