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Abstract: Kelp forests provide key habitat on the Pacific Coast of Canada; however, the long-term
changes in their distribution and abundance remain poorly understood. With advances in satellite
technology, floating kelp forests can now be monitored across large-scale areas. We present a method-
ological framework using an object-based image analysis approach that enables the combination of
imagery from multiple satellites at different spatial resolutions and temporal coverage, to map kelp
forests with floating canopy through time. The framework comprises four steps: (1) compilation
and quality assessment; (2) preprocessing; (3) an object-oriented classification; and (4) an accuracy
assessment. Additionally, the impact of spatial resolution on the detectability of floating kelp forests is
described. Overall, this workflow was successful in producing accurate maps of floating kelp forests,
with global accuracy scores of between 88% and 94%. When comparing the impact of resolution on
detectability, lower resolutions were less reliable at detecting small kelp forests in high slope areas.
Based on the analysis, we suggest removing high slope areas (11.4%) from time series analyses using
high- to medium-resolution satellite imagery and that error, in this case up to 7%, be considered
when comparing imagery at different resolutions in low–mid slope areas through time.

Keywords: kelp forests; multispectral; satellite; time series; spatial resolution; object-based image
analysis; remote sensing

1. Introduction

Kelp, brown algae in the order Laminariales, are dominant habitat-forming organisms
found in cool waters across approximately one-third of the Earth’s coastlines [1–3]. Kelp
create extensive aquatic forests that provide shelter and food for ecologically and economi-
cally important species [1,4,5]. Additionally, kelp provide myriad ecosystem goods and
services, such as fisheries production, nutrient cycling and carbon removal, estimated at
USD 684 billion per year worldwide [6,7]. However, climate change, overfishing, pollution
and increasing harvest threaten the health and persistence of kelp forests globally [1,5,8].
Recent work highlights the negative impacts of heatwaves on kelp forests [9–14] and the
loss of key predators, such as sea otters and sea stars, leading to overgrazing-induced
regime shifts from kelp forests to urchin barrens [6,15–17].

Kelp forests are dynamic by nature and show high interannual variability [18–20].
Considering that kelp forests are threatened globally, but are highly variable through
time, it is important to establish long-term time series to understand how kelp forests
are responding to environmental conditions in a time of global change [5,10,20]. His-
torically, kelp forest research is based on physical field data collection, such as surveys
by boats, snorkeling, or SCUBA (self-contained underwater breathing apparatus)
diving [5,8,18,21–23]. These survey techniques generally cover small areas and are difficult
to maintain long-term because of intensive labor requirements and high operating costs.
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Furthermore, these techniques remain logistically difficult due to the seasonality and inter-
annual variability of kelp forests and their extensive distribution along complex remote
coastlines with highly variable and sometimes extreme conditions, such as the Pacific Coast
of Canada [8,14,24,25].

Specifically on the Pacific Coast of Canada (British Columbia, BC), floating canopy-
forming kelp, Nereocystis luetkeana and Macrocystis pyrifera, support a variety of commer-
cially, recreationally and culturally important species [26,27]. Kelp forests with floating
canopies are produced by kelp that grow from the bottom of the ocean up to the surface,
which then aggregate in beds, henceforth referred to as floating kelp forests [28]. Only a
few local areas of floating kelp forests on the BC coast have been mapped at singular time
points by aerial surveys [23,29–31,31–36]. Some local-scale studies have measured kelp
forests through time, but show variable patterns of change [17,23,37–40]. This highlights
the need for large-scale, long-term monitoring initiatives to understand threats and assess
floating kelp forest dynamics. In other areas of the Pacific Coast, some successful aerial
surveys have quantified floating kelp forest trends [41–43], but these aerial surveys remain
operationally cost prohibitive at the scale of the BC coast.

With the enhancement of satellite imagery technology, the ability to monitor floating
kelp forests has dramatically improved, specifically with the increasing availability of
high-resolution (≤10.0 m) satellite imagery in the 21st century. Differences in the spectral
properties of floating kelp and water allow multispectral satellite sensors to distinguish
kelp canopies at or near the surface of the ocean, due mainly to kelp’s high reflectance in
the near-infrared range of the electromagnetic spectrum [25,44]. Many different methods
of classification have been applied for mapping floating kelp forests, including manual,
pixel-based (supervised, unsupervised, thresholds, spectral unmixing) and object-oriented
approaches (see summary by [24]). However, no standardized practices for mapping have
been developed and broadly accepted in the literature, making the monitoring of floating
kelp forests at large-scales difficult for non-remote sensing experts [8].

Multiple factors influence accuracy when using satellite imagery to map floating kelp
forests, such as glint, clouds, tide, bathymetry, coastline morphology, shadow, currents,
waves, phytoplankton blooms and adjacency impacts [25,45–47]. In particular, many of
these challenges increase in severity from south to north along the West Coast of North
America, such as increasing cloud cover, tidal amplitude and coastal complexity [47].
Considering these challenges, the mapping of floating kelp forests using satellite imagery
has been largely developed in California, where extensive offshore Macrocystis kelp forests
are mapped using medium spatial resolution satellites, including Landsat and SPOT
imagery from the 1980s onwards (e.g., [13,19,20,48–50]). Several studies have adopted the
methods developed in California to map floating kelp forests in other areas of the world,
e.g., South Africa [51], Oregon [52], the Falkland Islands [53] and Canada [46]. However,
using medium-resolution satellites to map floating kelp forests in BC remains challenging,
due to the presence of small fringing kelp forests and the high topographical complexity of
the BC shoreline [25,46].

Over the last 50 years, the spatial resolution of Earth observation satellite imagery has
rapidly evolved from 80 m to submeter resolutions. Even though satellite data (archived
and new) at different spatial resolutions are available globally, no large-scale, long-term
study has taken advantage of data from multiple sensors to reconstruct floating kelp
forest trends. Here, we present a methodological framework for mapping floating kelp
forests from archived medium- to high-resolution satellite imagery, using an object-oriented
analysis approach. We discuss the advantages and limitations of combining these data to
reconstruct trends. Specifically, the impact of using satellite imagery acquired at different
spatial resolutions to detect floating kelp forests are explored, and suggestions for drawing
appropriate conclusions when using multiple sensors, are described. Here, we use a test
site that supports both small fringing and large kelp forests located on the East Coast of
Haida Gwaii, BC, Canada, as a case study to develop a multi-satellite mapping framework
for detecting floating canopy of kelp forests. We focus on the methodological framework for
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creating this time series, not the time series analysis [54]. This framework will contribute
to advancements in the remote sensing of floating kelp forests, not only in BC, Canada,
but will allow for trends to be understood in remote regions and ultimately help inform
effective management strategies for the protection and longevity of floating kelp forest
ecosystems globally.

2. Materials and Methods
2.1. Study Area

The test site for defining the multi-satellite mapping framework is located in Haida
Gwaii on the West Coast of Canada, in the unceded territory of the Haida Nation; whose
relationship to the land and sea long predates colonial settlement and still exists to this
day [27,55]. Haida Gwaii is a large archipelago with a complex coastline of approximately
4660 km, situated in the Northeast Pacific Ocean (Figure 1A,B [56,57]). Specifically, the
study site spans roughly 800 km2 on the Northeast Coast of Moresby Island, just west of
Hecate Strait (Figure 1C). Both dominant floating canopy-forming kelp species, Macrocystis
and Nereocystis, are found in this region. Macrocystis grows year round and Nereocystis is
a perennial species; however, peak biomass occurs in the summer to early fall for both
species [22,58,59]. Haida highlight this region’s importance for the harvest of Macrocystis
kelp for the spawn on kelp herring roe fishery, but remark on the significant decline
of kelp forests in recent history [60]. In this region, the complex bathymetry supports
dense kelp forests of various sizes, from small fringing forests to large offshore forests
that span kilometers. Large areas are characterized by very gradual sloping ocean floors,
supporting some of the most extensive kelp forests found in BC, which are easily detectable
with Landsat imagery of 60.0 m (resampled from 80.0 m) spatial resolution, or better
(Figure 1E,F). In contrast, this region also includes smaller, less detectable kelp forests that
grow in narrow fringing beds along the steep slopping coastline (Figure 1F). These fringing
kelp forests are generally characteristic of kelp forests found across the remainder of the
BC coast [38,46,47,61]. This range in kelp forest size makes this region an ideal area to
define a framework for using different resolution satellites to map floating canopy area
through time.

2.2. Methodological Framework

The framework is a workflow that allows researchers to compile robust temporal
datasets of floating kelp canopy area through the evolution of medium- to high-resolution
satellites. The workflow consists of four main steps, including: (1) imagery compila-
tion and quality assessment; (2) preprocessing and enhancements; (3) object-oriented
image classification; and (4) an accuracy assessment (Figure 2). To compare floating
canopy area derived from multiple satellites, we analyzed kelp’s detectability at different
spatial resolutions.
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Figure 1. An overview of: (A) the Northwest Coast of North America; (B) the location of Haida Gwaii
in reference to the British Columbia coast; and (C) the Cumshewa Inlet study area. The study site
includes: (D) large offshore; (E) large nearshore; and (F) small fringing nearshore kelp forests. Image
source: (D,E) Lianna Gendall; (F) Environment and Climate Change Canada.
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Figure 2. The workflow of the methodological framework.

2.2.1. Step 1: Imagery Dataset

Archived high- to medium-resolution (0.5–60.0 m) multispectral satellite imagery was
compiled from 20 satellite sensors spanning from 1973 to 2021 through diverse sources,
including open data, private data sharing agreements, and commercial acquisition (Table 1).
Archived imagery is not necessarily collected during optimal conditions for mapping, and
therefore special consideration should be given to any factors that may lead to inaccurate
maps of floating kelp forests, such as clouds, tidal height, glint, shadow, haze, water
turbidity, waves, algal blooms and time of imagery acquisition [19,25,43,45,47]. To minimize
possible inaccuracies, a set of criteria were developed, and images were visually assessed
considering: glint, waves, shadows, clouds, the month and tidal height of acquisition.
Each category was scored from 0 to 3, where the lower the score, the better the quality.
For instance, the criteria for ideal conditions (score of 0) consisted of an acquisition time
between June and October, a low tidal height (<3 m above lower low-water large tide chart
datum) and the minimal presence (<5%) of glint, waves, shadow and cloud within the
nearshore areas where floating kelp forests are found within the imagery [25,38]. Once
combined, images showing suboptimal conditions for detection (overall criteria score ≥ 7)
were removed from the dataset. Importantly, the quality score results should be framed
within the context that more recent imagery is intrinsically more reliable for mapping
floating kelp forests due to their higher spatial resolutions.
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Table 1. Medium- to high-resolution satellite imagery used to develop the methodological framework
(NDVI: the normalized difference vegetation index. G-NDVI: NDVI with green instead of red. RE/G:
band ratio between red and green. R/Y: band ratio between red and yellow. R/G: band ratio between
red and green. NIR/G: band ratio between near-infrared and green).

Sensor Dates Ground
Resolution

Swath Revisit Bands and
Wavelengths
(NM)

Atmospheric
Correction

Band
Inputs

Source of
Imagery

Sources
for
Indices

LS-8 30 m
multispectral

170 km 16 days Blue 450–520 NDVI

2013–
present

15 m
panchromatic

Green 540–600 Green,

Red 630–690 Red,
NIR 770–900 NIR
SWIR 1550–1750
SWIR II
2110–2290
Pan 520–680

LS-4–7
1984–
present

30 m
multispectral

170 km 16 days Blue 450–520

15 m
panchromatic

Green 520–600

Red 630–690
NIR 770–900
NIR 1550–1750
MIR 2080–23500

LS-1–3 Pan 520–900
1972–1983

Surface
reflectance
ready
product

60 m
multispectral

170 km 18 days Green 500–600 NDVI

(Resampled
from 80 m)

Red 600–700 Green,

NIR 700–800 Red,

Landsat
Series

NIR 800–1100

Rayleigh
correction

NIR

Freely
Available from
United States
Geological
Survey (USGS)

[13,19,20,
46,53,62–
64]

Sentinel–2 2015–
present

60 m–10 m
multispectral

290 km 5 days Coastal 443–463 Surface
reflectance
ready
product
from
SNAP
Sen2Cor
processor

NDVI Freely
Available from
United States
Geological
Survey (USGS)

[65]
Blue 490–555 Green,
Green 560–595 Red,
Red 665–695 NIR
Red Edge I
705–720
Red Edge II
740–755
Red Edge 1
783–803
NIR1 842–957
NIR2 865–885
SWIR 1380–1410
SWIR I 1910–2000
SWIR II
2190–2370
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Table 1. Cont.

Sensor Dates Ground
Resolution

Swath Revisit Bands and
Wavelengths
(NM)

Atmospheric
Correction

Band
Inputs

Source of
Imagery

Sources
for
Indices

SPOT 4 20 m
multispectral

5 days Green: 500–590 NDVI

1989–2013 10 m
panchromatic

Red: 610–680 Green,

Near IR: 790–890 Red,
SWIR 1530–1750 NIR
Pan 610–680

SPOT 5
2002–
present

10 m
multispectral

2–3
days

Green: 500–590

5 m
panchromatic

Red: 610–680

Near IR: 780–890
SPOT 6–7 SWIR 1580–1750
2012–
present

Pan 480–710

Data sharing
available to
researchers
through the
Centre
National
d’Études
Spatiales
(CNES)

6 m
multispectral

1–3
days

1.5 m
Panchromatic

Blue 450–520

Green 530–590
Red 625–695
NIR 760–890

Spot
Series

60–80
km

Pan 450–745

Rayleigh
correction

Purchased
through Apollo
Mapping with
academic
discount

[50,65,66]

Geoeye–
1

2008–
present

1.84 m
multispectral

15.2
km

2.6
days

Blue 450–510 Rayleigh
correction

G–NDVI Private data
Sharing
agreement

Determined
using
m–statistic0.46 m

panchromatic
Green 510–580 Green,

Red 630–690 Red,
NIR 780–920 NIR
Pan 450–800

2.62 m
multispectral

Blue 450–520 G–NDVI

0.65
panchromatic

Green 520–600 Green,

Red 630–690 Red,
NIR 760–900 NIR

Quick-
Bird–2

2001–2015 15.2
km

2–3
days

Pan 450–800

Rayleigh
correction

Private data
sharing
agreement

Determined
using
m-statistic

Rapid-
Eye
Series

2009–
present

5 m
multispectral

77 km 1–6
days

Blue 440–510 Surface
reflectance
ready
product

RE/G Available to
researchers
through Planet
Labs Inc.

Determined
using
m-statistic

Green 520–590 Green,
Red 630–685 Red,
Red edge 690–730 RedEdge
NIR 760–850 NIR

WV-3–4 1.24 m
multispectral

13.1
km

Coastal 400–450 RE/Y

2014–
present

0.31 m
panchromatic

Blue 450–510 Green,

Green 510–580 Red,
Yellow 585–625 NIR

WV-2 1.84 m
multispectral

16.4
km

Red 630–690

Determined
using
m-statistic

2009–
present

0.46 m
panchromatic

Red Edge
705–745
NIR1 770–895

Pansharpened
without
NIR

NIR2 860–1040 R/G
Pan 450–800 Green

World-
view
Series

1–3
days

Rayleigh
correction

Blue

Private data
sharing
agreement

[25,38,46]

Plan-
etscope
Series

2018–
present

3.7 m
multispectral

24 km–
32.5
km

Daily Blue: 455–515 Surface
reflectance
ready
product

NIR/G Available to
researchers
through Planet
Labs Inc.

Determined
using
m-statistic

Green: 500–590 Green,
Red: 590–670 Red,
NIR: 780–860 NIR
Blue: 464–517
Green: 547–585
Red: 650–682
NIR: 846–888
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2.2.2. Step 2: Preprocessing

After selecting the optimal images for mapping, the following techniques were applied
to reduce geometric and radiometric uncertainties and enhance the spectral signal of
floating kelp to improve classification accuracies [25]. Geometric distortions occur in
imagery due to errors during acquisition, such as variations in altitude, attitude, the
velocity of the satellite, earth curvature, atmospheric refraction, and nonlinearities in
the satellite path [44,67]. All selected images were checked for geometric distortions
against the ESRI satellite base map in the WGS 1984 coordinate system, and those with
distortions were georectified in ArcGIS using ground control points and a nearest neighbor
interpolation [44,68]. However, where overlaps between imagery occurred, the overlapping
images were georectified to the previous images to ensure the best match. The root mean
squared error (RMSE) was calculated to evaluate the quality of the georectification, and a
threshold of less than two pixels was deemed acceptable, except for the Landsat imagery,
which was given an allowance of one pixel due to the coarser spatial resolution.

Following the georectification, images were evaluated for radiometric/atmospheric
issues, which may impact the band indices used and, consequently, the imagery classi-
fication outputs [69,70]. When possible, we obtained atmospherically corrected images
from suppliers (Table 1). For the other imagery, a simple approach considering a histogram
shift determined by the Rayleigh scattering factor was applied [71], hereafter referred to as
the Rayleigh correction. This approach considers that the scattering intensity is inversely
proportional to the fourth power of the wavelength (λ−4), and assumes that the darkest
pixels in an image, corresponding to shadowed or offshore deep-water areas, should have
null reflectance; however, because of Rayleigh scattering, nonzero values are recorded [71].
To account for the Rayleigh scattering, these nonzero values are subtracted from the spectral
signal of each specific satellite band, considering the spectral relationship between bands
according to the Rayleigh factor (λ−4) [71]. The initial step is to define the lowest reflectance
value in the blue band acquired from the darkest (lowest reflectance) pixels within the
image (Bc), which is consequently subtracted from each pixel in the blue band. If no blue
band was available (i.e., SPOT 4 and 5, Landsat-1 to 3), the value from the darkest pixels
in the green band was divided in half to account for the lower proportion of Rayleigh
scattering occurring and used in place of the blue Bc. Then, for each remaining visible band,
the following equation is used to calculate the Rayleigh correction value (Rc):

Rc = ((1/
(

λ4
b

)
/
(

1/
(

λ4
vis

))
× Bc,

where λb represents the mean wavelength (nm) of the blue band, and λvis represents the
mean wavelength (nm) of whichever visible band the equation is being used to calculate the
correction for (e.g., 560 nm when correcting the green band of Geoeye-1). To ensure images
were properly corrected, we evaluated the corrected reflectance of water and floating kelp
for a subset of imagery from each sensor and compared them to the known reflectance for
floating kelp and water from the literature [25,44,62].

Following the required corrections, images were subjected to: (i) a lowest tide land
mask; (ii) a deep-water mask; and (iii) a soft substrate mask to eliminate areas where
floating kelp forests are not found, and to minimize processing time and false positives.
Vegetation and intertidal seaweed on land have a high near-infrared (NIR) reflectance
compared to kelp [72,73], and therefore removing these features enhances the ability to
digitally differentiate floating kelp from water through contrast enhancement [25]. We
created the land mask using an object-based segmentation (Trimble eCognition Developer
V8.64) on the imagery with the lowest tide. For each resolution of imagery used in this study,
we added a buffer of one pixel to minimize land reflectance adjacency impacts from the
shoreline. To eliminate any areas where floating kelp forests were unable to grow [74,75],
a 20-m deep-water mask was created using a bathymetry dataset from the Canadian
Hydrographic Service [38,46,76]. Lastly, we masked shallow-soft sediment bottom, which
is uninhabitable to kelp [77], using overlapping areas defined as soft sediment in the BC
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Marine Conservation Analysis (BCMCA) benthic classes dataset [78] and the DFO bottom
patch model [77].

The final task in the preprocessing workflow was to select the combination of bands,
and band indices and/or band ratios, that perform best in the classification step. The
normalized difference vegetation index (NDVI, i.e., the normalized difference between
the reflectance of the near-infrared and red bands [79]) was used since it is commonly
used to enhance floating kelp canopies in imagery from the Sentinel-2, Landsat and SPOT
satellites [19,25,46,48,50,62–66] (Table 1). Additionally, for any imagery acquired by a
sensor that had not been readily used for floating kelp forest detection in the literature, the
M-statistic, a measure of class separability [80], was calculated for defining other possible
band indices and ratios. A high M-statistic represents high separability between two classes
with significant separation when M is larger than 1.0 [80,81]. For each sensor, we combined
the two to three highest scoring band indices, or ratios, with the visible bands and visually
assessed the combinations to choose which provided the best overall classification results
(Table 1). The selected bands, band indices and ratios, were then linearly enhanced to
maximize the spectral signal of floating kelp for the final input into the classification.

2.2.3. Step 3: Classification

An object-based image analysis (OBIA) was used based on the recommendation for
classifying dense floating kelp forests [25]. The OBIA approach combined a multiresolution
segmentation followed by a supervised nearest neighbor classification using the Trimble
eCognition Developer (V8.64) software to classify floating kelp forests within the imagery.
The OBIA classification offers several advantages over pixel-based classification methods.
OBIA has shown better accuracy than pixel-based methods when compared across a range
of spatial resolutions and ecosystems [82–86] and allows for the size of objects to be scaled,
so that object size remains relatively constant across different resolutions [84]. As part
of the eCognition software, OBIA allows for the definition of features beyond the pixel
values of the input data, including the mean and standard deviation of object radiometry,
object size and shape, and the spatial relationships of objects. This is not considered in
pixel-based classification, thus increasing separability among classes and reducing the
contribution of noise to the classification comparatively to pixel-based methods [87]. In
the OBIA, the final enhanced bands, band indices and/or band ratios for each image were
subjected to a multiresolution segmentation (Scale: Table 2; Shape: 0.3; Compactness: 0.5)
to group similar pixels into objects. From those objects, training classes corresponding to
floating kelp, submerged kelp/understory seaweed, water, glint/waves, cloud, shadow
and shallow water, were defined using expert knowledge. Figure 3 shows examples of
the most common classes used in the OBIA. Of note, not all classes were present in all
imagery. In particular, some classes, such as glint/waves and submerged kelp/understory
seaweed were indistinguishable in the medium-resolution satellite imagery. Because classes
varied by image, the feature space optimization tool in the eCognition software was used
to mathematically calculate the best number and combination of object features, such as
the spatial, spectral and contextual information (e.g., the mean of bands/band indices,
the standard deviation of bands/band indices, the maximum difference across all values
of all bands/band indices), to separate classes based on training samples [88]. This tool
compares features of different sample classes to find the optimal combination that produces
the largest average minimum distance between samples, to be used when categorizing
the remaining image objects into those given classes [88]. The ability of the feature space
optimization tool chosen features to separate classes was evaluated based on the analysis of
boxplots and three-axis scatter plots of the top three selected features for a subset of images.
Following this evaluation, we performed a nearest neighbor classification, using the optimal
features defined by the feature space optimization tool, to categorize the remaining image
objects into their respective classes. Before validation, the outputs were visually subjected
to a quality assessment using a knowledge-based approach where erroneous classifications
were manually reclassified in ArcGIS. Lastly, for the validation step, the outputs of the



Remote Sens. 2023, 15, 1276 10 of 33

classification were turned into two binary classes: floating kelp forests (1) and all other
classes (0).
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Table 2. The different scale factors used to determine object size in the segmentation step of
the classification.

Resolution Sensor Scale

0.5 Aerial Imagery, Pansharpened
Worldview 40

2–3 QuickBird, Worldview 30
4 PlanetScope 28
5 Rapid Eye 25
6 Spot 20
10 Spot 10
20 Sentinel-2 7
30 Landsat-4–8 5
60 Landsat-1–3 5

2.2.4. Step 4: Quality Assessment

For the classification validation, in situ kelp data and historical survey data for the
region were compiled. Ideally, ground-truth data should be collected at the time of satellite
imagery acquisition [25]. However, if no ground-truth data are available, other forms of data
can be used, such as past surveys showing the location of floating kelp forests [38,50,89],
or expert knowledge based on reflectance values [35]. For our dataset, we compiled two
forms of validation data: (i) in situ and (ii) archived data (Figure 4). The in situ data,
including drone images, photoquadrats (camera mounted above a 1 m quadrat lowered to
the seafloor), above water oblique photos from a boat, and remotely operated underwater
vehicle footage, were acquired in August 2021, a day after PlanetScope imagery acquisition.
Archived surveys were obtained, comprised of oblique photos from an aerial survey
performed by Environment and Climate Change Canada (ECCC) in 2015, multiple years of
SCUBA surveys (1990, 1994, 2007, 2012, 2017) from the Department of Fisheries and Oceans
Canada (DFO) [90] and kelp shoreline classifications from an aerial survey conducted in
1997 by ShoreZone. All validation data were combined into a dataset of spatial points and
classified as either floating kelp present or absent. Specifically, the DFO Scuba surveys and
ShoreZone data were simplified from species specific data (Macrocystis and Nereocystis)
to presence and absence. For the archived aerial images from ECCC, a random subset of
images was visually assessed for presence or absence. All validation data were compared
to the classification produced from imagery in the matching year to produce measurements
of accuracy corresponding to users’, producers’ and global accuracy, meaning errors of
commission (false-positives), omission (false-negatives) and overall accuracy [91]. No
archived validation data were available during the years of acquisition for the three highest
resolution satellites, so in order to validate products from the QuickBird-2, Geoeye-1 and
Worldview-2 satellites, the ECCC oblique photos were used with the assumption that some
errors would be associated with yearly variability.

2.2.5. Resolution Analysis

Here, we evaluate the impact of spatial resolution on the detectability of floating
kelp forests in satellite imagery at different scales. This analysis allowed us to define an
independent variable (ocean floor slope) to be used as an indicator of kelp forest size,
highlighting areas of uncertainty. The following steps were adopted in this analysis:

Step 1: Images from QuickBird (2.6 m), RapidEye (5.0 m) and Sentinel-2 (10.0 m), with
their original spatial resolutions, were resampled using bilinear interpolation to the different
resolutions matching the satellite database (6.0 m, 10.0 m, 20.0 m, 30.0 m, 60.0 m; Table 1)
following [92,93]. Sentinel-2 was included in the analysis to address possible interpolation
errors [94] associated with resampling high-resolution imagery from QuickBird-2 and
RapidEye to 20.0 m, 30.0 m and 60.0 m resolutions. The original and resampled images
were classified using the OBIA method described in Sections 2.2.2 and 2.2.3. To ensure that
images from the same sensor remained comparable, we used the same areas to train the
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classifier for each set of down-sampled images. After the classification of the resampled
images, the overall detectability across the study region was measured as the total amount
of floating canopy area (m2) detected in the downgraded resolution, divided by the total
floating canopy area (m2) detected in the original image, and presented as the percentage
of floating canopy area.

Step 2: A 1 km segment-based approach was used as the areal unit to evaluate the
impact of resolution (see Figure 5 for the delineation of segments). Due to the complex
bathymetry and presence of large offshore and nearshore floating kelp forests in our study
area, ocean floor slope was used to delineate these segments, as adapted from [95]. To
achieve segments that could extend kilometers offshore, segments were created in two
categories, along the shoreline (ocean floor slope greater than 3%) and out across the low
slope areas extending offshore (ocean floor slope of less than or equal to 3%), using 20
m bathymetry data from CHS [76]. These ocean floor slope categories were only used to
construct the segments and were not used in further analyses.

Step 3: Ocean floor bathymetry often limits the size of kelp forests by reducing the
available area to grow [46,96]; therefore, we assume it can be used as a proxy for kelp forest
size. For example, in high slope areas, the bottom quickly becomes too deep, limiting the
availability of light needed for kelp to establish and grow. In these conditions kelp only
grows in narrow fringing forests, which are more difficult to detect in satellite imagery.
Consequently, ocean floor slope was used to define areas where we would expect larger
inaccuracies of the classification at different resolutions. However, first we tested the
assumption that high slope areas support small fringing kelp forests [46].

For this, the relationship between ocean floor slope and kelp forest size was ex-
plored (classified from the original QuickBird-2, RapidEye and Sentinel-2 images and
measured in m2). For each segment, we defined the mean ocean floor slope based on
the 20 m bathymetry data from CHS [70], where a single kelp ‘forest’ was defined as a
continuous patch of attached floating kelp where kelp objects in the classification were
connected. Based on the relationship of floating kelp forest size and ocean floor slope, we
divided the segments into two broad categories: low–mid slope areas (0–11.3%), which
support large and small kelp forests, and high slope areas (11.4–37.0%), which support only
small kelp forests. Next, floating canopy area percentage was compared between the two
slope categories.
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3. Results
3.1. Imagery Quality Assessment

Out of hundreds of archived images examined across many different sources (Table 1),
a total of 52 images (from 1973 to 2021) were selected after the quality assessment step.
No good-quality images were found for a total of 12 years, including 1975, 1978–1981,
1983, 1987, 1993, 1995, 1996, 2003 and 2004. Landsat was the only freely available satellite
imagery provider before 2004 and thus the preferred choice for imagery; in particular,
Landsat-7’s scan line corrector failure in 2003 [97] led to no available images for 2003 and
2004. For years following 2005, the preferential choice was for high-resolution imagery
(2.0–20.0 m). Imagery from a single Spot 4 image (20.0 m) to numerous images from Sentinel-
2 (10.0 m), QuickBird-2 (2.6 m), Geoeye-1 (1.8 m), Worldview (1.2 m and 1.8 m), PlanetScope
(3.0 m resampled from 3.7 m) and RapidEye (5.0 m) satellites were compiled. In addition to
the high-resolution satellite imagery, we included a single nadir RBG aerial image (0.5 m
spatial resolution) from the Canadian Hydrographic Service in the dataset because of the
lack of good-quality high-resolution satellite imagery in 2007.

The 52 archived images selected through the criteria were acquired in various con-
ditions, leading to a range in quality scores (Table 3). The largest proportion of imagery
(46%) were acquired during ‘optimal’ conditions for floating kelp forest mapping, followed
by the second largest proportion (37%) acquired during ‘good’ conditions. Together, the
‘good’ and ‘optimal’ imagery account for 83% of the total imagery. Among the defined
criterion, more often, high tides or the presence of glint and cloud in imagery led to lower
scores than waves and haze (Table 3). Notably, in some years, no optimal low tide (<3 m
above chart datum) imagery was available because of the high tidal exchange that occurs
in Haida Gwaii (up to 7.8 m above chart datum) [98], leading to 33% of images ranked in
the lowest category for tides (5.0 to 6.0 m). These images were still included in the time
series dataset because floating kelp forests were readily visible upon inspection.
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Table 3. A summary of image quality criteria where percent (%) is the proportion of the 52 images
that fall into each category.

Quality Cloud (%) Tide (%) Glint (%) Waves (%) Timing (%) Haze (%) Quality Score Percent (%)

0 79 31 52 96 92 77 Optimal <1 46
1 10 17 42 4 8 12 Good 2 to 3 37
2 10 19 4 0 0 6 Medium 4 to 5 15
3 2 33 2 0 0 6 Acceptable 6 2

3.2. Preprocessing

Considering the selected imagery used for further analysis, a total of six images needed
geometric correction: one from Landsat-1, and all imagery from QuickBird-2 and Geoeye-1,
resulting in a RMSE within the two pixel threshold (average RMSE: QuickBird-2: 4.49 m,
Geoeye-1:3.61 m, Landsat-1: 16.48 m). For the next step, Rayleigh correction was applied
to imagery from Landsat-1–3, QuickBird-2, SPOT 5–7 and Geoeye-1; images acquired by
the other sensors (Sentinel-2, RapidEye, PlanetScope and Landsat-5) were provided in
atmospherically corrected products. After Rayleigh correction, our results showed that
compared to the original values, floating kelp and dark water pixels in the blue band
were reduced to zero or just slightly above, in the green band, pixels values decreased by
approximately half, and by approximately a third in the red band (Figure 6). This conforms
with the shape of kelp spectra and water spectra from in situ hyperspectral measurements
of floating kelp and water, in literature [25,44,62].

After geometric and Rayleigh corrections, the different spectral indices were evaluated
based on the M-statistics. Among the available spectral indices, the M-statistic results
showed different optimal indices for the different satellites (Table 4). For Geoeye-1 and
QuickBird-2, a normalized vegetation index with the green band (G-NDVI) instead of the
red band had the highest separability (>1.44). Meanwhile, for PlanetScope imagery, a simple
ratio combination of the near-infrared and green bands showed the highest separability
(>11.34). Lastly, for satellites that included a red-edge band, RapidEye and Worldview, a
simple band ratio of red-edge over green (>1.69), and red-edge over yellow (>2.72), was
best at separating kelp from water, respectively. The statistically selected indices and bands
were used as the input data for the object-oriented classification.

Table 4. A summary of the M-statistic of different band indices and ratios for kelp and non-kelp
classes observed in the imagery during band selection (R: red, Y: yellow, G: green, B: blue, RE: red-
edge, NIR: near-infrared, G-NDVI: NDVI with green instead of red, RE-NDVI: NDVI with red-edge
instead of NIR, B-NDVI: NDVI with blue instead of red, B-RE-NDVI: NDVI with blue instead of red
and red-edge instead of NIR, G-RE-NDVI: NDVI with green instead of red and red-edge instead of
NIR). Indices selected for input into classification are bolded.

Satellite Kelp-Water Kelp-Shallow Water Kelp-Shadow Kelp-Glint/Waves

Worldview-2
RE/Y

RE-NDVI
NIR2/Y

3.19
2.96
2.51

NIR1/B
NDVI

G-NDVI

4.91
4.63
4.43

RE/Y
RE-NDVI

RE/R

2.72
2.32
1.99

-
-
-

-
-
-

Geoeye-1
G-NDVI
NIR/G
B-NDVI

6.58
6.52
1.44

B-NDVI
NDVI

G-NDVI

6.58
6.52
1.44

-
-
-

-
-
-

B-NDVI
NDVI

G-NDVI

28.59
13.66
4.74

Quickbird-2
G-NDVI
NIR/R
NIR/G

9.81
7.34
7.24

NIR/R
G-NDVI
NIR/G

15.80
9.85
7.08

G-NDVI
NIR/G
NDVI

7.46
6.95
5.02

-
-
-

-
-
-

Planetscope
NIR/G
NIR/R
NDVI

14.02
8.55
7.55

NIR/G
NIR/R
NDVI

11.34
7.53
7.32

-
-
-

-
-
-

NIR/G
NIR/R
NDVI

19.63
8.81
7.39

Rapideye
RE/G

B-RE-NDVI
G-RE-NDVI

1.69
1.46
1.42

NIR/R
NIR/G
RE/R

31.74
11.23
9.11

-
-
-

-
-
-

NIR/R
NIR/G
RE/R

12.00
10.81
10.17
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Figure 6. Examples of spectra before and after performing the Rayleigh correction using the
(A) Rayleigh scattering curve to atmospherically correct imagery. (B,C) show a QuickBird-2 im-
age before and after correction and (D,E) show a Worldview-3 image before and after correction. Of
note, the magnitude of the digital number and wavelengths varies between sensors.

3.3. Classification & Accuracy Assessment

Here, the results are presented according to the order of the various decision processes
for the classification and validation. In an object-oriented classification approach, after
the initial segmentation step (see Methodological Framework Step 3: Classification), the
feature space optimization tool of eCognition defined the combination of object features
that best differentiate classes. Specifically, the feature space optimization function de-
fines the best combination of object features that gives the highest possible separability
between classes, as illustrated by the example of features chosen to classify a QuickBird-2
image (Figure 7). In this particular case, the feature space optimization tool chose the
standard deviation of G-NDVI, the mean G-NDVI, and the maximum difference between
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all bands and band indices to differentiate floating kelp canopy from submerged sea-
weed/kelp, glint/waves and water sample classes. Mean G-NDVI alone can differentiate
kelp from all other classes present in the image. However, the feature space optimization
chose both the standard deviation of G-NDVI and the maximum difference between all
bands and band indices because, when combined, they can differentiate among all classes
(Figure 7). For the majority of the dataset, the feature space optimization tool selected
between three and 10 features depending on the image, with, generally, the mean of the
red-edge band (when available), the mean of the near-infrared band and/or the mean of
the band indices selected.
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Figure 7. A three-axis scatter plot of the top three features chosen by the Feature Space Optimization
tool showing the separability of classes: the standard deviation (St. Dev) of G-NDVI; mean G-NDVI;
and the maximum difference between all (G, R, NIR and G-NDVI) input bands. The example was
done with a QuickBird-2 image.

After selecting the optimal features, we ran the classification according to the nearest
neighbor algorithm, followed by an evaluation of the classification results, considering user,
producer, and global accuracies (Table 5). The overall global accuracy for all sensors ranged
from 88% to 94% (Table 5). Generally, producers’ and users’ accuracy for kelp was high
(from 83% to 96% and from 90% to 100%, respectively; Figure 8C,D). Producers’ accuracy
for non-kelp classes were also high (from 89% to 100%). The lowest scores occurred
within the non-kelp users’ accuracy (from 64% to 100%) with errors occurring where
floating kelp was misclassified as water (see example in Figure 8A,B). Lastly, we found no
apparent differences when comparing the accuracy assessments that used concurrent and
non-concurrent validation data for QuickBird-2, Geoeye-1 and Worldview-2 (Table 5).

We used, on average, 124 validation points (85 kelp points and 39 non-kelp points),
except for with the classification of RapidEye and the aerial imagery. For these, only
nine validation data points were available for each, and thus even though high accuracy
was achieved, caution about the results is recommended. The lowest resolution satellite,
Landsat-5 (30.0 m), included in the validation, had similar accuracy to the higher-resolution
satellites (Table 5); however, it produced the lowest measure of users’ accuracy for non-kelp
targets (64%). Upon inspection, smaller thin fringing forests in steep nearshore areas were
misclassified as water or omitted due to the lowest tide land mask’s coarse resolution.
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Table 5. A summary of the accuracy assessment where users’ accuracy (%) refers to how often classes
(non-kelp and kelp) on the map are present in situ, and producers’ accuracy (%) refers to how often
real features (non-kelp and kelp) on the ground are correctly classified on the maps.

Timing Satellite
Kelp
Users’
Accuracy

Kelp
Producers’
Accuracy

n=
Non-Kelp
Users’
Accuracy

Non-Kelp
Producers’
Accuracy

n= Global
Accuracy n=

Concurrent

PlanetScope 100 92 171 70 100 30 94 201

Spot 7 100 88 64 86 100 48 93 112

Landsat-5 97 82 113 64 92 39 89 152

Aerial 100 83 6 75 100 3 88 9

Rapid Eye 100 88 7 100 100 1 88 9

Non-
concurrent

QuickBird-2 90 96 47 95 89 45 92 92

Geoeye-1 95 89 64 77 89 27 89 91

Worldview-2 98 84 50 85 98 46 91 96
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Climate Change Canada; (B,C) Gendall, L.

3.4. Resolution Analysis

Figure 9 illustrates the relationship between pixel size and the mixing of the spectral
signature of different features within a pixel. Specifically, within a pixel resolution (for
instance, 30.0 by 30.0 m for Landsat-5), the kelp spectral signature is averaged with the
spectral signature of other classes in close proximity (e.g., water), decreasing the ability
to accurately map floating kelp forests as pixel size increases. In particular, as resolution
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decreases, floating kelp and water spectrum are mixed, and the reflectance in the near-
infrared wavelengths decrease (Figure 9G). At the sample location shown in Figure 9, the
object-based classification can no longer differentiate the floating kelp signal from water at
60.0 m (Figure 9G).

Pixel mixing decreases the ability to correctly classify floating kelp when using
medium-resolution imagery. We show that at downgraded resolution, images gener-
ally produced a floating canopy area within 9% of their image’s original kelp forest area
(Figure 10). For instance, at 6.0 m resolution, the mapped floating kelp canopy area is 93%,
i.e., 7% lower than the mapped area at the original 2.6 m resolution. This can be assumed up
to a certain downgraded resolution because the further an image is downgraded away from
its original resolution, the more likely artifacts or errors from the interpolation methods
may occur, such as blurring and edge halos [94]. This possible issue is minimized by avoid-
ing data analysis of downgraded high- to medium-resolution, and instead, considering a
downgraded Sentinel-2 image from 10.0 m (SE10) to 20.0 m, 30.0 m and 60.0 m (SE20, SE30
and SE60, respectively). In this case, the results show that the floating kelp canopy area
remained almost unchanged when downgrading the medium-resolution Sentinel-2 image
from 10.0 m to 20.0 m, 30.0 m and 60.0 m (Figure 10C).
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 Figure 9. Clips of the same location of (A) the QuickBird-2 image (2.6 m) down sampled to

(B) 6.0 m, (C) 10.0 m, (D) 20.0 m, (E) 30.0 m and (F) 60.0 m, with (G) showing the spectra mea-
sured at the sample location. Floating kelp forest classification is shown as a pink outline. Images
are false color infrared showing land vegetation and seaweeds (including kelp) as red, rock/sand as
light blue and water as dark blue to black.
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Figure 10. The change in kelp area as a percentage of the kelp area (dark grey bars) derived from
the original image’s resolution (light grey bar) plotted by resolution for (A) QuickBird-2 (original
resolution: 2.6 m), (B) RapidEye (original resolution: 5.0 m) and (C) Sentinel-2 (original resolution:
10.0 m).

Figure 11 shows the relationship between floating kelp forest size (produced from
the three original images) and ocean floor slope. Generally, areas of low–mid slope
(0–11.3%) were associated with both small (<17,000 m2) and large kelp forests (≥17,000 m2),
whereas high slope (>11.4%) areas were only associated with small fringing kelp forests
(<17,000 m2). The low–mid slope areas exhibited a lower percent difference (within 7%)
of floating kelp forest area between the various imagery resolutions than the high slope
areas (up to 50%) overall (Figure 12). In particular, the differences in floating canopy area
in high slope regions were much more pronounced in the downgraded medium-resolution
imagery (SE20, SE30 and SE60) than the high-resolution imagery (QB6, QB10, RE6 and
RE10). These results allowed us to restrict the use of medium-resolution imagery to map
floating kelp forests only in areas of mid–low slope, i.e., imagery resolution between
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20.0 and 60.0 m is not recommended for high slope areas where fringing small kelp forests
dominantly occur.
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Figure 12. The change in floating canopy area as a percentage of that derived from the original
image plotted by resolution separated into (A,C,D) low–mid and (B,D,F) high slope categories for
(A,B) QuickBird-2 (original resolution: 2.6 m), (C,D) RapidEye (original resolution: 5.0 m) and
(E,F) Sentinel-2 (original resolution: 10.0 m).

4. Discussion

With advances in remote sensing technology, opportunities to map and monitor im-
portant ecosystems across large scales through time are increasing. The Landsat series
offers the best tool to map floating kelp forests at a single resolution (30.0 m) back through
time [13,19,46,62,63,99]. However, the ability to use medium-resolution imagery to accu-
rately map changes in floating kelp canopy area through time remains difficult in regions
with small fringing kelp forests, such as the Pacific Coast of Canada and Oregon [46,52].
Here, we developed a framework combining standardized practices and adaptable meth-
ods to produce a long time series of accurate maps of floating kelp forests from satellite
imagery acquired at various spatial resolutions. We show that the ability to map floating
kelp forests at different imagery resolutions can vary spatially based on ocean floor slope,
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and thus this metric can be used to highlight areas of uncertainty. Herein, we make a case
for the workflow, discuss the impact of spatial resolution on kelp detection, summarize rec-
ommendations for researchers when using the multi-satellite mapping framework (Table 6)
and more broadly consider the limitations and applications of the research.

Table 6. A summary of the recommendations outlined in the discussion for researchers applying
the multi-satellite floating kelp mapping framework to create a long-term time series of kelp forest
canopy area.

The Multi-Satellite Kelp Mapping Framework Recommendations

Quality Criteria

Have a set of quality criteria adapted for the specific area of interest when choosing what images to
use to minimizes the time and cost associated with building an archived imagery time series.
Things to consider in the development of criteria for a given area:
Peak biomass for acquisition timing;
Aim for low tidal heights;
Minimize cloud cover and haze;
Minimize glint and waves;
Minimize low sun angles and shadows;
Minimize adjacency effects.

Geometric and
Atmospheric
Corrections

When possible, attain imagery as atmospherically and geometrically corrected products and when
not possible use simple approaches such as a first-order polynomial shift for geometric correction
and the Rayleigh correction method to adjust atmospheric scattering and attenuation.

Band Indices/Ratios

Use a measure of class separability such as the M-statistic to determine the best combination of band
indices and ratios to use for each sensor. The most common band index used in floating kelp forest
remote sensing is NDVI. However, we found G-NDVI, as well as band indices using the RedEdge
band, often produced higher M-statistic scores.

Classification

To classify floating kelp area within different imagery from different satellites, use an adaptable OBIA
classification with the help of the feature space optimization tool to minimize errors and attain
high-accuracy scores. In this case, the feature space optimization tool often selected between three
and 10 features depending on the image, with, generally, the mean of the red-edge band, the mean of
the near-infrared band and/or the mean of the band indices selected. Of note, expert knowledge is
required to choose samples to train the classifier and a visual quality assessment of the classification
should be performed to minimize erroneous classifications prior to the accuracy assessment.

Accuracy Assessment
When possible, collect in situ validation data. However, if no ground-truth data are available, other
forms of data can be used to validate the classification, such as past surveys that show the location of
kelp forests, or expert knowledge based on reflectance values.

Resolution

The ability to map floating kelp forests at different imagery resolutions can vary spatially based on
ocean floor slope, and thus this metric can be used to highlight areas of uncertainty.
Based on the Haida Gwaii test area:
We suggest that regions with slopes higher than 11.4% should either be mapped only with the
high-resolution imagery or excluded from comparisons between high- and medium-resolution
imagery. We suggest that changes up to 7% be taken into consideration when comparing kelp
distributions from imagery at different resolutions in low–mid slope areas.
Special attention should be given to the detection limits at different resolutions when applying the
framework in new areas, thus we suggest performing similar resolution analyses and adjusting the
ocean floor slope threshold accordingly, especially if segment size and kelp forest density and species
vary significantly from those presented in this study.

4.1. Methodological Framework: Standardization and Adaptability

In remote sensing, Earth observation satellite data has become readily available, and
users often face confusion when trying to determine which satellites to use to produce
the best results for their given application [100]. In this paper, we highlighted some of the
most well-known sensors for mapping floating kelp forests, such as the Landsat, SPOT
and Sentinel-2 satellites (e.g., [19,46,62,65]), while also presenting some new cost-effective
high-resolution options such as imagery from RapidEye, Worldview and PlanetScope
satellites, which add valuable data into the kelp mapping field with their coverage since
2008, 2009 and 2018, respectively. In addition to the choice of satellites, having a specific set
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of criteria when choosing what images to use is crucial in minimizing the time and cost
associated with building a time series (Table 6) [38,100,101]. We demonstrated one possible
set of criteria that can be used to minimize errors associated with environmental conditions
and the timing of satellite imagery acquisition. Of note, the criterion should always be
selected based on the specific areas of interest. In particular, other factors that could lead to
the erroneous classification of floating kelp forests in satellite imagery are land adjacency
effects, high currents independent from tides, water turbidity and the presence of algal
blooms [47]. Our analysis did not consider these because they were largely absent in our
study region. However, in our case, clouds and higher amplitude tides often limited the
availability of good quality images. As such, some mid- to high-tide images (3.0–5.0 m
above chart datum) were included, based on a visual assessment of the imagery. A loss of
floating canopy area up to 42% when comparing a 2.0 m tidal height difference was found
on the Central Coast of BC [46]. In California, where Macrocystis kelp forms large offshore
forests similar to those found within the study area, increases in tidal height of 1 m in UAV
imagery reduced the floating canopy area from 15% to 30%, but was site dependent [102].
However, little to no difference was detected in Landsat satellite-derived kelp biomass
measurements across a 2.0 m tidal difference, likely related to the coarse resolution [19,50].
Consequentially, researchers should be aware of the impact that tides can have on detection
when determining their tide criterion and using this framework for time series analyses.
The impact of tides can be site, species, density and kelp forest size dependent [102,103].
Upon visual comparison we found no major difference between tidal heights used in this
study; however, more analyses are needed to understand and quantify the impact of tides
in this region.

Once a good quality imagery database is created, users are faced with many inconsis-
tent and complex approaches to correct systematic errors, such as atmospheric attenuation
and geometric distortions in imagery [25,104]. In order to keep the workflow streamlined
and easy to use, we propose a simple geometric and atmospheric correction method that
can be applied to imagery from various sensors (Table 6). For georectification, we found
that a simple first-order polynomial shift, which considers systematic and random distor-
tions in images [44,67,105], properly addressed any geometric distortions present. There
are numerous atmospheric correction methods that range from simple techniques like
the Rayleigh correction method [63] to the more complex algorithms that need supple-
mental data, including atmospheric models and, ideally, in situ measurements [106,107].
Other researchers, for instance, have effectively used models such as the Fast line-of-
sight Atmospheric Analysis of Hypercubes (FLAASH) [35] and the Atmospheric and
Topographic Correction (ATCOR) [46]. Nonetheless, these methods can often under- or
overcorrect values when parameters are not adequately chosen, making it challenging for
non-remote sensing experts to use, and problematic when applied over large bodies of
water [108–110]. When possible, imagery should be downloaded as already corrected
products, such as in [52,53,62,65]. For example, the United States Geological Survey (USGS)
provides Landsat Analysis Ready Data (ARD) products [111] and the Planet provides
Surface Reflectance (SR) products [112]. However, when these products are not avail-
able, adhering to a simple method that only requires within-image information is recom-
mended to prevent errors related to inconsistent methods or data input. We found that the
adopted Rayleigh correction method resulted in similar floating kelp and water spectra
as those from the literature [25,44,62]. More importantly, the shape of the floating kelp
and water spectra from the corrected images were akin to those of the atmospherically
corrected products.

Numerous band ratios and vegetative indices have been used to enhance floating kelp
forests in satellite imagery [25]. Most notably, NDVI, which was initially used to detect healthy
land vegetation [113], has been co-opted for floating kelp forests [19,25,46,48,50,52,53,63,114].
Based on the literature, NDVI has been effectively applied to Sentinel-2, Landsat and SPOT
satellite imagery to differentiate kelp from other classes. Alternatively, based on M-statistic
analysis, and similar to [25], we found that the NDVI with the green band (G-NDVI)
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instead of the red band performed better, most likely because less noise was visible in the
green band than in the red band. Additionally, indices that included the red-edge band
outperformed other indices, likely associated with the ability to detect slightly deeper
kelp better than the near-infrared band [115]. Considering these factors, within an image
pixel, there is likely a spectral signal mixture of submerged and floating kelp canopy with
water; consequently, users should consider that the red-edge indices may produce a higher
reflectance signal or slightly more kelp area than nonred-edge indices, depending on the
properties of the kelp forest (percentage submerged, depth, size, density, species, object
size). Although different band indices were chosen in our analysis, the overall accuracy
of the kelp maps produced remained high across all satellites regardless of chosen index,
indicating the viability of using different band indices to enhance the detection of floating
kelp forests.

Among the many different forms of classification, a commonly used method, the
Multiple Endmember Spectral Mixture Analysis (MESMA), has been effectively used
for mapping kelp forests in Landsat imagery. The MESMA is a pixel-based approach,
which linearly models the amount of kelp and seawater in each pixel using one kelp pixel
endmember and multiple water pixel endmembers [19,19,50,62,99,116,117]. In comparison,
the OBIA approach presented herein and first used by [25,38] to map kelp forests, is based
on clustering pixels into objects before the classification. The advantages of using the
OBIA approach proposed in this framework are related to less computational power, less
consideration of imagery noise commonly found in pixel-based classifications, the ability
to mimic the visual interpretation of features in an image, and the ability to scale object
sizes to remain similar across different resolution imagery [25,83,84,84,85,118,119]. Most
importantly, the feature space optimization tool allows for the classification to be optimized
on a per image basis. With an OBIA approach, single kelp plants are not being detected, but
the aggregates of plants floating at the surface, with the inclusion or some submerged kelp
and water gaps between patches, depending on the size of objects selected by the user. This
gives users the ability to define the best object size based on forests in their region and the
resolution of imagery used. Additionally, when users are trying to detect very small and
sparse fringing forests in high-resolution imagery, that result in single pixels needing to be
classified as kelp, a pixel-based classification has shown to outperform OBIA [25]. In this
case, users should be cognizant of the limitations of OBIA and should test the performance
of pixel-based methods described in [25].

Across all sensors, the multi-satellite mapping framework resulted in high overall
global accuracy (from 88% to 94%) when compared to the range (from 59% to 94%) doc-
umented in the literature [25,38,46,52,66]. It is important to note that different sources of
validation data were used to evaluate the classification results, including field observations
concurrent with imagery acquisition, data acquired from airplane and SCUBA surveys,
matched for the same year, and some not matching the same year. However, for using
all the different data sources, expert knowledge was always embedded prior to the accu-
racy assessment to minimize the use of erroneous classification outputs when comparing
with validation data. Generally, the errors of omission and commission showed that most
errors occurred at medium-resolutions where sparse, and narrow fringing forests along
steep shorelines were misclassified as water or omitted due to the coarse resolution low
water mask, similar to [46]. This indicates that the relationship between imagery spatial
resolution and floating canopy area has to be considered to highlight mapped areas with
high uncertainties.

4.2. The Impact of Resolution and Drawing Appropriate Conclusions

The framework presented here incorporated the analysis of a large range of satellite
imagery with spatial resolutions ranging from 2.5 to 60.0 m (except for the one aerial image
with a resolution of 0.5 m). Generally, although the imagery resolutions differed by one
order of magnitude, the mapped floating canopy area at the regional level did not largely
differ among resolutions. However, at a finer spatial scale, we found that the floating
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canopy area mapped in high slope areas (associated with fringing kelp forests) were more
impacted at coarser resolutions, indicating that these areas are prone to higher classification
errors. As such, we propose the addition of a new parameter, ocean floor slope, to define the
limitations of mapping floating kelp forests from different resolution imagery. Particularly,
the comparison between floating kelp forest size and slope showed that high slope areas
support small kelp forests, leading to more uncertainty when mapping with medium-
resolution imagery (up to 50%). Based on these factors, we suggest that regions with
slopes higher than 11.4% should either be mapped only with the high-resolution imagery
or excluded from comparisons between high-resolution and medium-resolution imagery
(Table 6). Additionally, for the time series of floating kelp forest change, we recommend
that users consider that a certain percentage of differences among years can be attributed
to errors due to resolution, and not be attributed to true changes in floating canopy area.
Within our region, we suggest that changes up to 7% (with high slope areas removed from
the analysis) be taken into consideration when comparing area from imagery at different
resolutions (Table 6).

4.3. The Challenges and Broad Applications of the Methodological Framework

A few challenges and limitations remain when using this proposed framework. Unfor-
tunately, the remote sensing of kelp canopies in this framework are currently limited to
those floating on or close to the surface, due to water’s high-absorption of the near-infrared
signal [115]. The detection of subsurface kelp forest canopy from aerial and satellite im-
agery remains difficult, is limited to shallow depths, generally necessitates clear waters and
often requires the use of high-resolution imagery or hyperspectral data [66,120–122]. More
work would be needed to expand these methods to subsurface kelp forests. Additionally,
environmental impacts (e.g., tides and currents) are challenging to isolate because they
largely differ based on location, species type, density and the time of imagery acquisition.
We were able to minimize the impact that different environmental conditions have on
imagery through criteria; however, we were unable to quantify or create correction factors
for the impact of tides or currents. Of note, given our goal to produce highly accurate
floating kelp forest maps, the approach suggested here is a supervised classification method
and needs some expert knowledge to determine good training samples for the classifier in
any given area. Moreover, when using the multi-satellite mapping framework, researchers
should consider the species and density of kelp forests present within their region. In our
case, floating kelp forests were generally dense, regardless of the forest size and species,
thus conforming with the presented framework. For other regions where sparse kelp forests
dominate or areas containing solely Nereocystis kelp forests, special attention should be
given to the detection limits at different resolutions, the use of OBIA versus pixel-based
classifications for very small sparse forests [25] and the ocean floor slope threshold.

The spatial resolution analysis and subsequent recommendations were conducted
with rigorous methodological criteria; however, the analysis was limited to samples
of imagery from three satellites. We acknowledge that the sample size is limited, and
other satellite-associated variables beyond spatial resolution, including spectral
resolution, signal-to-noise ratio, and satellite vicarious calibration, also play a role in
detectability [25,123,124]. However, the resolution analysis allows for a conservative ap-
proach when drawing conclusions from the time series of floating kelp forests. Additional
research in the future may include defining correction factors, similar to the tidal correction
factor applied by [62], to minimize the effects of the different spatial resolutions. For this,
we recommend multiple replicates of comparisons between satellite images collected at
different spatial resolutions in similar conditions over the same location, within a short time
frame. Furthermore, it is important to note that our unit of analysis was ~1 km segments.
In the literature, the size of segments for kelp time series analyses vary substantially (e.g.,
100 m in [38], 8 km in [43] and 1 km in [125]), and as such, special consideration should be
given to the scale of future analyses. We advise that further explorations of the resolutions’
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impact on kelp detectability be made if the unit of analysis (segments length) significantly
differs from the 1 km segment size presented in this study.

Many methods exist to detect floating kelp forests from satellite imagery; however,
most focus on compiling a time series using a single type of sensor, which can limit either
the spatial resolution of imagery available (i.e., 30.0 m Landsat imagery from 1984 onwards),
or with the use of high-resolution satellite imagery the length of the time. The MESMA
approach, used with Landsat imagery from 1984 onwards to detect large offshore forests of
kelp in California [19,50,62,117], has been used to map Macrocystis in the southernmost part
of Argentina [108] and Nereocystis off the coast of Northern California [91] and Oregon [52].
However, when this approach was used to map kelp forests on the Central Coast of
BC, between 28% and 75% of kelp that was present in the shoreline areas was missed
due to the medium-resolution of the Landsat imagery [43]. Recently, a similar method
using 10.0 m Sentinel-2 data was created [65], and although this method uses higher-
resolution imagery, the Sentinel-2 data repository only dates back to 2015. In contrast,
the methodology presented here enables trends to be understood with high-resolution
data back to the early 2000s, and medium-resolution data back to the 1970s. The methods
proposed by [25,46,50,65], and the one shown here, when integrated with the growing
availability of higher-resolution imagery such as the Planetscope satellite series (available
since 2018), will streamline the monitoring of floating kelp forests into the future. It will also
continue to allow scientists to better understand large-scale trends in floating kelp forests in
a time of unprecedented kelp forest loss, such as those documented in California [117,126],
Baja California [12], Japan [127,128], Australia [9,10,129–132], Oman [133], Norway [134],
Spain [135,136], Chile [137] and the Atlantic Coast of Canada [11].

5. Conclusions

Globally, threats to kelp forests are on the rise; however, locally, kelp forests show
highly variable patterns of change [1,3]. This study highlights that with the advancement
in Earth observation satellite technology, archived satellite imagery can be leveraged for
the monitoring of crucial floating kelp forest ecosystems using medium-resolution imagery
from the 1970s onwards, and more recently, using high-resolution imagery from the early
2000s onwards. The multi-satellite mapping framework allows for the creation of a floating
kelp canopy area time series using medium- to high-resolution satellite imagery through
standardized practices (i.e., the image quality criteria, geometric and Rayleigh correction)
and adaptable image-to-image methods (i.e., band index/ratio selection and OBIA). We
acknowledge that differing resolutions have an impact on kelp detection, and that when
using this framework we suggest using ocean floor slope (removing areas of slope > 11.4%)
as a metric to highlight areas of uncertainty in kelp detectability. Creating these long
time series of floating kelp forests using the framework can facilitate the monitoring and
protection of these important nearshore habitats from emerging threats. Additionally,
when coupled with environmental driver data and/or climate prediction modelling, it can
highlight the regions of risk and resilience of floating kelp forests globally.
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